| /* |
| * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h" |
| |
| #include <algorithm> |
| #include <memory> |
| #include <numeric> |
| |
| #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_framework.h" |
| #include "webrtc/modules/remote_bitrate_estimator/test/packet.h" |
| #include "webrtc/modules/remote_bitrate_estimator/test/packet_sender.h" |
| #include "webrtc/rtc_base/arraysize.h" |
| #include "webrtc/rtc_base/constructormagic.h" |
| #include "webrtc/test/gtest.h" |
| #include "webrtc/test/testsupport/fileutils.h" |
| |
| namespace webrtc { |
| namespace testing { |
| namespace bwe { |
| |
| class FilterTest : public ::testing::Test { |
| public: |
| void MedianFilterConstantArray() { |
| std::fill_n(raw_signal_, kNumElements, kSignalValue); |
| for (int i = 0; i < kNumElements; ++i) { |
| int size = std::min(5, i + 1); |
| median_filtered_[i] = |
| NadaBweReceiver::MedianFilter(&raw_signal_[i + 1 - size], size); |
| } |
| } |
| |
| void MedianFilterIntermittentNoise() { |
| const int kValue = 500; |
| const int kNoise = 100; |
| |
| for (int i = 0; i < kNumElements; ++i) { |
| raw_signal_[i] = kValue + kNoise * (i % 10 == 9 ? 1 : 0); |
| } |
| for (int i = 0; i < kNumElements; ++i) { |
| int size = std::min(5, i + 1); |
| median_filtered_[i] = |
| NadaBweReceiver::MedianFilter(&raw_signal_[i + 1 - size], size); |
| EXPECT_EQ(median_filtered_[i], kValue); |
| } |
| } |
| |
| void ExponentialSmoothingFilter(const int64_t raw_signal_[], |
| int num_elements, |
| int64_t exp_smoothed[]) { |
| exp_smoothed[0] = |
| NadaBweReceiver::ExponentialSmoothingFilter(raw_signal_[0], -1, kAlpha); |
| for (int i = 1; i < num_elements; ++i) { |
| exp_smoothed[i] = NadaBweReceiver::ExponentialSmoothingFilter( |
| raw_signal_[i], exp_smoothed[i - 1], kAlpha); |
| } |
| } |
| |
| void ExponentialSmoothingConstantArray(int64_t exp_smoothed[]) { |
| std::fill_n(raw_signal_, kNumElements, kSignalValue); |
| ExponentialSmoothingFilter(raw_signal_, kNumElements, exp_smoothed); |
| } |
| |
| protected: |
| static const int kNumElements = 1000; |
| static const int64_t kSignalValue; |
| static const float kAlpha; |
| int64_t raw_signal_[kNumElements]; |
| int64_t median_filtered_[kNumElements]; |
| }; |
| |
| const int64_t FilterTest::kSignalValue = 200; |
| const float FilterTest::kAlpha = 0.1f; |
| |
| class TestBitrateObserver : public BitrateObserver { |
| public: |
| TestBitrateObserver() |
| : last_bitrate_(0), last_fraction_loss_(0), last_rtt_(0) {} |
| |
| virtual void OnNetworkChanged(uint32_t bitrate, |
| uint8_t fraction_loss, |
| int64_t rtt) { |
| last_bitrate_ = bitrate; |
| last_fraction_loss_ = fraction_loss; |
| last_rtt_ = rtt; |
| } |
| uint32_t last_bitrate_; |
| uint8_t last_fraction_loss_; |
| int64_t last_rtt_; |
| }; |
| |
| class NadaSenderSideTest : public ::testing::Test { |
| public: |
| NadaSenderSideTest() |
| : observer_(), |
| simulated_clock_(0), |
| nada_sender_(&observer_, &simulated_clock_) {} |
| ~NadaSenderSideTest() {} |
| |
| private: |
| TestBitrateObserver observer_; |
| SimulatedClock simulated_clock_; |
| |
