blob: a410e273cb602da06c3732dc658b88c92845b31f [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#import "WebRTC/RTCVideoCodecH264.h"
#import <VideoToolbox/VideoToolbox.h>
#include <vector>
#if defined(WEBRTC_IOS)
#import "Common/RTCUIApplicationStatusObserver.h"
#import "WebRTC/UIDevice+RTCDevice.h"
#endif
#import "PeerConnection/RTCVideoCodec+Private.h"
#import "WebRTC/RTCVideoCodec.h"
#import "WebRTC/RTCVideoFrame.h"
#import "WebRTC/RTCVideoFrameBuffer.h"
#import "helpers.h"
#include "libyuv/convert_from.h"
#include "webrtc/common_video/h264/h264_bitstream_parser.h"
#include "webrtc/common_video/h264/profile_level_id.h"
#include "webrtc/common_video/include/bitrate_adjuster.h"
#include "webrtc/modules/include/module_common_types.h"
#include "webrtc/modules/video_coding/include/video_error_codes.h"
#include "webrtc/rtc_base/buffer.h"
#include "webrtc/rtc_base/logging.h"
#include "webrtc/rtc_base/timeutils.h"
#include "webrtc/sdk/objc/Framework/Classes/VideoToolbox/nalu_rewriter.h"
#include "webrtc/system_wrappers/include/clock.h"
@interface RTCVideoEncoderH264 ()
- (void)frameWasEncoded:(OSStatus)status
flags:(VTEncodeInfoFlags)infoFlags
sampleBuffer:(CMSampleBufferRef)sampleBuffer
codecSpecificInfo:(id<RTCCodecSpecificInfo>)codecSpecificInfo
width:(int32_t)width
height:(int32_t)height
renderTimeMs:(int64_t)renderTimeMs
timestamp:(uint32_t)timestamp
rotation:(RTCVideoRotation)rotation;
@end
// The ratio between kVTCompressionPropertyKey_DataRateLimits and
// kVTCompressionPropertyKey_AverageBitRate. The data rate limit is set higher
// than the average bit rate to avoid undershooting the target.
const float kLimitToAverageBitRateFactor = 1.5f;
// These thresholds deviate from the default h264 QP thresholds, as they
// have been found to work better on devices that support VideoToolbox
const int kLowH264QpThreshold = 28;
const int kHighH264QpThreshold = 39;
// Struct that we pass to the encoder per frame to encode. We receive it again
// in the encoder callback.
struct RTCFrameEncodeParams {
RTCFrameEncodeParams(RTCVideoEncoderH264 *e,
RTCCodecSpecificInfoH264 *csi,
int32_t w,
int32_t h,
int64_t rtms,
uint32_t ts,
RTCVideoRotation r)
: encoder(e), width(w), height(h), render_time_ms(rtms), timestamp(ts), rotation(r) {
if (csi) {
codecSpecificInfo = csi;
} else {
codecSpecificInfo = [[RTCCodecSpecificInfoH264 alloc] init];
}
}
RTCVideoEncoderH264 *encoder;
RTCCodecSpecificInfoH264 *codecSpecificInfo;
int32_t width;
int32_t height;
int64_t render_time_ms;
uint32_t timestamp;
RTCVideoRotation rotation;
};
// We receive I420Frames as input, but we need to feed CVPixelBuffers into the
// encoder. This performs the copy and format conversion.
// TODO(tkchin): See if encoder will accept i420 frames and compare performance.
