blob: f5a19109844ad02a2df414713fe6a5e56626a639 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "webrtc/modules/video_coding/codecs/h264/h264_encoder_impl.h"
#include <limits>
#include <string>
#include "third_party/openh264/src/codec/api/svc/codec_api.h"
#include "third_party/openh264/src/codec/api/svc/codec_app_def.h"
#include "third_party/openh264/src/codec/api/svc/codec_def.h"
#include "third_party/openh264/src/codec/api/svc/codec_ver.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/rtc_base/checks.h"
#include "webrtc/rtc_base/logging.h"
#include "webrtc/rtc_base/timeutils.h"
#include "webrtc/system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
const bool kOpenH264EncoderDetailedLogging = false;
// Used by histograms. Values of entries should not be changed.
enum H264EncoderImplEvent {
kH264EncoderEventInit = 0,
kH264EncoderEventError = 1,
kH264EncoderEventMax = 16,
};
int NumberOfThreads(int width, int height, int number_of_cores) {
// TODO(hbos): In Chromium, multiple threads do not work with sandbox on Mac,
// see crbug.com/583348. Until further investigated, only use one thread.
// if (width * height >= 1920 * 1080 && number_of_cores > 8) {
// return 8; // 8 threads for 1080p on high perf machines.
// } else if (width * height > 1280 * 960 && number_of_cores >= 6) {
// return 3; // 3 threads for 1080p.
// } else if (width * height > 640 * 480 && number_of_cores >= 3) {
// return 2; // 2 threads for qHD/HD.
// } else {
// return 1; // 1 thread for VGA or less.
// }
// TODO(sprang): Also check sSliceArgument.uiSliceNum om GetEncoderPrams(),
// before enabling multithreading here.
return 1;
}
FrameType ConvertToVideoFrameType(EVideoFrameType type) {
switch (type) {
case videoFrameTypeIDR:
return kVideoFrameKey;
case videoFrameTypeSkip:
case videoFrameTypeI:
case videoFrameTypeP:
case videoFrameTypeIPMixed:
return kVideoFrameDelta;
case videoFrameTypeInvalid:
break;
}
RTC_NOTREACHED() << "Unexpected/invalid frame type: " << type;
return kEmptyFrame;
}
} // namespace
// Helper method used by H264EncoderImpl::Encode.
// Copies the encoded bytes from |info| to |encoded_image| and updates the
// fragmentation information of |frag_header|. The |encoded_image->_buffer| may
// be deleted and reallocated if a bigger buffer is required.
//
// After OpenH264 encoding, the encoded bytes are stored in |info| spread out
// over a number of layers and "NAL units". Each NAL unit is a fragment starting
// with the four-byte start code {0,0,0,1}. All of this data (including the
// start codes) is copied to the |encoded_image->_buffer| and the |frag_header|
// is updated to point to each fragment, with offsets and lengths set as to
// exclude the start codes.
static void RtpFragmentize(EncodedImage* encoded_image,
std::unique_ptr<uint8_t[]>* encoded_image_buffer,
const VideoFrameBuffer& frame_buffer,
SFrameBSInfo* info,
RTPFragmentationHeader* frag_header) {
// Calculate minimum buffer size required to hold encoded data.
size_t required_size = 0;
size_t fragments_count = 0;
for (int layer = 0; layer < info->iLayerNum; ++layer) {
const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++fragments_count) {
RTC_CHECK_GE(layerInfo.pNalLengthInByte[nal], 0);
// Ensure |required_size| will not overflow.
RTC_CHECK_LE(layerInfo.pNalLengthInByte[nal],
std::numeric_limits<size_t>::max() - required_size);
required_size += layerInfo.pNalLengthInByte[nal];
}
}
if (encoded_image->_size < required_size) {
// Increase buffer size. Allocate enough to hold an unencoded image, this
// should be more than enough to hold any encoded data of future frames of
// the same size (avoiding possible future reallocation due to variations in
// required size).
encoded_image->_size = CalcBufferSize(
VideoType::kI420, frame_buffer.width(), frame_buffer.height());
if (encoded_image->_size < required_size) {
// Encoded data > unencoded data. Allocate required bytes.
LOG(LS_WARNING) << "Encoding produced more bytes than the original image "
<< "data! Original bytes: " << encoded_image->_size
<< ", encoded bytes: " << required_size << ".";
encoded_image->_size = required_size;
}
encoded_image->_buffer = new uint8_t[encoded_image->_size];
encoded_image_buffer->reset(encoded_image->_buffer);
}
// Iterate layers and NAL units, note each NAL unit as a fragment and copy
// the data to |encoded_image->_buffer|.
const uint8_t start_code[4] = {0, 0, 0, 1};
frag_header->VerifyAndAllocateFragmentationHeader(fragments_count);
size_t frag = 0;
encoded_image->_length = 0;
for (int layer = 0; layer < info->iLayerNum; ++layer) {
const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
// Iterate NAL units making up this layer, noting fragments.
size_t layer_len = 0;
for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++frag) {
// Because the sum of all layer lengths, |required_size|, fits in a
// |size_t|, we know that any indices in-between will not overflow.