| protected: |
| NadaBweSender nada_sender_; |
| }; |
| |
| class NadaReceiverSideTest : public ::testing::Test { |
| public: |
| NadaReceiverSideTest() : nada_receiver_(kFlowId) {} |
| ~NadaReceiverSideTest() {} |
| |
| protected: |
| const int kFlowId = 1; // Arbitrary. |
| NadaBweReceiver nada_receiver_; |
| }; |
| |
| class NadaFbGenerator { |
| public: |
| NadaFbGenerator(); |
| |
| static NadaFeedback NotCongestedFb(size_t receiving_rate, |
| int64_t ref_signal_ms, |
| int64_t send_time_ms) { |
| int64_t exp_smoothed_delay_ms = ref_signal_ms; |
| int64_t est_queuing_delay_signal_ms = ref_signal_ms; |
| int64_t congestion_signal_ms = ref_signal_ms; |
| float derivative = 0.0f; |
| return NadaFeedback(kFlowId, kNowMs, exp_smoothed_delay_ms, |
| est_queuing_delay_signal_ms, congestion_signal_ms, |
| derivative, receiving_rate, send_time_ms); |
| } |
| |
| static NadaFeedback CongestedFb(size_t receiving_rate, int64_t send_time_ms) { |
| int64_t exp_smoothed_delay_ms = 1000; |
| int64_t est_queuing_delay_signal_ms = 800; |
| int64_t congestion_signal_ms = 1000; |
| float derivative = 1.0f; |
| return NadaFeedback(kFlowId, kNowMs, exp_smoothed_delay_ms, |
| est_queuing_delay_signal_ms, congestion_signal_ms, |
| derivative, receiving_rate, send_time_ms); |
| } |
| |
| static NadaFeedback ExtremelyCongestedFb(size_t receiving_rate, |
| int64_t send_time_ms) { |
| int64_t exp_smoothed_delay_ms = 100000; |
| int64_t est_queuing_delay_signal_ms = 0; |
| int64_t congestion_signal_ms = 100000; |
| float derivative = 10000.0f; |
| return NadaFeedback(kFlowId, kNowMs, exp_smoothed_delay_ms, |
| est_queuing_delay_signal_ms, congestion_signal_ms, |
| derivative, receiving_rate, send_time_ms); |
| } |
| |
| private: |
| // Arbitrary values, won't change these test results. |
| static const int kFlowId = 2; |
| static const int64_t kNowMs = 1000; |
| }; |
| |
| // Verify if AcceleratedRampUp is called and that bitrate increases. |
| TEST_F(NadaSenderSideTest, AcceleratedRampUp) { |
| const int64_t kRefSignalMs = 1; |
| const int64_t kOneWayDelayMs = 50; |
| int original_bitrate = 2 * NadaBweSender::kMinNadaBitrateKbps; |
| size_t receiving_rate = static_cast<size_t>(original_bitrate); |
| int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs; |
| |
| NadaFeedback not_congested_fb = NadaFbGenerator::NotCongestedFb( |
| receiving_rate, kRefSignalMs, send_time_ms); |
| |
| nada_sender_.set_original_operating_mode(true); |
| nada_sender_.set_bitrate_kbps(original_bitrate); |
| |
| // Trigger AcceleratedRampUp mode. |
| nada_sender_.GiveFeedback(not_congested_fb); |
| int bitrate_1_kbps = nada_sender_.bitrate_kbps(); |
| EXPECT_GT(bitrate_1_kbps, original_bitrate); |
| // Updates the bitrate according to the receiving rate and other constant |
| // parameters. |
| nada_sender_.AcceleratedRampUp(not_congested_fb); |
| EXPECT_EQ(nada_sender_.bitrate_kbps(), bitrate_1_kbps); |
| |
| nada_sender_.set_original_operating_mode(false); |
| nada_sender_.set_bitrate_kbps(original_bitrate); |
| // Trigger AcceleratedRampUp mode. |
| nada_sender_.GiveFeedback(not_congested_fb); |