bool CopyVideoFrameToPixelBuffer(id<RTCI420Buffer> frameBuffer, CVPixelBufferRef pixelBuffer) {
RTC_DCHECK(pixelBuffer);
RTC_DCHECK_EQ(CVPixelBufferGetPixelFormatType(pixelBuffer),
kCVPixelFormatType_420YpCbCr8BiPlanarFullRange);
RTC_DCHECK_EQ(CVPixelBufferGetHeightOfPlane(pixelBuffer, 0), frameBuffer.height);
RTC_DCHECK_EQ(CVPixelBufferGetWidthOfPlane(pixelBuffer, 0), frameBuffer.width);
CVReturn cvRet = CVPixelBufferLockBaseAddress(pixelBuffer, 0);
if (cvRet != kCVReturnSuccess) {
LOG(LS_ERROR) << "Failed to lock base address: " << cvRet;
return false;
}
uint8_t *dstY = reinterpret_cast<uint8_t *>(CVPixelBufferGetBaseAddressOfPlane(pixelBuffer, 0));
int dstStrideY = CVPixelBufferGetBytesPerRowOfPlane(pixelBuffer, 0);
uint8_t *dstUV = reinterpret_cast<uint8_t *>(CVPixelBufferGetBaseAddressOfPlane(pixelBuffer, 1));
int dstStrideUV = CVPixelBufferGetBytesPerRowOfPlane(pixelBuffer, 1);
// Convert I420 to NV12.
int ret = libyuv::I420ToNV12(frameBuffer.dataY,
frameBuffer.strideY,
frameBuffer.dataU,
frameBuffer.strideU,
frameBuffer.dataV,
frameBuffer.strideV,
dstY,
dstStrideY,
dstUV,
dstStrideUV,
frameBuffer.width,
frameBuffer.height);
CVPixelBufferUnlockBaseAddress(pixelBuffer, 0);
if (ret) {
LOG(LS_ERROR) << "Error converting I420 VideoFrame to NV12 :" << ret;
return false;
}
return true;
}
CVPixelBufferRef CreatePixelBuffer(CVPixelBufferPoolRef pixel_buffer_pool) {
if (!pixel_buffer_pool) {
LOG(LS_ERROR) << "Failed to get pixel buffer pool.";
return nullptr;
}
CVPixelBufferRef pixel_buffer;
CVReturn ret = CVPixelBufferPoolCreatePixelBuffer(nullptr, pixel_buffer_pool, &pixel_buffer);
if (ret != kCVReturnSuccess) {
LOG(LS_ERROR) << "Failed to create pixel buffer: " << ret;
// We probably want to drop frames here, since failure probably means
// that the pool is empty.
return nullptr;
}
return pixel_buffer;
}
// This is the callback function that VideoToolbox calls when encode is
// complete. From inspection this happens on its own queue.
void compressionOutputCallback(void *encoder,
void *params,
OSStatus status,
VTEncodeInfoFlags infoFlags,
CMSampleBufferRef sampleBuffer) {
std::unique_ptr<RTCFrameEncodeParams> encodeParams(
reinterpret_cast<RTCFrameEncodeParams *>(params));
[encodeParams->encoder frameWasEncoded:status
flags:infoFlags
sampleBuffer:sampleBuffer
codecSpecificInfo:encodeParams->codecSpecificInfo
width:encodeParams->width
height:encodeParams->height
renderTimeMs:encodeParams->render_time_ms
timestamp:encodeParams->timestamp
rotation:encodeParams->rotation];
}
// Extract VideoToolbox profile out of the cricket::VideoCodec. If there is no
// specific VideoToolbox profile for the specified level, AutoLevel will be
// returned. The user must initialize the encoder with a resolution and
// framerate conforming to the selected H264 level regardless.
