blob: 173d6dff4c49a2a73c23d8ae298ba4048067bd42 [file] [log] [blame]
/*
* Copyright 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/pc/quicdatachannel.h"
#include <map>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "webrtc/p2p/base/faketransportcontroller.h"
#include "webrtc/p2p/quic/quictransportchannel.h"
#include "webrtc/p2p/quic/reliablequicstream.h"
#include "webrtc/rtc_base/bind.h"
#include "webrtc/rtc_base/gunit.h"
#include "webrtc/rtc_base/scoped_ref_ptr.h"
using cricket::FakeTransportChannel;
using cricket::QuicTransportChannel;
using cricket::ReliableQuicStream;
using webrtc::DataBuffer;
using webrtc::DataChannelObserver;
using webrtc::DataChannelInit;
using webrtc::QuicDataChannel;
namespace {
// Timeout for asynchronous operations.
static const int kTimeoutMs = 1000; // milliseconds
// Small messages that can be sent within a single QUIC packet.
static const std::string kSmallMessage1 = "Hello, world!";
static const std::string kSmallMessage2 = "WebRTC";
static const std::string kSmallMessage3 = "1";
static const std::string kSmallMessage4 = "abcdefghijklmnopqrstuvwxyz";
static const DataBuffer kSmallBuffer1(kSmallMessage1);
static const DataBuffer kSmallBuffer2(kSmallMessage2);
static const DataBuffer kSmallBuffer3(kSmallMessage3);
static const DataBuffer kSmallBuffer4(kSmallMessage4);
// Large messages (> 1350 bytes) that exceed the max size of a QUIC packet.
// These are < 16 KB so they don't exceed the QUIC stream flow control limit.
static const std::string kLargeMessage1 = std::string("a", 2000);
static const std::string kLargeMessage2 = std::string("a", 4000);
static const std::string kLargeMessage3 = std::string("a", 8000);
static const std::string kLargeMessage4 = std::string("a", 12000);
static const DataBuffer kLargeBuffer1(kLargeMessage1);
static const DataBuffer kLargeBuffer2(kLargeMessage2);
static const DataBuffer kLargeBuffer3(kLargeMessage3);
static const DataBuffer kLargeBuffer4(kLargeMessage4);
// Oversized message (> 16 KB) that violates the QUIC stream flow control limit.
static const std::string kOversizedMessage = std::string("a", 20000);
static const DataBuffer kOversizedBuffer(kOversizedMessage);
// Creates a fingerprint from a certificate.
static rtc::SSLFingerprint* CreateFingerprint(rtc::RTCCertificate* cert) {
std::string digest_algorithm;
cert->ssl_certificate().GetSignatureDigestAlgorithm(&digest_algorithm);
std::unique_ptr<rtc::SSLFingerprint> fingerprint(
rtc::SSLFingerprint::Create(digest_algorithm, cert->identity()));
return fingerprint.release();
}
// FakeObserver receives messages from the QuicDataChannel.
class FakeObserver : public DataChannelObserver {
public:
FakeObserver()
: on_state_change_count_(0), on_buffered_amount_change_count_(0) {}
// DataChannelObserver overrides.
void OnStateChange() override { ++on_state_change_count_; }
void OnBufferedAmountChange(uint64_t previous_amount) override {
++on_buffered_amount_change_count_;
}
void OnMessage(const webrtc::DataBuffer& buffer) override {
messages_.push_back(std::string(buffer.data.data<char>(), buffer.size()));
}
const std::vector<std::string>& messages() const { return messages_; }
size_t messages_received() const { return messages_.size(); }
size_t on_state_change_count() const { return on_state_change_count_; }
size_t on_buffered_amount_change_count() const {
return on_buffered_amount_change_count_;
}
private:
std::vector<std::string> messages_;
size_t on_state_change_count_;
size_t on_buffered_amount_change_count_;
};
// FakeQuicDataTransport simulates QuicDataTransport by dispatching QUIC
// stream messages to data channels and encoding/decoding messages.