RTC_DCHECK_GE(layerInfo.pNalLengthInByte[nal], 4);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+0], start_code[0]);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+1], start_code[1]);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+2], start_code[2]);
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+3], start_code[3]);
frag_header->fragmentationOffset[frag] =
encoded_image->_length + layer_len + sizeof(start_code);
frag_header->fragmentationLength[frag] =
layerInfo.pNalLengthInByte[nal] - sizeof(start_code);
layer_len += layerInfo.pNalLengthInByte[nal];
}
// Copy the entire layer's data (including start codes).
memcpy(encoded_image->_buffer + encoded_image->_length,
layerInfo.pBsBuf,
layer_len);
encoded_image->_length += layer_len;
}
}
H264EncoderImpl::H264EncoderImpl(const cricket::VideoCodec& codec)
: openh264_encoder_(nullptr),
width_(0),
height_(0),
max_frame_rate_(0.0f),
target_bps_(0),
max_bps_(0),
mode_(kRealtimeVideo),
frame_dropping_on_(false),
key_frame_interval_(0),
packetization_mode_(H264PacketizationMode::SingleNalUnit),
max_payload_size_(0),
number_of_cores_(0),
encoded_image_callback_(nullptr),
has_reported_init_(false),
has_reported_error_(false) {
RTC_CHECK(cricket::CodecNamesEq(codec.name, cricket::kH264CodecName));
std::string packetization_mode_string;
if (codec.GetParam(cricket::kH264FmtpPacketizationMode,
&packetization_mode_string) &&
packetization_mode_string == "1") {
packetization_mode_ = H264PacketizationMode::NonInterleaved;
}
}
H264EncoderImpl::~H264EncoderImpl() {
Release();
}
int32_t H264EncoderImpl::InitEncode(const VideoCodec* codec_settings,
int32_t number_of_cores,
size_t max_payload_size) {
ReportInit();
if (!codec_settings ||
codec_settings->codecType != kVideoCodecH264) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (codec_settings->maxFramerate == 0) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (codec_settings->width < 1 || codec_settings->height < 1) {
ReportError();
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int32_t release_ret = Release();
if (release_ret != WEBRTC_VIDEO_CODEC_OK) {
ReportError();
return release_ret;
}
RTC_DCHECK(!openh264_encoder_);
// Create encoder.
if (WelsCreateSVCEncoder(&openh264_encoder_) != 0) {
// Failed to create encoder.
LOG(LS_ERROR) << "Failed to create OpenH264 encoder";
RTC_DCHECK(!openh264_encoder_);
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
RTC_DCHECK(openh264_encoder_);
if (kOpenH264EncoderDetailedLogging) {
int trace_level = WELS_LOG_DETAIL;
openh264_encoder_->SetOption(ENCODER_OPTION_TRACE_LEVEL,
&trace_level);
}
// else WELS_LOG_DEFAULT is used by default.
number_of_cores_ = number_of_cores;
// Set internal settings from codec_settings
width_ = codec_settings->width;
height_ = codec_settings->height;
max_frame_rate_ = static_cast<float>(codec_settings->maxFramerate);
mode_ = codec_settings->mode;
frame_dropping_on_ = codec_settings->H264().frameDroppingOn;
key_frame_interval_ = codec_settings->H264().keyFrameInterval;
max_payload_size_ = max_payload_size;
// Codec_settings uses kbits/second; encoder uses bits/second.
max_bps_ = codec_settings->maxBitrate * 1000;
if (codec_settings->targetBitrate == 0)
target_bps_ = codec_settings->startBitrate * 1000;
else
target_bps_ = codec_settings->targetBitrate * 1000;
SEncParamExt encoder_params = CreateEncoderParams();
// Initialize.
if (openh264_encoder_->InitializeExt(&encoder_params) != 0) {
LOG(LS_ERROR) << "Failed to initialize OpenH264 encoder";
Release();
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
// TODO(pbos): Base init params on these values before submitting.
int video_format = EVideoFormatType::videoFormatI420;
openh264_encoder_->SetOption(ENCODER_OPTION_DATAFORMAT,
&video_format);
// Initialize encoded image. Default buffer size: size of unencoded data.