CFStringRef ExtractProfile(const cricket::VideoCodec &codec) {
const rtc::Optional<webrtc::H264::ProfileLevelId> profile_level_id =
webrtc::H264::ParseSdpProfileLevelId(codec.params);
RTC_DCHECK(profile_level_id);
switch (profile_level_id->profile) {
case webrtc::H264::kProfileConstrainedBaseline:
case webrtc::H264::kProfileBaseline:
switch (profile_level_id->level) {
case webrtc::H264::kLevel3:
return kVTProfileLevel_H264_Baseline_3_0;
case webrtc::H264::kLevel3_1:
return kVTProfileLevel_H264_Baseline_3_1;
case webrtc::H264::kLevel3_2:
return kVTProfileLevel_H264_Baseline_3_2;
case webrtc::H264::kLevel4:
return kVTProfileLevel_H264_Baseline_4_0;
case webrtc::H264::kLevel4_1:
return kVTProfileLevel_H264_Baseline_4_1;
case webrtc::H264::kLevel4_2:
return kVTProfileLevel_H264_Baseline_4_2;
case webrtc::H264::kLevel5:
return kVTProfileLevel_H264_Baseline_5_0;
case webrtc::H264::kLevel5_1:
return kVTProfileLevel_H264_Baseline_5_1;
case webrtc::H264::kLevel5_2:
return kVTProfileLevel_H264_Baseline_5_2;
case webrtc::H264::kLevel1:
case webrtc::H264::kLevel1_b:
case webrtc::H264::kLevel1_1:
case webrtc::H264::kLevel1_2:
case webrtc::H264::kLevel1_3:
case webrtc::H264::kLevel2:
case webrtc::H264::kLevel2_1:
case webrtc::H264::kLevel2_2:
return kVTProfileLevel_H264_Baseline_AutoLevel;
}
case webrtc::H264::kProfileMain:
switch (profile_level_id->level) {
case webrtc::H264::kLevel3:
return kVTProfileLevel_H264_Main_3_0;
case webrtc::H264::kLevel3_1:
return kVTProfileLevel_H264_Main_3_1;
case webrtc::H264::kLevel3_2:
return kVTProfileLevel_H264_Main_3_2;
case webrtc::H264::kLevel4:
return kVTProfileLevel_H264_Main_4_0;
case webrtc::H264::kLevel4_1:
return kVTProfileLevel_H264_Main_4_1;
case webrtc::H264::kLevel4_2:
return kVTProfileLevel_H264_Main_4_2;
case webrtc::H264::kLevel5:
return kVTProfileLevel_H264_Main_5_0;
case webrtc::H264::kLevel5_1:
return kVTProfileLevel_H264_Main_5_1;
case webrtc::H264::kLevel5_2:
return kVTProfileLevel_H264_Main_5_2;
case webrtc::H264::kLevel1:
case webrtc::H264::kLevel1_b:
case webrtc::H264::kLevel1_1:
case webrtc::H264::kLevel1_2:
case webrtc::H264::kLevel1_3:
case webrtc::H264::kLevel2:
case webrtc::H264::kLevel2_1:
case webrtc::H264::kLevel2_2:
return kVTProfileLevel_H264_Main_AutoLevel;
}
case webrtc::H264::kProfileConstrainedHigh:
case webrtc::H264::kProfileHigh:
switch (profile_level_id->level) {
case webrtc::H264::kLevel3:
return kVTProfileLevel_H264_High_3_0;
case webrtc::H264::kLevel3_1:
return kVTProfileLevel_H264_High_3_1;
case webrtc::H264::kLevel3_2:
return kVTProfileLevel_H264_High_3_2;
case webrtc::H264::kLevel4:
return kVTProfileLevel_H264_High_4_0;
case webrtc::H264::kLevel4_1:
return kVTProfileLevel_H264_High_4_1;
case webrtc::H264::kLevel4_2:
return kVTProfileLevel_H264_High_4_2;
case webrtc::H264::kLevel5:
return kVTProfileLevel_H264_High_5_0;
case webrtc::H264::kLevel5_1:
return kVTProfileLevel_H264_High_5_1;
case webrtc::H264::kLevel5_2:
return kVTProfileLevel_H264_High_5_2;
case webrtc::H264::kLevel1:
case webrtc::H264::kLevel1_b:
case webrtc::H264::kLevel1_1:
case webrtc::H264::kLevel1_2:
case webrtc::H264::kLevel1_3:
case webrtc::H264::kLevel2:
case webrtc::H264::kLevel2_1:
case webrtc::H264::kLevel2_2:
return kVTProfileLevel_H264_High_AutoLevel;
}
}
}
@implementation RTCVideoEncoderH264 {
RTCVideoCodecInfo *_codecInfo;
webrtc::BitrateAdjuster *_bitrateAdjuster;
uint32_t _targetBitrateBps;
uint32_t _encoderBitrateBps;
RTCH264PacketizationMode _packetizationMode;
CFStringRef _profile;
RTCVideoEncoderCallback _callback;
int32_t _width;
int32_t _height;
VTCompressionSessionRef _compressionSession;
RTCVideoCodecMode _mode;
webrtc::H264BitstreamParser _h264BitstreamParser;
std::vector<uint8_t> _nv12ScaleBuffer;
}
// .5 is set as a mininum to prevent overcompensating for large temporary
// overshoots. We don't want to degrade video quality too badly.
