blob: 05530ca6d1f9d71ca71ea64c27023e3e0fd9ea3f [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/aec_state.h"
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
#include "webrtc/test/gtest.h"
namespace webrtc {
// Verify the general functionality of AecState
TEST(AecState, NormalUsage) {
ApmDataDumper data_dumper(42);
AecState state(AudioProcessing::Config::EchoCanceller3{});
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
std::vector<size_t>(1, 30));
std::array<float, kFftLengthBy2Plus1> E2_main = {};
std::array<float, kFftLengthBy2Plus1> Y2 = {};
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
EchoPathVariability echo_path_variability(false, false);
std::array<float, kBlockSize> s;
s.fill(100.f);
std::vector<std::array<float, kFftLengthBy2Plus1>>
converged_filter_frequency_response(10);
for (auto& v : converged_filter_frequency_response) {
v.fill(0.01f);
}
std::vector<std::array<float, kFftLengthBy2Plus1>>
diverged_filter_frequency_response = converged_filter_frequency_response;
converged_filter_frequency_response[2].fill(100.f);
converged_filter_frequency_response[2][0] = 1.f;
std::array<float, kAdaptiveFilterTimeDomainLength> impulse_response;
impulse_response.fill(0.f);
// Verify that linear AEC usability is false when the filter is diverged and
// there is no external delay reported.
state.Update(diverged_filter_frequency_response, impulse_response,
rtc::Optional<size_t>(), render_buffer, E2_main, Y2, x[0], s,
false);
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that linear AEC usability is true when the filter is converged
std::fill(x[0].begin(), x[0].end(), 101.f);
for (int k = 0; k < 3000; ++k) {
state.Update(converged_filter_frequency_response, impulse_response,
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
false);
}
EXPECT_TRUE(state.UsableLinearEstimate());
// Verify that linear AEC usability becomes false after an echo path change is
// reported
state.HandleEchoPathChange(EchoPathVariability(true, false));
state.Update(converged_filter_frequency_response, impulse_response,
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
false);
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that the active render detection works as intended.
std::fill(x[0].begin(), x[0].end(), 101.f);
state.HandleEchoPathChange(EchoPathVariability(true, true));
state.Update(converged_filter_frequency_response, impulse_response,
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
false);
EXPECT_FALSE(state.ActiveRender());
for (int k = 0; k < 1000; ++k) {
state.Update(converged_filter_frequency_response, impulse_response,
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
false);
}
EXPECT_TRUE(state.ActiveRender());
// Verify that echo leakage is properly reported.
state.Update(converged_filter_frequency_response, impulse_response,
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
false);
EXPECT_FALSE(state.EchoLeakageDetected());
state.Update(converged_filter_frequency_response, impulse_response,
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
true);
EXPECT_TRUE(state.EchoLeakageDetected());
// Verify that the ERL is properly estimated
for (auto& x_k : x) {
x_k = std::vector<float>(kBlockSize, 0.f);
}
x[0][0] = 5000.f;
for (size_t k = 0; k < render_buffer.Buffer().size(); ++k) {
render_buffer.Insert(x);
}
Y2.fill(10.f * 10000.f * 10000.f);
for (size_t k = 0; k < 1000; ++k) {
state.Update(converged_filter_frequency_response, impulse_response,
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
false);
}
ASSERT_TRUE(state.UsableLinearEstimate());
const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
EXPECT_EQ(erl[0], erl[1]);
for (size_t k = 1; k < erl.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
}
EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);
// Verify that the ERLE is properly estimated
E2_main.fill(1.f * 10000.f * 10000.f);
Y2.fill(10.f * E2_main[0]);
for (size_t k = 0; k < 1000; ++k) {
state.Update(converged_filter_frequency_response, impulse_response,
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
false);
}
ASSERT_TRUE(state.UsableLinearEstimate());
{
const auto& erle = state.Erle();
EXPECT_EQ(erle[0], erle[1]);
constexpr size_t kLowFrequencyLimit = 32;
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 8.f : 1.f, erle[k], 0.1);
}
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
}
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
}
E2_main.fill(1.f * 10000.f * 10000.f);
Y2.fill(5.f * E2_main[0]);
for (size_t k = 0; k < 1000; ++k) {
state.Update(converged_filter_frequency_response, impulse_response,
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
false);
}
ASSERT_TRUE(state.UsableLinearEstimate());
{
const auto& erle = state.Erle();
EXPECT_EQ(erle[0], erle[1]);
constexpr size_t kLowFrequencyLimit = 32;
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 5.f : 1.f, erle[k], 0.1);
}
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
}
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
}
}
// Verifies the a non-significant delay is correctly identified.