| bitrate_1_kbps = nada_sender_.bitrate_kbps(); |
| EXPECT_GT(bitrate_1_kbps, original_bitrate); |
| nada_sender_.AcceleratedRampUp(not_congested_fb); |
| EXPECT_EQ(nada_sender_.bitrate_kbps(), bitrate_1_kbps); |
| } |
| |
| // Verify if AcceleratedRampDown is called and if bitrate decreases. |
| TEST_F(NadaSenderSideTest, AcceleratedRampDown) { |
| const int64_t kOneWayDelayMs = 50; |
| int original_bitrate = 3 * NadaBweSender::kMinNadaBitrateKbps; |
| size_t receiving_rate = static_cast<size_t>(original_bitrate); |
| int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs; |
| |
| NadaFeedback congested_fb = |
| NadaFbGenerator::CongestedFb(receiving_rate, send_time_ms); |
| |
| nada_sender_.set_original_operating_mode(false); |
| nada_sender_.set_bitrate_kbps(original_bitrate); |
| nada_sender_.GiveFeedback(congested_fb); // Trigger AcceleratedRampDown mode. |
| int bitrate_1_kbps = nada_sender_.bitrate_kbps(); |
| EXPECT_LE(bitrate_1_kbps, original_bitrate * 0.9f + 0.5f); |
| EXPECT_LT(bitrate_1_kbps, original_bitrate); |
| |
| // Updates the bitrate according to the receiving rate and other constant |
| // parameters. |
| nada_sender_.AcceleratedRampDown(congested_fb); |
| int bitrate_2_kbps = |
| std::max(nada_sender_.bitrate_kbps(), NadaBweSender::kMinNadaBitrateKbps); |
| EXPECT_EQ(bitrate_2_kbps, bitrate_1_kbps); |
| } |
| |
| TEST_F(NadaSenderSideTest, GradualRateUpdate) { |
| const int64_t kDeltaSMs = 20; |
| const int64_t kRefSignalMs = 20; |
| const int64_t kOneWayDelayMs = 50; |
| int original_bitrate = 5 * NadaBweSender::kMinNadaBitrateKbps; |
| size_t receiving_rate = static_cast<size_t>(original_bitrate); |
| int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs; |
| |
| NadaFeedback congested_fb = |
| NadaFbGenerator::CongestedFb(receiving_rate, send_time_ms); |
| NadaFeedback not_congested_fb = NadaFbGenerator::NotCongestedFb( |
| original_bitrate, kRefSignalMs, send_time_ms); |
| |
| nada_sender_.set_bitrate_kbps(original_bitrate); |
| double smoothing_factor = 0.0; |
| nada_sender_.GradualRateUpdate(congested_fb, kDeltaSMs, smoothing_factor); |
| EXPECT_EQ(nada_sender_.bitrate_kbps(), original_bitrate); |
| |
| smoothing_factor = 1.0; |
| nada_sender_.GradualRateUpdate(congested_fb, kDeltaSMs, smoothing_factor); |
| EXPECT_LT(nada_sender_.bitrate_kbps(), original_bitrate); |
| |
| nada_sender_.set_bitrate_kbps(original_bitrate); |
| nada_sender_.GradualRateUpdate(not_congested_fb, kDeltaSMs, smoothing_factor); |
| EXPECT_GT(nada_sender_.bitrate_kbps(), original_bitrate); |
| } |
| |
| // Sending bitrate should decrease and reach its Min bound. |
| TEST_F(NadaSenderSideTest, VeryLowBandwith) { |
| const int64_t kOneWayDelayMs = 50; |
| |
| size_t receiving_rate = |
| static_cast<size_t>(NadaBweSender::kMinNadaBitrateKbps); |
| int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs; |
| |
| NadaFeedback extremely_congested_fb = |
| NadaFbGenerator::ExtremelyCongestedFb(receiving_rate, send_time_ms); |
| NadaFeedback congested_fb = |
| NadaFbGenerator::CongestedFb(receiving_rate, send_time_ms); |
| |