// .95 is set to prevent oscillations. When a lower bitrate is set on the
// encoder than previously set, its output seems to have a brief period of
// drastically reduced bitrate, so we want to avoid that. In steady state
// conditions, 0.95 seems to give us better overall bitrate over long periods
// of time.
- (instancetype)initWithCodecInfo:(RTCVideoCodecInfo *)codecInfo {
if (self = [super init]) {
_codecInfo = codecInfo;
_bitrateAdjuster = new webrtc::BitrateAdjuster(webrtc::Clock::GetRealTimeClock(), .5, .95);
_packetizationMode = RTCH264PacketizationModeNonInterleaved;
_profile = ExtractProfile([codecInfo nativeVideoCodec]);
LOG(LS_INFO) << "Using profile " << CFStringToString(_profile);
RTC_CHECK([codecInfo.name isEqualToString:@"H264"]);
}
return self;
}
- (void)dealloc {
[self destroyCompressionSession];
}
- (NSInteger)startEncodeWithSettings:(RTCVideoEncoderSettings *)settings
numberOfCores:(int)numberOfCores {
RTC_DCHECK(settings);
RTC_DCHECK([settings.name isEqualToString:@"H264"]);
_width = settings.width;
_height = settings.height;
_mode = settings.mode;
// We can only set average bitrate on the HW encoder.
_targetBitrateBps = settings.startBitrate;
_bitrateAdjuster->SetTargetBitrateBps(_targetBitrateBps);
// TODO(tkchin): Try setting payload size via
// kVTCompressionPropertyKey_MaxH264SliceBytes.
return [self resetCompressionSession];
}
- (NSInteger)encode:(RTCVideoFrame *)frame
codecSpecificInfo:(id<RTCCodecSpecificInfo>)codecSpecificInfo
frameTypes:(NSArray<NSNumber *> *)frameTypes {
RTC_DCHECK_EQ(frame.width, _width);
RTC_DCHECK_EQ(frame.height, _height);
if (!_callback || !_compressionSession) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
#if defined(WEBRTC_IOS)
if (![[RTCUIApplicationStatusObserver sharedInstance] isApplicationActive]) {
// Ignore all encode requests when app isn't active. In this state, the
// hardware encoder has been invalidated by the OS.
return WEBRTC_VIDEO_CODEC_OK;
}
#endif
BOOL isKeyframeRequired = NO;
// Get a pixel buffer from the pool and copy frame data over.
CVPixelBufferPoolRef pixelBufferPool =
VTCompressionSessionGetPixelBufferPool(_compressionSession);
#if defined(WEBRTC_IOS)
if (!pixelBufferPool) {
// Kind of a hack. On backgrounding, the compression session seems to get
// invalidated, which causes this pool call to fail when the application
// is foregrounded and frames are being sent for encoding again.
// Resetting the session when this happens fixes the issue.
// In addition we request a keyframe so video can recover quickly.
[self resetCompressionSession];
pixelBufferPool = VTCompressionSessionGetPixelBufferPool(_compressionSession);
isKeyframeRequired = YES;
LOG(LS_INFO) << "Resetting compression session due to invalid pool.";
}
#endif
CVPixelBufferRef pixelBuffer = nullptr;
if ([frame.buffer isKindOfClass:[RTCCVPixelBuffer class]]) {
// Native frame buffer
RTCCVPixelBuffer *rtcPixelBuffer = (RTCCVPixelBuffer *)frame.buffer;
if (![rtcPixelBuffer requiresCropping]) {
// This pixel buffer might have a higher resolution than what the
// compression session is configured to. The compression session can
// handle that and will output encoded frames in the configured
// resolution regardless of the input pixel buffer resolution.
pixelBuffer = rtcPixelBuffer.pixelBuffer;
CVBufferRetain(pixelBuffer);
} else {
// Cropping required, we need to crop and scale to a new pixel buffer.