class FakeQuicDataTransport : public sigslot::has_slots<> {
public:
FakeQuicDataTransport() {}
void ConnectToTransportChannel(QuicTransportChannel* quic_transport_channel) {
quic_transport_channel->SignalIncomingStream.connect(
this, &FakeQuicDataTransport::OnIncomingStream);
}
rtc::scoped_refptr<QuicDataChannel> CreateDataChannel(
int id,
const std::string& label,
const std::string& protocol) {
DataChannelInit config;
config.id = id;
config.protocol = protocol;
rtc::scoped_refptr<QuicDataChannel> data_channel(
new QuicDataChannel(rtc::Thread::Current(), rtc::Thread::Current(),
rtc::Thread::Current(), label, config));
data_channel_by_id_[id] = data_channel;
return data_channel;
}
private:
void OnIncomingStream(cricket::ReliableQuicStream* stream) {
incoming_stream_ = stream;
incoming_stream_->SignalDataReceived.connect(
this, &FakeQuicDataTransport::OnDataReceived);
}
void OnDataReceived(net::QuicStreamId id, const char* data, size_t len) {
ASSERT_EQ(incoming_stream_->id(), id);
incoming_stream_->SignalDataReceived.disconnect(this);
// Retrieve the data channel ID and message ID.
int data_channel_id;
uint64_t message_id;
size_t bytes_read;
ASSERT_TRUE(webrtc::ParseQuicDataMessageHeader(data, len, &data_channel_id,
&message_id, &bytes_read));
data += bytes_read;
len -= bytes_read;
// Dispatch the message to the matching QuicDataChannel.
const auto& kv = data_channel_by_id_.find(data_channel_id);
ASSERT_NE(kv, data_channel_by_id_.end());
QuicDataChannel* data_channel = kv->second;
QuicDataChannel::Message message;
message.id = message_id;
message.buffer = rtc::CopyOnWriteBuffer(data, len);
message.stream = incoming_stream_;
data_channel->OnIncomingMessage(std::move(message));
incoming_stream_ = nullptr;
}
// Map of data channel ID => QuicDataChannel.
std::map<int, rtc::scoped_refptr<QuicDataChannel>> data_channel_by_id_;
// Last incoming QUIC stream which has arrived.
cricket::ReliableQuicStream* incoming_stream_ = nullptr;
};
// A peer who creates a QuicDataChannel to transfer data, and simulates network
// connectivity with a fake ICE channel wrapped by the QUIC transport channel.
class QuicDataChannelPeer {
public:
QuicDataChannelPeer()
: ice_transport_channel_(new FakeTransportChannel("data", 0)),
quic_transport_channel_(ice_transport_channel_) {
ice_transport_channel_->SetAsync(true);
fake_quic_data_transport_.ConnectToTransportChannel(
&quic_transport_channel_);
}
void GenerateCertificateAndFingerprint() {
rtc::scoped_refptr<rtc::RTCCertificate> local_cert =
rtc::RTCCertificate::Create(std::unique_ptr<rtc::SSLIdentity>(
rtc::SSLIdentity::Generate("cert_name", rtc::KT_DEFAULT)));
quic_transport_channel_.SetLocalCertificate(local_cert);
local_fingerprint_.reset(CreateFingerprint(local_cert.get()));
}
rtc::scoped_refptr<QuicDataChannel> CreateDataChannelWithTransportChannel(
int id,
const std::string& label,
const std::string& protocol) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
fake_quic_data_transport_.CreateDataChannel(id, label, protocol);
data_channel->SetTransportChannel(&quic_transport_channel_);
return data_channel;
}
rtc::scoped_refptr<QuicDataChannel> CreateDataChannelWithoutTransportChannel(
int id,
const std::string& label,
const std::string& protocol) {
return fake_quic_data_transport_.CreateDataChannel(id, label, protocol);
}
// Connects |ice_transport_channel_| to that of the other peer.
void Connect(QuicDataChannelPeer* other_peer) {
ice_transport_channel_->SetDestination(other_peer->ice_transport_channel_);
}
std::unique_ptr<rtc::SSLFingerprint>& local_fingerprint() {
return local_fingerprint_;
}
QuicTransportChannel* quic_transport_channel() {
return &quic_transport_channel_;
}
FakeTransportChannel* ice_transport_channel() {
return ice_transport_channel_;
}
private:
FakeTransportChannel* ice_transport_channel_;
QuicTransportChannel quic_transport_channel_;
std::unique_ptr<rtc::SSLFingerprint> local_fingerprint_;
FakeQuicDataTransport fake_quic_data_transport_;
};
class QuicDataChannelTest : public testing::Test {
public:
QuicDataChannelTest() {}
// Connect the QuicTransportChannels and complete the crypto handshake.
