blob: 0c2bf782640ac8a4686b809bf30ffa4b80a9612f [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
// Implementation of Network-Assisted Dynamic Adaptation's (NADA's) proposal.
// Version according to Draft Document (mentioned in references)
// http://tools.ietf.org/html/draft-zhu-rmcat-nada-06
// From March 26, 2015.
#include <math.h>
#include <algorithm>
#include <vector>
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
#include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h"
#include "webrtc/modules/rtp_rtcp/include/receive_statistics.h"
#include "webrtc/rtc_base/arraysize.h"
namespace webrtc {
namespace testing {
namespace bwe {
namespace {
// Used as an upper bound for calling AcceleratedRampDown.
const float kMaxCongestionSignalMs =
40.0f + NadaBweSender::kMinNadaBitrateKbps / 15;
} // namespace
const int NadaBweSender::kMinNadaBitrateKbps = 50;
const int64_t NadaBweReceiver::kReceivingRateTimeWindowMs = 500;
NadaBweReceiver::NadaBweReceiver(int flow_id)
: BweReceiver(flow_id, kReceivingRateTimeWindowMs),
clock_(0),
last_feedback_ms_(0),
recv_stats_(ReceiveStatistics::Create(&clock_)),
baseline_delay_ms_(10000), // Initialized as an upper bound.
delay_signal_ms_(0),
last_congestion_signal_ms_(0),
last_delays_index_(0),
exp_smoothed_delay_ms_(-1),
est_queuing_delay_signal_ms_(0) {
}
NadaBweReceiver::~NadaBweReceiver() {
}
void NadaBweReceiver::ReceivePacket(int64_t arrival_time_ms,
const MediaPacket& media_packet) {
const float kAlpha = 0.1f; // Used for exponential smoothing.
const int64_t kDelayLowThresholdMs = 50; // Referred as d_th.
const int64_t kDelayMaxThresholdMs = 400; // Referred as d_max.
clock_.AdvanceTimeMilliseconds(arrival_time_ms - clock_.TimeInMilliseconds());
recv_stats_->IncomingPacket(media_packet.header(),
media_packet.payload_size(), false);
// Refered as x_n.
int64_t delay_ms = arrival_time_ms - media_packet.sender_timestamp_ms();
// The min should be updated within the first 10 minutes.
if (clock_.TimeInMilliseconds() < 10 * 60 * 1000) {
baseline_delay_ms_ = std::min(baseline_delay_ms_, delay_ms);
}
delay_signal_ms_ = delay_ms - baseline_delay_ms_; // Refered as d_n.
const int kMedian = arraysize(last_delays_ms_);
last_delays_ms_[(last_delays_index_++) % kMedian] = delay_signal_ms_;
int size = std::min(last_delays_index_, kMedian);
int64_t median_filtered_delay_ms_ = MedianFilter(last_delays_ms_, size);
exp_smoothed_delay_ms_ = ExponentialSmoothingFilter(
median_filtered_delay_ms_, exp_smoothed_delay_ms_, kAlpha);
if (exp_smoothed_delay_ms_ < kDelayLowThresholdMs) {
est_queuing_delay_signal_ms_ = exp_smoothed_delay_ms_;
} else if (exp_smoothed_delay_ms_ < kDelayMaxThresholdMs) {
est_queuing_delay_signal_ms_ = static_cast<int64_t>(
pow((static_cast<double>(kDelayMaxThresholdMs -
exp_smoothed_delay_ms_)) /
(kDelayMaxThresholdMs - kDelayLowThresholdMs),
4.0) *
kDelayLowThresholdMs);
} else {
est_queuing_delay_signal_ms_ = 0;
}
// Log received packet information.