pixelBuffer = CreatePixelBuffer(pixelBufferPool);
if (!pixelBuffer) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
int dstWidth = CVPixelBufferGetWidth(pixelBuffer);
int dstHeight = CVPixelBufferGetHeight(pixelBuffer);
if ([rtcPixelBuffer requiresScalingToWidth:dstWidth height:dstHeight]) {
int size =
[rtcPixelBuffer bufferSizeForCroppingAndScalingToWidth:dstWidth height:dstHeight];
_nv12ScaleBuffer.resize(size);
} else {
_nv12ScaleBuffer.clear();
}
_nv12ScaleBuffer.shrink_to_fit();
if (![rtcPixelBuffer cropAndScaleTo:pixelBuffer withTempBuffer:_nv12ScaleBuffer.data()]) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
}
}
if (!pixelBuffer) {
// We did not have a native frame buffer
pixelBuffer = CreatePixelBuffer(pixelBufferPool);
if (!pixelBuffer) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
RTC_DCHECK(pixelBuffer);
if (!CopyVideoFrameToPixelBuffer([frame.buffer toI420], pixelBuffer)) {
LOG(LS_ERROR) << "Failed to copy frame data.";
CVBufferRelease(pixelBuffer);
return WEBRTC_VIDEO_CODEC_ERROR;
}
}
// Check if we need a keyframe.
if (!isKeyframeRequired && frameTypes) {
for (NSNumber *frameType in frameTypes) {
if ((RTCFrameType)frameType.intValue == RTCFrameTypeVideoFrameKey) {
isKeyframeRequired = YES;
break;
}
}
}
CMTime presentationTimeStamp = CMTimeMake(frame.timeStampNs / rtc::kNumNanosecsPerMillisec, 1000);
CFDictionaryRef frameProperties = nullptr;
if (isKeyframeRequired) {
CFTypeRef keys[] = {kVTEncodeFrameOptionKey_ForceKeyFrame};
CFTypeRef values[] = {kCFBooleanTrue};
frameProperties = CreateCFTypeDictionary(keys, values, 1);
}
std::unique_ptr<RTCFrameEncodeParams> encodeParams;
encodeParams.reset(new RTCFrameEncodeParams(self,
codecSpecificInfo,
_width,
_height,
frame.timeStampNs / rtc::kNumNanosecsPerMillisec,
frame.timeStamp,
frame.rotation));
encodeParams->codecSpecificInfo.packetizationMode = _packetizationMode;
// Update the bitrate if needed.
[self setBitrateBps:_bitrateAdjuster->GetAdjustedBitrateBps()];
OSStatus status = VTCompressionSessionEncodeFrame(_compressionSession,
pixelBuffer,
presentationTimeStamp,
kCMTimeInvalid,
frameProperties,
encodeParams.release(),
nullptr);
if (frameProperties) {
CFRelease(frameProperties);
}
if (pixelBuffer) {
CVBufferRelease(pixelBuffer);
}
if (status != noErr) {
LOG(LS_ERROR) << "Failed to encode frame with code: " << status;
return WEBRTC_VIDEO_CODEC_ERROR;
}
return WEBRTC_VIDEO_CODEC_OK;
}
- (void)setCallback:(RTCVideoEncoderCallback)callback {
_callback = callback;
}
- (int)setBitrate:(uint32_t)bitrateKbit framerate:(uint32_t)framerate {
_targetBitrateBps = 1000 * bitrateKbit;
_bitrateAdjuster->SetTargetBitrateBps(_targetBitrateBps);
[self setBitrateBps:_bitrateAdjuster->GetAdjustedBitrateBps()];
return WEBRTC_VIDEO_CODEC_OK;
}
#pragma mark - Private
- (NSInteger)releaseEncoder {
// Need to destroy so that the session is invalidated and won't use the
// callback anymore. Do not remove callback until the session is invalidated
// since async encoder callbacks can occur until invalidation.