void ConnectTransportChannels() {
SetCryptoParameters();
peer1_.Connect(&peer2_);
ASSERT_TRUE_WAIT(peer1_.quic_transport_channel()->writable() &&
peer2_.quic_transport_channel()->writable(),
kTimeoutMs);
}
// Sets crypto parameters required for the QUIC handshake.
void SetCryptoParameters() {
peer1_.GenerateCertificateAndFingerprint();
peer2_.GenerateCertificateAndFingerprint();
peer1_.quic_transport_channel()->SetSslRole(rtc::SSL_CLIENT);
peer2_.quic_transport_channel()->SetSslRole(rtc::SSL_SERVER);
std::unique_ptr<rtc::SSLFingerprint>& peer1_fingerprint =
peer1_.local_fingerprint();
std::unique_ptr<rtc::SSLFingerprint>& peer2_fingerprint =
peer2_.local_fingerprint();
peer1_.quic_transport_channel()->SetRemoteFingerprint(
peer2_fingerprint->algorithm,
reinterpret_cast<const uint8_t*>(peer2_fingerprint->digest.data()),
peer2_fingerprint->digest.size());
peer2_.quic_transport_channel()->SetRemoteFingerprint(
peer1_fingerprint->algorithm,
reinterpret_cast<const uint8_t*>(peer1_fingerprint->digest.data()),
peer1_fingerprint->digest.size());
}
protected:
QuicDataChannelPeer peer1_;
QuicDataChannelPeer peer2_;
};
// Tests that a QuicDataChannel transitions from connecting to open when
// the QuicTransportChannel becomes writable for the first time.
TEST_F(QuicDataChannelTest, DataChannelOpensWhenTransportChannelConnects) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(4, "label", "protocol");
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel->state());
ConnectTransportChannels();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kOpen, data_channel->state(),
kTimeoutMs);
}
// Tests that a QuicDataChannel transitions from connecting to open when
// SetTransportChannel is called with a QuicTransportChannel that is already
// writable.
TEST_F(QuicDataChannelTest, DataChannelOpensWhenTransportChannelWritable) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithoutTransportChannel(4, "label", "protocol");
ConnectTransportChannels();
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel->state());
data_channel->SetTransportChannel(peer1_.quic_transport_channel());
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel->state());
}
// Tests that the QuicDataChannel transfers messages small enough to fit into a
// single QUIC stream frame.
TEST_F(QuicDataChannelTest, TransferSmallMessage) {
ConnectTransportChannels();
int data_channel_id = 2;
std::string label = "label";
std::string protocol = "protocol";
rtc::scoped_refptr<QuicDataChannel> peer1_data_channel =
peer1_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer1_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
rtc::scoped_refptr<QuicDataChannel> peer2_data_channel =
peer2_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer2_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
FakeObserver peer1_observer;
peer1_data_channel->RegisterObserver(&peer1_observer);
FakeObserver peer2_observer;
peer2_data_channel->RegisterObserver(&peer2_observer);
// peer1 -> peer2
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer1));
ASSERT_EQ_WAIT(1, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kSmallMessage1, peer2_observer.messages()[0]);
// peer2 -> peer1
EXPECT_TRUE(peer2_data_channel->Send(kSmallBuffer2));
ASSERT_EQ_WAIT(1, peer1_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kSmallMessage2, peer1_observer.messages()[0]);
// peer2 -> peer1
EXPECT_TRUE(peer2_data_channel->Send(kSmallBuffer3));
ASSERT_EQ_WAIT(2, peer1_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kSmallMessage3, peer1_observer.messages()[1]);
// peer1 -> peer2
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer4));
ASSERT_EQ_WAIT(2, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kSmallMessage4, peer2_observer.messages()[1]);
}
// Tests that QuicDataChannel transfers messages large enough to fit into
// multiple QUIC stream frames, which don't violate the QUIC flow control limit.
// These require buffering by the QuicDataChannel.