encoded_image_._size = CalcBufferSize(VideoType::kI420, codec_settings->width,
codec_settings->height);
encoded_image_._buffer = new uint8_t[encoded_image_._size];
encoded_image_buffer_.reset(encoded_image_._buffer);
encoded_image_._completeFrame = true;
encoded_image_._encodedWidth = 0;
encoded_image_._encodedHeight = 0;
encoded_image_._length = 0;
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::Release() {
if (openh264_encoder_) {
RTC_CHECK_EQ(0, openh264_encoder_->Uninitialize());
WelsDestroySVCEncoder(openh264_encoder_);
openh264_encoder_ = nullptr;
}
encoded_image_._buffer = nullptr;
encoded_image_buffer_.reset();
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
encoded_image_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::SetRateAllocation(
const BitrateAllocation& bitrate_allocation,
uint32_t framerate) {
if (bitrate_allocation.get_sum_bps() <= 0 || framerate <= 0)
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
target_bps_ = bitrate_allocation.get_sum_bps();
max_frame_rate_ = static_cast<float>(framerate);
SBitrateInfo target_bitrate;
memset(&target_bitrate, 0, sizeof(SBitrateInfo));
target_bitrate.iLayer = SPATIAL_LAYER_ALL,
target_bitrate.iBitrate = target_bps_;
openh264_encoder_->SetOption(ENCODER_OPTION_BITRATE,
&target_bitrate);
openh264_encoder_->SetOption(ENCODER_OPTION_FRAME_RATE, &max_frame_rate_);
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::Encode(const VideoFrame& input_frame,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
if (!IsInitialized()) {
ReportError();
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (!encoded_image_callback_) {
LOG(LS_WARNING) << "InitEncode() has been called, but a callback function "
<< "has not been set with RegisterEncodeCompleteCallback()";
ReportError();
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
bool force_key_frame = false;
if (frame_types != nullptr) {
// We only support a single stream.
RTC_DCHECK_EQ(frame_types->size(), 1);
// Skip frame?
if ((*frame_types)[0] == kEmptyFrame) {
return WEBRTC_VIDEO_CODEC_OK;
}
// Force key frame?
force_key_frame = (*frame_types)[0] == kVideoFrameKey;
}
if (force_key_frame) {
// API doc says ForceIntraFrame(false) does nothing, but calling this
// function forces a key frame regardless of the |bIDR| argument's value.
// (If every frame is a key frame we get lag/delays.)
openh264_encoder_->ForceIntraFrame(true);
}
rtc::scoped_refptr<const I420BufferInterface> frame_buffer =
input_frame.video_frame_buffer()->ToI420();
// EncodeFrame input.
SSourcePicture picture;
memset(&picture, 0, sizeof(SSourcePicture));
picture.iPicWidth = frame_buffer->width();
picture.iPicHeight = frame_buffer->height();
picture.iColorFormat = EVideoFormatType::videoFormatI420;
picture.uiTimeStamp = input_frame.ntp_time_ms();
picture.iStride[0] = frame_buffer->StrideY();
picture.iStride[1] = frame_buffer->StrideU();
picture.iStride[2] = frame_buffer->StrideV();
picture.pData[0] = const_cast<uint8_t*>(frame_buffer->DataY());
picture.pData[1] = const_cast<uint8_t*>(frame_buffer->DataU());
picture.pData[2] = const_cast<uint8_t*>(frame_buffer->DataV());
// EncodeFrame output.
SFrameBSInfo info;
memset(&info, 0, sizeof(SFrameBSInfo));
// Encode!
int enc_ret = openh264_encoder_->EncodeFrame(&picture, &info);
if (enc_ret != 0) {
LOG(LS_ERROR) << "OpenH264 frame encoding failed, EncodeFrame returned "
<< enc_ret << ".";
ReportError();
return WEBRTC_VIDEO_CODEC_ERROR;
}
encoded_image_._encodedWidth = frame_buffer->width();
encoded_image_._encodedHeight = frame_buffer->height();
encoded_image_._timeStamp = input_frame.timestamp();
encoded_image_.ntp_time_ms_ = input_frame.ntp_time_ms();
encoded_image_.capture_time_ms_ = input_frame.render_time_ms();
encoded_image_.rotation_ = input_frame.rotation();
encoded_image_.content_type_ = (mode_ == kScreensharing)
? VideoContentType::SCREENSHARE
: VideoContentType::UNSPECIFIED;
encoded_image_.timing_.flags = TimingFrameFlags::kInvalid;
encoded_image_._frameType = ConvertToVideoFrameType(info.eFrameType);
// Split encoded image up into fragments. This also updates |encoded_image_|.
RTPFragmentationHeader frag_header;
RtpFragmentize(&encoded_image_, &encoded_image_buffer_, *frame_buffer, &info,
&frag_header);
// Encoder can skip frames to save bandwidth in which case
// |encoded_image_._length| == 0.
if (encoded_image_._length > 0) {
// Parse QP.
h264_bitstream_parser_.ParseBitstream(encoded_image_._buffer,
encoded_image_._length);
h264_bitstream_parser_.GetLastSliceQp(&encoded_image_.qp_);
// Deliver encoded image.