[self destroyCompressionSession];
_callback = nullptr;
return WEBRTC_VIDEO_CODEC_OK;
}
- (int)resetCompressionSession {
[self destroyCompressionSession];
// Set source image buffer attributes. These attributes will be present on
// buffers retrieved from the encoder's pixel buffer pool.
const size_t attributesSize = 3;
CFTypeRef keys[attributesSize] = {
#if defined(WEBRTC_IOS)
kCVPixelBufferOpenGLESCompatibilityKey,
#elif defined(WEBRTC_MAC)
kCVPixelBufferOpenGLCompatibilityKey,
#endif
kCVPixelBufferIOSurfacePropertiesKey,
kCVPixelBufferPixelFormatTypeKey
};
CFDictionaryRef ioSurfaceValue = CreateCFTypeDictionary(nullptr, nullptr, 0);
int64_t nv12type = kCVPixelFormatType_420YpCbCr8BiPlanarFullRange;
CFNumberRef pixelFormat = CFNumberCreate(nullptr, kCFNumberLongType, &nv12type);
CFTypeRef values[attributesSize] = {kCFBooleanTrue, ioSurfaceValue, pixelFormat};
CFDictionaryRef sourceAttributes = CreateCFTypeDictionary(keys, values, attributesSize);
if (ioSurfaceValue) {
CFRelease(ioSurfaceValue);
ioSurfaceValue = nullptr;
}
if (pixelFormat) {
CFRelease(pixelFormat);
pixelFormat = nullptr;
}
CFMutableDictionaryRef encoder_specs = nullptr;
#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
// Currently hw accl is supported above 360p on mac, below 360p
// the compression session will be created with hw accl disabled.
encoder_specs = CFDictionaryCreateMutable(
nullptr, 1, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
CFDictionarySetValue(encoder_specs,
kVTVideoEncoderSpecification_EnableHardwareAcceleratedVideoEncoder,
kCFBooleanTrue);
#endif
OSStatus status =
VTCompressionSessionCreate(nullptr, // use default allocator
_width,
_height,
kCMVideoCodecType_H264,
encoder_specs, // use hardware accelerated encoder if available
sourceAttributes,
nullptr, // use default compressed data allocator
compressionOutputCallback,
nullptr,
&_compressionSession);
if (sourceAttributes) {
CFRelease(sourceAttributes);
sourceAttributes = nullptr;
}
if (encoder_specs) {
CFRelease(encoder_specs);
encoder_specs = nullptr;
}
if (status != noErr) {
LOG(LS_ERROR) << "Failed to create compression session: " << status;
return WEBRTC_VIDEO_CODEC_ERROR;
}
#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
CFBooleanRef hwaccl_enabled = nullptr;
status = VTSessionCopyProperty(_compressionSession,
kVTCompressionPropertyKey_UsingHardwareAcceleratedVideoEncoder,
nullptr,
&hwaccl_enabled);
if (status == noErr && (CFBooleanGetValue(hwaccl_enabled))) {
LOG(LS_INFO) << "Compression session created with hw accl enabled";
} else {
LOG(LS_INFO) << "Compression session created with hw accl disabled";
}
#endif
[self configureCompressionSession];
return WEBRTC_VIDEO_CODEC_OK;
}
- (void)configureCompressionSession {
RTC_DCHECK(_compressionSession);
SetVTSessionProperty(_compressionSession, kVTCompressionPropertyKey_RealTime, true);
SetVTSessionProperty(_compressionSession, kVTCompressionPropertyKey_ProfileLevel, _profile);
SetVTSessionProperty(_compressionSession, kVTCompressionPropertyKey_AllowFrameReordering, false);
[self setEncoderBitrateBps:_targetBitrateBps];
// TODO(tkchin): Look at entropy mode and colorspace matrices.
// TODO(tkchin): Investigate to see if there's any way to make this work.
// May need it to interop with Android. Currently this call just fails.
// On inspecting encoder output on iOS8, this value is set to 6.
// internal::SetVTSessionProperty(compression_session_,
// kVTCompressionPropertyKey_MaxFrameDelayCount,
// 1);
// Set a relatively large value for keyframe emission (7200 frames or 4 minutes).