TEST_F(QuicDataChannelTest, TransferLargeMessage) {
ConnectTransportChannels();
int data_channel_id = 347;
std::string label = "label";
std::string protocol = "protocol";
rtc::scoped_refptr<QuicDataChannel> peer1_data_channel =
peer1_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer1_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
rtc::scoped_refptr<QuicDataChannel> peer2_data_channel =
peer2_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer2_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
FakeObserver peer1_observer;
peer1_data_channel->RegisterObserver(&peer1_observer);
FakeObserver peer2_observer;
peer2_data_channel->RegisterObserver(&peer2_observer);
// peer1 -> peer2
EXPECT_TRUE(peer1_data_channel->Send(kLargeBuffer1));
ASSERT_TRUE_WAIT(peer2_observer.messages_received() == 1, kTimeoutMs);
EXPECT_EQ(kLargeMessage1, peer2_observer.messages()[0]);
// peer2 -> peer1
EXPECT_TRUE(peer2_data_channel->Send(kLargeBuffer2));
ASSERT_EQ_WAIT(1, peer1_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kLargeMessage2, peer1_observer.messages()[0]);
// peer2 -> peer1
EXPECT_TRUE(peer2_data_channel->Send(kLargeBuffer3));
ASSERT_EQ_WAIT(2, peer1_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kLargeMessage3, peer1_observer.messages()[1]);
// peer1 -> peer2
EXPECT_TRUE(peer1_data_channel->Send(kLargeBuffer4));
ASSERT_EQ_WAIT(2, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kLargeMessage4, peer2_observer.messages()[1]);
}
// Tests that when a message size exceeds the flow control limit (> 16KB), the
// QuicDataChannel can queue the data and send it after receiving window update
// frames from the remote peer.
TEST_F(QuicDataChannelTest, TransferOversizedMessage) {
ConnectTransportChannels();
int data_channel_id = 189;
std::string label = "label";
std::string protocol = "protocol";
rtc::scoped_refptr<QuicDataChannel> peer1_data_channel =
peer1_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
rtc::scoped_refptr<QuicDataChannel> peer2_data_channel =
peer2_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer2_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
FakeObserver peer1_observer;
peer1_data_channel->RegisterObserver(&peer1_observer);
FakeObserver peer2_observer;
peer2_data_channel->RegisterObserver(&peer2_observer);
EXPECT_TRUE(peer1_data_channel->Send(kOversizedBuffer));
EXPECT_EQ(1, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_EQ_WAIT(1, peer2_data_channel->GetNumIncomingStreams(), kTimeoutMs);
ASSERT_EQ_WAIT(1, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(kOversizedMessage, peer2_observer.messages()[0]);
EXPECT_EQ(0, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_EQ(0, peer2_data_channel->GetNumIncomingStreams());
}
// Tests that empty messages can be sent.
TEST_F(QuicDataChannelTest, TransferEmptyMessage) {
ConnectTransportChannels();
int data_channel_id = 69;
std::string label = "label";
std::string protocol = "protocol";
rtc::scoped_refptr<QuicDataChannel> peer1_data_channel =
peer1_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
rtc::scoped_refptr<QuicDataChannel> peer2_data_channel =
peer2_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer2_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
FakeObserver peer1_observer;
peer1_data_channel->RegisterObserver(&peer1_observer);
FakeObserver peer2_observer;
peer2_data_channel->RegisterObserver(&peer2_observer);
EXPECT_TRUE(peer1_data_channel->Send(DataBuffer("")));
ASSERT_EQ_WAIT(1, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ("", peer2_observer.messages()[0]);
}
// Tests that when the QuicDataChannel is open and sends a message while the
// QuicTransportChannel is unwritable, it gets buffered then received once the
// QuicTransportChannel becomes writable again.
TEST_F(QuicDataChannelTest, MessagesReceivedWhenTransportChannelReconnects) {
ConnectTransportChannels();
int data_channel_id = 401;
std::string label = "label";
std::string protocol = "protocol";
rtc::scoped_refptr<QuicDataChannel> peer1_data_channel =
peer1_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer1_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
rtc::scoped_refptr<QuicDataChannel> peer2_data_channel =
peer2_.CreateDataChannelWithTransportChannel(data_channel_id, label,
protocol);
ASSERT_TRUE(peer2_data_channel->state() ==
webrtc::DataChannelInterface::kOpen);
FakeObserver peer1_observer;
peer1_data_channel->RegisterObserver(&peer1_observer);
FakeObserver peer2_observer;
peer2_data_channel->RegisterObserver(&peer2_observer);
// writable => unwritable
peer1_.ice_transport_channel()->SetWritable(false);
ASSERT_FALSE(peer1_.quic_transport_channel()->writable());
// Verify that sent data is buffered.