BweReceiver::ReceivePacket(arrival_time_ms, media_packet);
}
FeedbackPacket* NadaBweReceiver::GetFeedback(int64_t now_ms) {
const int64_t kPacketLossPenaltyMs = 1000; // Referred as d_L.
if (now_ms - last_feedback_ms_ < 100) {
return NULL;
}
float loss_fraction = RecentPacketLossRatio();
int64_t loss_signal_ms =
static_cast<int64_t>(loss_fraction * kPacketLossPenaltyMs + 0.5f);
int64_t congestion_signal_ms = est_queuing_delay_signal_ms_ + loss_signal_ms;
float derivative = 0.0f;
if (last_feedback_ms_ > 0) {
derivative = (congestion_signal_ms - last_congestion_signal_ms_) /
static_cast<float>(now_ms - last_feedback_ms_);
}
last_feedback_ms_ = now_ms;
last_congestion_signal_ms_ = congestion_signal_ms;
int64_t corrected_send_time_ms = 0L;
if (!received_packets_.empty()) {
PacketIdentifierNode* latest = *(received_packets_.begin());
corrected_send_time_ms =
latest->send_time_ms + now_ms - latest->arrival_time_ms;
}
// Sends a tuple containing latest values of <d_hat_n, d_tilde_n, x_n, x'_n,
// R_r> and additional information.
return new NadaFeedback(flow_id_, now_ms * 1000, exp_smoothed_delay_ms_,
est_queuing_delay_signal_ms_, congestion_signal_ms,
derivative, RecentKbps(), corrected_send_time_ms);
}
// If size is even, the median is the average of the two middlemost numbers.
int64_t NadaBweReceiver::MedianFilter(int64_t* last_delays_ms, int size) {
std::vector<int64_t> array_copy(last_delays_ms, last_delays_ms + size);
std::nth_element(array_copy.begin(), array_copy.begin() + size / 2,
array_copy.end());
if (size % 2 == 1) {
// Typically, size = 5. For odd size values, right and left are equal.
return array_copy.at(size / 2);
}
int64_t right = array_copy.at(size / 2);
std::nth_element(array_copy.begin(), array_copy.begin() + (size - 1) / 2,
array_copy.end());
int64_t left = array_copy.at((size - 1) / 2);
return (left + right + 1) / 2;
}
int64_t NadaBweReceiver::ExponentialSmoothingFilter(int64_t new_value,
int64_t last_smoothed_value,
float alpha) {
if (last_smoothed_value < 0) {
return new_value; // Handling initial case.
}
return static_cast<int64_t>(alpha * new_value +
(1.0f - alpha) * last_smoothed_value + 0.5f);
}
// Implementation according to Cisco's proposal by default.
NadaBweSender::NadaBweSender(int kbps, BitrateObserver* observer, Clock* clock)
: BweSender(kbps), // Referred as "Reference Rate" = R_n.,
clock_(clock),
observer_(observer),
original_operating_mode_(true) {
}
NadaBweSender::NadaBweSender(BitrateObserver* observer, Clock* clock)
: BweSender(kMinNadaBitrateKbps), // Referred as "Reference Rate" = R_n.
clock_(clock),
observer_(observer),
original_operating_mode_(true) {}
NadaBweSender::~NadaBweSender() {
}
int NadaBweSender::GetFeedbackIntervalMs() const {
return 100;
}
void NadaBweSender::GiveFeedback(const FeedbackPacket& feedback) {
const NadaFeedback& fb = static_cast<const NadaFeedback&>(feedback);
// Following parameters might be optimized.
const int64_t kQueuingDelayUpperBoundMs = 10;
const float kDerivativeUpperBound =
10.0f / std::max<int64_t>(1, min_feedback_delay_ms_);
// In the modified version, a higher kMinUpperBound allows a higher d_hat
// upper bound for calling AcceleratedRampUp.
const float kProportionalityDelayBits = 20.0f;
int64_t now_ms = clock_->TimeInMilliseconds();
float delta_s = now_ms - last_feedback_ms_;
last_feedback_ms_ = now_ms;
// Update delta_0.
min_feedback_delay_ms_ =
std::min(min_feedback_delay_ms_, static_cast<int64_t>(delta_s));
// Update RTT_0.
int64_t rtt_ms = now_ms - fb.latest_send_time_ms();
min_round_trip_time_ms_ = std::min(min_round_trip_time_ms_, rtt_ms);
// Independent limits for AcceleratedRampUp conditions variables:
// x_n, d_tilde and x'_n in the original implementation, plus
// d_hat and receiving_rate in the modified one.
