blob: 017cc675fcd29df585adbe63b681a8928de7872c [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/remote_bitrate_estimator/remote_bitrate_estimator_abs_send_time.h"
#include "webrtc/modules/remote_bitrate_estimator/remote_bitrate_estimator_unittest_helper.h"
#include "webrtc/rtc_base/constructormagic.h"
namespace webrtc {
class RemoteBitrateEstimatorAbsSendTimeTest :
public RemoteBitrateEstimatorTest {
public:
RemoteBitrateEstimatorAbsSendTimeTest() {}
virtual void SetUp() {
bitrate_estimator_.reset(new RemoteBitrateEstimatorAbsSendTime(
bitrate_observer_.get(), &clock_));
}
protected:
RTC_DISALLOW_COPY_AND_ASSIGN(RemoteBitrateEstimatorAbsSendTimeTest);
};
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, InitialBehavior) {
InitialBehaviorTestHelper(674840);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, RateIncreaseReordering) {
RateIncreaseReorderingTestHelper(674840);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, RateIncreaseRtpTimestamps) {
RateIncreaseRtpTimestampsTestHelper(1237);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropOneStream) {
CapacityDropTestHelper(1, false, 633, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropPosOffsetChange) {
CapacityDropTestHelper(1, false, 267, 30000);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropNegOffsetChange) {
CapacityDropTestHelper(1, false, 267, -30000);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropOneStreamWrap) {
CapacityDropTestHelper(1, true, 633, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropTwoStreamsWrap) {
CapacityDropTestHelper(2, true, 700, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropThreeStreamsWrap) {
CapacityDropTestHelper(3, true, 633, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropThirteenStreamsWrap) {
CapacityDropTestHelper(13, true, 667, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropNineteenStreamsWrap) {
CapacityDropTestHelper(19, true, 667, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, CapacityDropThirtyStreamsWrap) {
CapacityDropTestHelper(30, true, 667, 0);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestTimestampGrouping) {
TestTimestampGroupingTestHelper();
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestShortTimeoutAndWrap) {
// Simulate a client leaving and rejoining the call after 35 seconds. This
// will make abs send time wrap, so if streams aren't timed out properly
// the next 30 seconds of packets will be out of order.
TestWrappingHelper(35);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestLongTimeoutAndWrap) {
// Simulate a client leaving and rejoining the call after some multiple of
// 64 seconds later. This will cause a zero difference in abs send times due
// to the wrap, but a big difference in arrival time, if streams aren't
// properly timed out.
TestWrappingHelper(10 * 64);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProcessAfterTimeout) {
// This time constant must be equal to the ones defined for the
// RemoteBitrateEstimator.
const int64_t kStreamTimeOutMs = 2000;
const int64_t kProcessIntervalMs = 1000;
IncomingPacket(0, 1000, clock_.TimeInMilliseconds(), 0, 0);
clock_.AdvanceTimeMilliseconds(kStreamTimeOutMs + 1);
// Trigger timeout.
bitrate_estimator_->Process();
clock_.AdvanceTimeMilliseconds(kProcessIntervalMs);
// This shouldn't crash.
bitrate_estimator_->Process();
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProbeDetection) {
const int kProbeLength = 5;
int64_t now_ms = clock_.TimeInMilliseconds();
// First burst sent at 8 * 1000 / 10 = 800 kbps.
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000));
}
// Second burst sent at 8 * 1000 / 5 = 1600 kbps.
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000));
}
bitrate_estimator_->Process();
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_GT(bitrate_observer_->latest_bitrate(), 1500000u);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest,
TestProbeDetectionNonPacedPackets) {
const int kProbeLength = 5;
int64_t now_ms = clock_.TimeInMilliseconds();
// First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet
// not being paced which could mess things up.
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000));
// Non-paced packet, arriving 5 ms after.
clock_.AdvanceTimeMilliseconds(5);
IncomingPacket(0, 100, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000));
}
bitrate_estimator_->Process();
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_GT(bitrate_observer_->latest_bitrate(), 800000u);
}
// Packets will require 5 ms to be transmitted to the receiver, causing packets
// of the second probe to be dispersed.
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest,
TestProbeDetectionTooHighBitrate) {
const int kProbeLength = 5;
int64_t now_ms = clock_.TimeInMilliseconds();
int64_t send_time_ms = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
send_time_ms += 10;
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000));
}
// Second burst sent at 8 * 1000 / 5 = 1600 kbps, arriving at 8 * 1000 / 8 =
// 1000 kbps.
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(8);
now_ms = clock_.TimeInMilliseconds();
send_time_ms += 5;
IncomingPacket(0, 1000, now_ms, send_time_ms,
AbsSendTime(send_time_ms, 1000));
}
bitrate_estimator_->Process();
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 800000u, 10000);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest,
TestProbeDetectionSlightlyFasterArrival) {
const int kProbeLength = 5;
int64_t now_ms = clock_.TimeInMilliseconds();
// First burst sent at 8 * 1000 / 10 = 800 kbps.
// Arriving at 8 * 1000 / 5 = 1600 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(5);
send_time_ms += 10;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000));
}
bitrate_estimator_->Process();
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_GT(bitrate_observer_->latest_bitrate(), 800000u);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProbeDetectionFasterArrival) {
const int kProbeLength = 5;
int64_t now_ms = clock_.TimeInMilliseconds();
// First burst sent at 8 * 1000 / 10 = 800 kbps.
// Arriving at 8 * 1000 / 5 = 1600 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(1);
send_time_ms += 10;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000));
}
bitrate_estimator_->Process();
EXPECT_FALSE(bitrate_observer_->updated());
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, TestProbeDetectionSlowerArrival) {
const int kProbeLength = 5;
int64_t now_ms = clock_.TimeInMilliseconds();
// First burst sent at 8 * 1000 / 5 = 1600 kbps.
// Arriving at 8 * 1000 / 7 = 1142 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(7);
send_time_ms += 5;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000));
}
bitrate_estimator_->Process();
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 1140000, 10000);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest,
TestProbeDetectionSlowerArrivalHighBitrate) {
const int kProbeLength = 5;
int64_t now_ms = clock_.TimeInMilliseconds();
// Burst sent at 8 * 1000 / 1 = 8000 kbps.
// Arriving at 8 * 1000 / 2 = 4000 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(2);
send_time_ms += 1;
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * send_time_ms,
AbsSendTime(send_time_ms, 1000));
}
bitrate_estimator_->Process();
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 4000000u, 10000);
}
TEST_F(RemoteBitrateEstimatorAbsSendTimeTest, ProbingIgnoresSmallPackets) {
const int kProbeLength = 5;
int64_t now_ms = clock_.TimeInMilliseconds();
// Probing with 200 bytes every 10 ms, should be ignored by the probe
// detection.
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 200, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000));
}
bitrate_estimator_->Process();
EXPECT_FALSE(bitrate_observer_->updated());
// Followed by a probe with 1000 bytes packets, should be detected as a
// probe.
for (int i = 0; i < kProbeLength; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingPacket(0, 1000, now_ms, 90 * now_ms, AbsSendTime(now_ms, 1000));
}
// Wait long enough so that we can call Process again.
clock_.AdvanceTimeMilliseconds(1000);
bitrate_estimator_->Process();
EXPECT_TRUE(bitrate_observer_->updated());
EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 800000u, 10000);
}
} // namespace webrtc