| nada_sender_.set_bitrate_kbps(5 * NadaBweSender::kMinNadaBitrateKbps); |
| nada_sender_.set_original_operating_mode(true); |
| for (int i = 0; i < 100; ++i) { |
| // Trigger GradualRateUpdate mode. |
| nada_sender_.GiveFeedback(extremely_congested_fb); |
| } |
| // The original implementation doesn't allow the bitrate to stay at kMin, |
| // even if the congestion signal is very high. |
| EXPECT_GE(nada_sender_.bitrate_kbps(), NadaBweSender::kMinNadaBitrateKbps); |
| |
| nada_sender_.set_original_operating_mode(false); |
| nada_sender_.set_bitrate_kbps(5 * NadaBweSender::kMinNadaBitrateKbps); |
| |
| for (int i = 0; i < 1000; ++i) { |
| int previous_bitrate = nada_sender_.bitrate_kbps(); |
| // Trigger AcceleratedRampDown mode. |
| nada_sender_.GiveFeedback(congested_fb); |
| EXPECT_LE(nada_sender_.bitrate_kbps(), previous_bitrate); |
| } |
| EXPECT_EQ(nada_sender_.bitrate_kbps(), NadaBweSender::kMinNadaBitrateKbps); |
| } |
| |
| // Sending bitrate should increase and reach its Max bound. |
| TEST_F(NadaSenderSideTest, VeryHighBandwith) { |
| const int64_t kOneWayDelayMs = 50; |
| const size_t kRecentReceivingRate = static_cast<size_t>(kMaxBitrateKbps); |
| const int64_t kRefSignalMs = 1; |
| int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs; |
| |
| NadaFeedback not_congested_fb = NadaFbGenerator::NotCongestedFb( |
| kRecentReceivingRate, kRefSignalMs, send_time_ms); |
| |
| nada_sender_.set_original_operating_mode(true); |
| for (int i = 0; i < 100; ++i) { |
| int previous_bitrate = nada_sender_.bitrate_kbps(); |
| nada_sender_.GiveFeedback(not_congested_fb); |
| EXPECT_GE(nada_sender_.bitrate_kbps(), previous_bitrate); |
| } |
| EXPECT_EQ(nada_sender_.bitrate_kbps(), kMaxBitrateKbps); |
| |
| nada_sender_.set_original_operating_mode(false); |
| nada_sender_.set_bitrate_kbps(NadaBweSender::kMinNadaBitrateKbps); |
| |
| for (int i = 0; i < 100; ++i) { |
| int previous_bitrate = nada_sender_.bitrate_kbps(); |
| nada_sender_.GiveFeedback(not_congested_fb); |
| EXPECT_GE(nada_sender_.bitrate_kbps(), previous_bitrate); |
| } |
| EXPECT_EQ(nada_sender_.bitrate_kbps(), kMaxBitrateKbps); |
| } |
| |
| TEST_F(NadaReceiverSideTest, FeedbackInitialCases) { |
| std::unique_ptr<NadaFeedback> nada_feedback( |
| static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(0))); |
| EXPECT_EQ(nada_feedback, nullptr); |
| |
| nada_feedback.reset( |
| static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(100))); |
| EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(), -1); |
| EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(), 0L); |
| EXPECT_EQ(nada_feedback->congestion_signal(), 0L); |
| EXPECT_EQ(nada_feedback->derivative(), 0.0f); |
| EXPECT_EQ(nada_feedback->receiving_rate(), 0.0f); |
| } |
| |
| TEST_F(NadaReceiverSideTest, FeedbackEmptyQueues) { |
| const int64_t kTimeGapMs = 50; // Between each packet. |
| const int64_t kOneWayDelayMs = 50; |
| |
| // No added latency, delay = kOneWayDelayMs. |
| for (int i = 1; i < 10; ++i) { |
| int64_t send_time_us = i * kTimeGapMs * 1000; |
| int64_t arrival_time_ms = send_time_us / 1000 + kOneWayDelayMs; |