// There should be no packet losses/marking, hence x_n == d_tilde.
if (original_operating_mode_) {
// Original if conditions and rate update.
if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() &&
fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs &&
fb.derivative() < kDerivativeUpperBound) {
AcceleratedRampUp(fb);
} else {
GradualRateUpdate(fb, delta_s, 1.0);
}
} else {
// Modified if conditions and rate update; new ramp down mode.
if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() &&
fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs &&
fb.exp_smoothed_delay_ms() <
kMinNadaBitrateKbps / kProportionalityDelayBits &&
fb.derivative() < kDerivativeUpperBound &&
fb.receiving_rate() > kMinNadaBitrateKbps) {
AcceleratedRampUp(fb);
} else if (fb.congestion_signal() > kMaxCongestionSignalMs ||
fb.exp_smoothed_delay_ms() > kMaxCongestionSignalMs) {
AcceleratedRampDown(fb);
} else {
double bitrate_reference =
(2.0 * bitrate_kbps_) / (kMaxBitrateKbps + kMinNadaBitrateKbps);
double smoothing_factor = pow(bitrate_reference, 0.75);
GradualRateUpdate(fb, delta_s, smoothing_factor);
}
}
bitrate_kbps_ = std::min(bitrate_kbps_, kMaxBitrateKbps);
bitrate_kbps_ = std::max(bitrate_kbps_, kMinNadaBitrateKbps);
observer_->OnNetworkChanged(1000 * bitrate_kbps_, 0, rtt_ms);
}
int64_t NadaBweSender::TimeUntilNextProcess() {
return 100;
}
void NadaBweSender::Process() {
}
void NadaBweSender::AcceleratedRampUp(const NadaFeedback& fb) {
const int kMaxRampUpQueuingDelayMs = 50; // Referred as T_th.
const float kGamma0 = 0.5f; // Referred as gamma_0.
float gamma =
std::min(kGamma0, static_cast<float>(kMaxRampUpQueuingDelayMs) /
(min_round_trip_time_ms_ + min_feedback_delay_ms_));
bitrate_kbps_ = static_cast<int>((1.0f + gamma) * fb.receiving_rate() + 0.5f);
}
void NadaBweSender::AcceleratedRampDown(const NadaFeedback& fb) {
const float kGamma0 = 0.9f;
float gamma = 3.0f * kMaxCongestionSignalMs /
(fb.congestion_signal() + fb.exp_smoothed_delay_ms());
gamma = std::min(gamma, kGamma0);
bitrate_kbps_ = gamma * fb.receiving_rate() + 0.5f;
}
void NadaBweSender::GradualRateUpdate(const NadaFeedback& fb,
float delta_s,
double smoothing_factor) {
const float kTauOMs = 500.0f; // Referred as tau_o.
const float kEta = 2.0f; // Referred as eta.
const float kKappa = 1.0f; // Referred as kappa.
const float kReferenceDelayMs = 10.0f; // Referred as x_ref.
const float kPriorityWeight = 1.0f; // Referred as w.
float x_hat = fb.congestion_signal() + kEta * kTauOMs * fb.derivative();
float kTheta = kPriorityWeight * (kMaxBitrateKbps - kMinNadaBitrateKbps) *
kReferenceDelayMs;
int original_increase = static_cast<int>(
(kKappa * delta_s *
(kTheta - (bitrate_kbps_ - kMinNadaBitrateKbps) * x_hat)) /
(kTauOMs * kTauOMs) +
0.5f);
bitrate_kbps_ = bitrate_kbps_ + smoothing_factor * original_increase;
}
} // namespace bwe
} // namespace testing
} // namespace webrtc