TEST(AecState, NonSignificantDelay) {
AecState state(AudioProcessing::Config::EchoCanceller3{});
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
std::vector<size_t>(1, 30));
std::array<float, kFftLengthBy2Plus1> E2_main;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kBlockSize> x;
EchoPathVariability echo_path_variability(false, false);
std::array<float, kBlockSize> s;
s.fill(100.f);
x.fill(0.f);
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
for (auto& v : frequency_response) {
v.fill(0.01f);
}
std::array<float, kAdaptiveFilterTimeDomainLength> impulse_response;
impulse_response.fill(0.f);
// Verify that a non-significant filter delay is identified correctly.
state.HandleEchoPathChange(echo_path_variability);
state.Update(frequency_response, impulse_response, rtc::Optional<size_t>(),
render_buffer, E2_main, Y2, x, s, false);
EXPECT_FALSE(state.FilterDelay());
}
// Verifies the delay for a converged filter is correctly identified.
TEST(AecState, ConvergedFilterDelay) {
constexpr int kFilterLength = 10;
AecState state(AudioProcessing::Config::EchoCanceller3{});
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
std::vector<size_t>(1, 30));
std::array<float, kFftLengthBy2Plus1> E2_main;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kBlockSize> x;
EchoPathVariability echo_path_variability(false, false);
std::array<float, kBlockSize> s;
s.fill(100.f);
x.fill(0.f);
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
kFilterLength);
std::array<float, kAdaptiveFilterTimeDomainLength> impulse_response;
impulse_response.fill(0.f);
// Verify that the filter delay for a converged filter is properly identified.
for (int k = 0; k < kFilterLength; ++k) {
for (auto& v : frequency_response) {
v.fill(0.01f);
}
frequency_response[k].fill(100.f);
frequency_response[k][0] = 0.f;
state.HandleEchoPathChange(echo_path_variability);
state.Update(frequency_response, impulse_response, rtc::Optional<size_t>(),
render_buffer, E2_main, Y2, x, s, false);
EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay());
if (k != (kFilterLength - 1)) {
EXPECT_EQ(k, state.FilterDelay());
}
}
}
// Verify that the externally reported delay is properly reported and converted.
TEST(AecState, ExternalDelay) {
AecState state(AudioProcessing::Config::EchoCanceller3{});
std::array<float, kFftLengthBy2Plus1> E2_main;
std::array<float, kFftLengthBy2Plus1> E2_shadow;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kBlockSize> x;
std::array<float, kBlockSize> s;
s.fill(100.f);
E2_main.fill(0.f);
E2_shadow.fill(0.f);
Y2.fill(0.f);
x.fill(0.f);
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
std::vector<size_t>(1, 30));
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(30);
for (auto& v : frequency_response) {
v.fill(0.01f);
}
std::array<float, kAdaptiveFilterTimeDomainLength> impulse_response;
impulse_response.fill(0.f);
for (size_t k = 0; k < frequency_response.size() - 1; ++k) {
state.HandleEchoPathChange(EchoPathVariability(false, false));
state.Update(frequency_response, impulse_response,
rtc::Optional<size_t>(k * kBlockSize + 5), render_buffer,
E2_main, Y2, x, s, false);
EXPECT_TRUE(state.ExternalDelay());
EXPECT_EQ(k, state.ExternalDelay());
}
// Verify that the externally reported delay is properly unset when it is no
// longer present.
state.HandleEchoPathChange(EchoPathVariability(false, false));
state.Update(frequency_response, impulse_response, rtc::Optional<size_t>(),
render_buffer, E2_main, Y2, x, s, false);
EXPECT_FALSE(state.ExternalDelay());
}
} // namespace webrtc