CodecSpecificInfo codec_specific;
codec_specific.codecType = kVideoCodecH264;
codec_specific.codecSpecific.H264.packetization_mode = packetization_mode_;
encoded_image_callback_->OnEncodedImage(encoded_image_, &codec_specific,
&frag_header);
}
return WEBRTC_VIDEO_CODEC_OK;
}
const char* H264EncoderImpl::ImplementationName() const {
return "OpenH264";
}
bool H264EncoderImpl::IsInitialized() const {
return openh264_encoder_ != nullptr;
}
// Initialization parameters.
// There are two ways to initialize. There is SEncParamBase (cleared with
// memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt
// which is a superset of SEncParamBase (cleared with GetDefaultParams) used
// in InitializeExt.
SEncParamExt H264EncoderImpl::CreateEncoderParams() const {
RTC_DCHECK(openh264_encoder_);
SEncParamExt encoder_params;
openh264_encoder_->GetDefaultParams(&encoder_params);
if (mode_ == kRealtimeVideo) {
encoder_params.iUsageType = CAMERA_VIDEO_REAL_TIME;
} else if (mode_ == kScreensharing) {
encoder_params.iUsageType = SCREEN_CONTENT_REAL_TIME;
} else {
RTC_NOTREACHED();
}
encoder_params.iPicWidth = width_;
encoder_params.iPicHeight = height_;
encoder_params.iTargetBitrate = target_bps_;
encoder_params.iMaxBitrate = max_bps_;
// Rate Control mode
encoder_params.iRCMode = RC_BITRATE_MODE;
encoder_params.fMaxFrameRate = max_frame_rate_;
// The following parameters are extension parameters (they're in SEncParamExt,
// not in SEncParamBase).
encoder_params.bEnableFrameSkip = frame_dropping_on_;
// |uiIntraPeriod| - multiple of GOP size
// |keyFrameInterval| - number of frames
encoder_params.uiIntraPeriod = key_frame_interval_;
encoder_params.uiMaxNalSize = 0;
// Threading model: use auto.
// 0: auto (dynamic imp. internal encoder)
// 1: single thread (default value)
// >1: number of threads
encoder_params.iMultipleThreadIdc = NumberOfThreads(
encoder_params.iPicWidth, encoder_params.iPicHeight, number_of_cores_);
// The base spatial layer 0 is the only one we use.
encoder_params.sSpatialLayers[0].iVideoWidth = encoder_params.iPicWidth;
encoder_params.sSpatialLayers[0].iVideoHeight = encoder_params.iPicHeight;
encoder_params.sSpatialLayers[0].fFrameRate = encoder_params.fMaxFrameRate;
encoder_params.sSpatialLayers[0].iSpatialBitrate =
encoder_params.iTargetBitrate;
encoder_params.sSpatialLayers[0].iMaxSpatialBitrate =
encoder_params.iMaxBitrate;
LOG(INFO) << "OpenH264 version is " << OPENH264_MAJOR << "."
<< OPENH264_MINOR;
switch (packetization_mode_) {
case H264PacketizationMode::SingleNalUnit:
// Limit the size of the packets produced.
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1;
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode =
SM_SIZELIMITED_SLICE;
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceSizeConstraint =
static_cast<unsigned int>(max_payload_size_);
break;
case H264PacketizationMode::NonInterleaved:
// When uiSliceMode = SM_FIXEDSLCNUM_SLICE, uiSliceNum = 0 means auto
// design it with cpu core number.
// TODO(sprang): Set to 0 when we understand why the rate controller borks
// when uiSliceNum > 1.
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1;
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode =
SM_FIXEDSLCNUM_SLICE;
break;
}
return encoder_params;
}
void H264EncoderImpl::ReportInit() {
if (has_reported_init_)
return;
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
kH264EncoderEventInit,
kH264EncoderEventMax);
has_reported_init_ = true;
}
void H264EncoderImpl::ReportError() {
if (has_reported_error_)
return;
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
kH264EncoderEventError,
kH264EncoderEventMax);
has_reported_error_ = true;
}
int32_t H264EncoderImpl::SetChannelParameters(
uint32_t packet_loss, int64_t rtt) {
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t H264EncoderImpl::SetPeriodicKeyFrames(bool enable) {
return WEBRTC_VIDEO_CODEC_OK;
}
VideoEncoder::ScalingSettings H264EncoderImpl::GetScalingSettings() const {
return VideoEncoder::ScalingSettings(true);
}
} // namespace webrtc