| uint16_t sequence_number = static_cast<uint16_t>(i); |
| // Payload sizes are not important here. |
| const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number); |
| nada_receiver_.ReceivePacket(arrival_time_ms, media_packet); |
| } |
| |
| // Baseline delay will be equal kOneWayDelayMs. |
| std::unique_ptr<NadaFeedback> nada_feedback( |
| static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(500))); |
| EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(), 0L); |
| EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(), 0L); |
| EXPECT_EQ(nada_feedback->congestion_signal(), 0L); |
| EXPECT_EQ(nada_feedback->derivative(), 0.0f); |
| } |
| |
| TEST_F(NadaReceiverSideTest, FeedbackIncreasingDelay) { |
| // Since packets are 100ms apart, each one corresponds to a feedback. |
| const int64_t kTimeGapMs = 100; // Between each packet. |
| |
| // Raw delays are = [10 20 30 40 50 60 70 80] ms. |
| // Baseline delay will be 50 ms. |
| // Delay signals should be: [0 10 20 30 40 50 60 70] ms. |
| const int64_t kMedianFilteredDelaysMs[] = {0, 5, 10, 15, 20, 30, 40, 50}; |
| const int kNumPackets = arraysize(kMedianFilteredDelaysMs); |
| const float kAlpha = 0.1f; // Used for exponential smoothing. |
| |
| int64_t exp_smoothed_delays_ms[kNumPackets]; |
| exp_smoothed_delays_ms[0] = kMedianFilteredDelaysMs[0]; |
| |
| for (int i = 1; i < kNumPackets; ++i) { |
| exp_smoothed_delays_ms[i] = static_cast<int64_t>( |
| kAlpha * kMedianFilteredDelaysMs[i] + |
| (1.0f - kAlpha) * exp_smoothed_delays_ms[i - 1] + 0.5f); |
| } |
| |
| for (int i = 0; i < kNumPackets; ++i) { |
| int64_t send_time_us = (i + 1) * kTimeGapMs * 1000; |
| int64_t arrival_time_ms = send_time_us / 1000 + 10 * (i + 1); |
| uint16_t sequence_number = static_cast<uint16_t>(i + 1); |
| // Payload sizes are not important here. |
| const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number); |
| nada_receiver_.ReceivePacket(arrival_time_ms, media_packet); |
| |
| std::unique_ptr<NadaFeedback> nada_feedback(static_cast<NadaFeedback*>( |
| nada_receiver_.GetFeedback(arrival_time_ms))); |
| EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(), |
| exp_smoothed_delays_ms[i]); |
| // Since delay signals are lower than 50ms, they will not be non-linearly |
| // warped. |
| EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(), |
| exp_smoothed_delays_ms[i]); |
| // Zero loss, congestion signal = queuing_delay |
| EXPECT_EQ(nada_feedback->congestion_signal(), exp_smoothed_delays_ms[i]); |
| if (i == 0) { |
| EXPECT_NEAR(nada_feedback->derivative(), |
| static_cast<float>(exp_smoothed_delays_ms[i]) / kTimeGapMs, |
| 0.005f); |
| } else { |
| EXPECT_NEAR(nada_feedback->derivative(), |
| static_cast<float>(exp_smoothed_delays_ms[i] - |
| exp_smoothed_delays_ms[i - 1]) / |
| kTimeGapMs, |
| 0.005f); |
| } |
| } |
| } |
| |
| int64_t Warp(int64_t input) { |
| const int64_t kMinThreshold = 50; // Referred as d_th. |
| const int64_t kMaxThreshold = 400; // Referred as d_max. |
| if (input < kMinThreshold) { |
| return input; |
| } else if (input < kMaxThreshold) { |