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer1));
EXPECT_EQ(1, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer2));
EXPECT_EQ(2, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer3));
EXPECT_EQ(3, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_TRUE(peer1_data_channel->Send(kSmallBuffer4));
EXPECT_EQ(4, peer1_data_channel->GetNumWriteBlockedStreams());
// unwritable => writable
peer1_.ice_transport_channel()->SetWritable(true);
ASSERT_TRUE(peer1_.quic_transport_channel()->writable());
ASSERT_EQ_WAIT(4, peer2_observer.messages_received(), kTimeoutMs);
EXPECT_EQ(0, peer1_data_channel->GetNumWriteBlockedStreams());
EXPECT_EQ(0, peer2_data_channel->GetNumIncomingStreams());
}
// Tests that the QuicDataChannel does not send before it is open.
TEST_F(QuicDataChannelTest, TransferMessageBeforeChannelOpens) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(6, "label", "protocol");
ASSERT_TRUE(data_channel->state() ==
webrtc::DataChannelInterface::kConnecting);
EXPECT_FALSE(data_channel->Send(kSmallBuffer1));
}
// Tests that the QuicDataChannel does not send after it is closed.
TEST_F(QuicDataChannelTest, TransferDataAfterChannelClosed) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(42, "label", "protocol");
data_channel->Close();
ASSERT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
EXPECT_FALSE(data_channel->Send(kSmallBuffer1));
}
// Tests that QuicDataChannel state changes fire OnStateChanged() for the
// observer, with the correct data channel states, when the data channel
// transitions from kConnecting => kOpen => kClosing => kClosed.
TEST_F(QuicDataChannelTest, OnStateChangedFired) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(7, "label", "protocol");
FakeObserver observer;
data_channel->RegisterObserver(&observer);
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel->state());
EXPECT_EQ(0, observer.on_state_change_count());
ConnectTransportChannels();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kOpen, data_channel->state(),
kTimeoutMs);
EXPECT_EQ(1, observer.on_state_change_count());
data_channel->Close();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
// 2 state changes due to kClosing and kClosed.
EXPECT_EQ(3, observer.on_state_change_count());
}
// Tests that a QuicTransportChannel can be closed without being opened when it
// is connected to a transprot chanenl.
TEST_F(QuicDataChannelTest, NeverOpenedWithTransportChannel) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(7, "label", "protocol");
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel->state());
data_channel->Close();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
}
// Tests that a QuicTransportChannel can be closed without being opened or
// connected to a transport channel.
TEST_F(QuicDataChannelTest, NeverOpenedWithoutTransportChannel) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithoutTransportChannel(7, "label", "protocol");
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel->state());
data_channel->Close();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
}
// Tests that the QuicDataChannel is closed when the QUIC connection closes.
TEST_F(QuicDataChannelTest, ClosedOnTransportError) {
ConnectTransportChannels();
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(1, "label", "protocol");
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel->state());
ReliableQuicStream* stream =
peer1_.quic_transport_channel()->CreateQuicStream();
ASSERT_NE(nullptr, stream);
stream->CloseConnectionWithDetails(net::QuicErrorCode::QUIC_NO_ERROR,
"Closing QUIC for testing");
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
}
// Tests that an already closed QuicDataChannel does not fire onStateChange and
// remains closed.
TEST_F(QuicDataChannelTest, DoesNotChangeStateWhenClosed) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(4, "label", "protocol");
FakeObserver observer;
data_channel->RegisterObserver(&observer);
data_channel->Close();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kClosed, data_channel->state(),
kTimeoutMs);
// OnStateChange called for kClosing and kClosed.