| return static_cast<int64_t>( |
| pow((static_cast<double>(kMaxThreshold - input)) / |
| (kMaxThreshold - kMinThreshold), |
| 4.0) * |
| kMinThreshold); |
| } else { |
| return 0L; |
| } |
| } |
| |
| TEST_F(NadaReceiverSideTest, FeedbackWarpedDelay) { |
| // Since packets are 100ms apart, each one corresponds to a feedback. |
| const int64_t kTimeGapMs = 100; // Between each packet. |
| |
| // Raw delays are = [50 250 450 650 850 1050 1250 1450] ms. |
| // Baseline delay will be 50 ms. |
| // Delay signals should be: [0 200 400 600 800 1000 1200 1400] ms. |
| const int64_t kMedianFilteredDelaysMs[] = { |
| 0, 100, 200, 300, 400, 600, 800, 1000}; |
| const int kNumPackets = arraysize(kMedianFilteredDelaysMs); |
| const float kAlpha = 0.1f; // Used for exponential smoothing. |
| |
| int64_t exp_smoothed_delays_ms[kNumPackets]; |
| exp_smoothed_delays_ms[0] = kMedianFilteredDelaysMs[0]; |
| |
| for (int i = 1; i < kNumPackets; ++i) { |
| exp_smoothed_delays_ms[i] = static_cast<int64_t>( |
| kAlpha * kMedianFilteredDelaysMs[i] + |
| (1.0f - kAlpha) * exp_smoothed_delays_ms[i - 1] + 0.5f); |
| } |
| |
| for (int i = 0; i < kNumPackets; ++i) { |
| int64_t send_time_us = (i + 1) * kTimeGapMs * 1000; |
| int64_t arrival_time_ms = send_time_us / 1000 + 50 + 200 * i; |
| uint16_t sequence_number = static_cast<uint16_t>(i + 1); |
| // Payload sizes are not important here. |
| const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number); |
| nada_receiver_.ReceivePacket(arrival_time_ms, media_packet); |
| |
| std::unique_ptr<NadaFeedback> nada_feedback(static_cast<NadaFeedback*>( |
| nada_receiver_.GetFeedback(arrival_time_ms))); |
| EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(), |
| exp_smoothed_delays_ms[i]); |
| // Delays can be non-linearly warped. |
| EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(), |
| Warp(exp_smoothed_delays_ms[i])); |
| // Zero loss, congestion signal = queuing_delay |
| EXPECT_EQ(nada_feedback->congestion_signal(), |
| Warp(exp_smoothed_delays_ms[i])); |
| } |
| } |
| |
| TEST_F(FilterTest, MedianConstantArray) { |
| MedianFilterConstantArray(); |
| for (int i = 0; i < kNumElements; ++i) { |
| EXPECT_EQ(median_filtered_[i], raw_signal_[i]); |
| } |
| } |
| |
| TEST_F(FilterTest, MedianIntermittentNoise) { |
| MedianFilterIntermittentNoise(); |
| } |
| |
| TEST_F(FilterTest, ExponentialSmoothingConstantArray) { |
| int64_t exp_smoothed[kNumElements]; |
| ExponentialSmoothingConstantArray(exp_smoothed); |
| for (int i = 0; i < kNumElements; ++i) { |
| EXPECT_EQ(exp_smoothed[i], kSignalValue); |
| } |
| } |
| |
| TEST_F(FilterTest, ExponentialSmoothingInitialPertubation) { |
| const int64_t kSignal[] = {90000, 0, 0, 0, 0, 0}; |
| const int kNumElements = arraysize(kSignal); |
| int64_t exp_smoothed[kNumElements]; |
| ExponentialSmoothingFilter(kSignal, kNumElements, exp_smoothed); |
| for (int i = 1; i < kNumElements; ++i) { |
| EXPECT_EQ( |
| exp_smoothed[i], |
| static_cast<int64_t>(exp_smoothed[i - 1] * (1.0f - kAlpha) + 0.5f)); |
| } |
| } |
| |
| } // namespace bwe |
| } // namespace testing |
| } // namespace webrtc |