EXPECT_EQ(2, observer.on_state_change_count());
// Call Close() again to verify that the state cannot be kClosing.
data_channel->Close();
EXPECT_EQ(webrtc::DataChannelInterface::kClosed, data_channel->state());
EXPECT_EQ(2, observer.on_state_change_count());
ConnectTransportChannels();
EXPECT_EQ(webrtc::DataChannelInterface::kClosed, data_channel->state());
EXPECT_EQ(2, observer.on_state_change_count());
// writable => unwritable
peer1_.ice_transport_channel()->SetWritable(false);
ASSERT_FALSE(peer1_.quic_transport_channel()->writable());
EXPECT_EQ(webrtc::DataChannelInterface::kClosed, data_channel->state());
EXPECT_EQ(2, observer.on_state_change_count());
// unwritable => writable
peer1_.ice_transport_channel()->SetWritable(true);
ASSERT_TRUE(peer1_.quic_transport_channel()->writable());
EXPECT_EQ(webrtc::DataChannelInterface::kClosed, data_channel->state());
EXPECT_EQ(2, observer.on_state_change_count());
}
// Tests that when the QuicDataChannel is open and the QuicTransportChannel
// transitions between writable and unwritable, it does not fire onStateChange
// and remains open.
TEST_F(QuicDataChannelTest, DoesNotChangeStateWhenTransportChannelReconnects) {
ConnectTransportChannels();
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(4, "label", "protocol");
FakeObserver observer;
data_channel->RegisterObserver(&observer);
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel->state());
EXPECT_EQ(0, observer.on_state_change_count());
// writable => unwritable
peer1_.ice_transport_channel()->SetWritable(false);
ASSERT_FALSE(peer1_.quic_transport_channel()->writable());
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel->state());
EXPECT_EQ(0, observer.on_state_change_count());
// unwritable => writable
peer1_.ice_transport_channel()->SetWritable(true);
ASSERT_TRUE(peer1_.quic_transport_channel()->writable());
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel->state());
EXPECT_EQ(0, observer.on_state_change_count());
}
// Tests that SetTransportChannel returns false when setting a NULL transport
// channel or a transport channel that is not equivalent to the one already set.
TEST_F(QuicDataChannelTest, SetTransportChannelReturnValue) {
rtc::scoped_refptr<QuicDataChannel> data_channel =
peer1_.CreateDataChannelWithTransportChannel(4, "label", "protocol");
EXPECT_FALSE(data_channel->SetTransportChannel(nullptr));
QuicTransportChannel* transport_channel = peer1_.quic_transport_channel();
EXPECT_TRUE(data_channel->SetTransportChannel(transport_channel));
EXPECT_TRUE(data_channel->SetTransportChannel(transport_channel));
QuicTransportChannel* other_transport_channel =
peer2_.quic_transport_channel();
EXPECT_FALSE(data_channel->SetTransportChannel(other_transport_channel));
}
// Tests that the QUIC message header is encoded with the correct number of
// bytes and is properly decoded.
TEST_F(QuicDataChannelTest, EncodeParseQuicDataMessageHeader) {
int data_channel_id1 = 127; // 1 byte
uint64_t message_id1 = 0; // 1 byte
rtc::CopyOnWriteBuffer header1;
webrtc::WriteQuicDataChannelMessageHeader(data_channel_id1, message_id1,
&header1);
EXPECT_EQ(2u, header1.size());
int decoded_data_channel_id1;
uint64_t decoded_message_id1;
size_t bytes_read1;
ASSERT_TRUE(webrtc::ParseQuicDataMessageHeader(
header1.data<char>(), header1.size(), &decoded_data_channel_id1,
&decoded_message_id1, &bytes_read1));
EXPECT_EQ(data_channel_id1, decoded_data_channel_id1);
EXPECT_EQ(message_id1, decoded_message_id1);
EXPECT_EQ(2u, bytes_read1);
int data_channel_id2 = 4178; // 2 bytes
uint64_t message_id2 = 1324921792003; // 6 bytes
rtc::CopyOnWriteBuffer header2;
webrtc::WriteQuicDataChannelMessageHeader(data_channel_id2, message_id2,
&header2);
EXPECT_EQ(8u, header2.size());
int decoded_data_channel_id2;
uint64_t decoded_message_id2;
size_t bytes_read2;
ASSERT_TRUE(webrtc::ParseQuicDataMessageHeader(
header2.data<char>(), header2.size(), &decoded_data_channel_id2,
&decoded_message_id2, &bytes_read2));
EXPECT_EQ(data_channel_id2, decoded_data_channel_id2);
EXPECT_EQ(message_id2, decoded_message_id2);
EXPECT_EQ(8u, bytes_read2);
}
} // namespace