SetVTSessionProperty(_compressionSession, kVTCompressionPropertyKey_MaxKeyFrameInterval, 7200);
SetVTSessionProperty(
_compressionSession, kVTCompressionPropertyKey_MaxKeyFrameIntervalDuration, 240);
}
- (void)destroyCompressionSession {
if (_compressionSession) {
VTCompressionSessionInvalidate(_compressionSession);
CFRelease(_compressionSession);
_compressionSession = nullptr;
}
}
- (NSString *)implementationName {
return @"VideoToolbox";
}
- (void)setBitrateBps:(uint32_t)bitrateBps {
if (_encoderBitrateBps != bitrateBps) {
[self setEncoderBitrateBps:bitrateBps];
}
}
- (void)setEncoderBitrateBps:(uint32_t)bitrateBps {
if (_compressionSession) {
SetVTSessionProperty(_compressionSession, kVTCompressionPropertyKey_AverageBitRate, bitrateBps);
// TODO(tkchin): Add a helper method to set array value.
int64_t dataLimitBytesPerSecondValue =
static_cast<int64_t>(bitrateBps * kLimitToAverageBitRateFactor / 8);
CFNumberRef bytesPerSecond =
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt64Type, &dataLimitBytesPerSecondValue);
int64_t oneSecondValue = 1;
CFNumberRef oneSecond =
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt64Type, &oneSecondValue);
const void *nums[2] = {bytesPerSecond, oneSecond};
CFArrayRef dataRateLimits = CFArrayCreate(nullptr, nums, 2, &kCFTypeArrayCallBacks);
OSStatus status = VTSessionSetProperty(
_compressionSession, kVTCompressionPropertyKey_DataRateLimits, dataRateLimits);
if (bytesPerSecond) {
CFRelease(bytesPerSecond);
}
if (oneSecond) {
CFRelease(oneSecond);
}
if (dataRateLimits) {
CFRelease(dataRateLimits);
}
if (status != noErr) {
LOG(LS_ERROR) << "Failed to set data rate limit";
}
_encoderBitrateBps = bitrateBps;
}
}
- (void)frameWasEncoded:(OSStatus)status
flags:(VTEncodeInfoFlags)infoFlags
sampleBuffer:(CMSampleBufferRef)sampleBuffer
codecSpecificInfo:(id<RTCCodecSpecificInfo>)codecSpecificInfo
width:(int32_t)width
height:(int32_t)height
renderTimeMs:(int64_t)renderTimeMs
timestamp:(uint32_t)timestamp
rotation:(RTCVideoRotation)rotation {
if (status != noErr) {
LOG(LS_ERROR) << "H264 encode failed.";
return;
}
if (infoFlags & kVTEncodeInfo_FrameDropped) {
LOG(LS_INFO) << "H264 encode dropped frame.";
return;
}
BOOL isKeyframe = NO;
CFArrayRef attachments = CMSampleBufferGetSampleAttachmentsArray(sampleBuffer, 0);
if (attachments != nullptr && CFArrayGetCount(attachments)) {
CFDictionaryRef attachment =
static_cast<CFDictionaryRef>(CFArrayGetValueAtIndex(attachments, 0));
isKeyframe = !CFDictionaryContainsKey(attachment, kCMSampleAttachmentKey_NotSync);
}
if (isKeyframe) {
LOG(LS_INFO) << "Generated keyframe";
}
// Convert the sample buffer into a buffer suitable for RTP packetization.
// TODO(tkchin): Allocate buffers through a pool.
std::unique_ptr<rtc::Buffer> buffer(new rtc::Buffer());
RTCRtpFragmentationHeader *header;
{
std::unique_ptr<webrtc::RTPFragmentationHeader> header_cpp;
bool result =
H264CMSampleBufferToAnnexBBuffer(sampleBuffer, isKeyframe, buffer.get(), &header_cpp);
header = [[RTCRtpFragmentationHeader alloc] initWithNativeFragmentationHeader:header_cpp.get()];
if (!result) {
return;
}
}
RTCEncodedImage *frame = [[RTCEncodedImage alloc] init];
frame.buffer = [NSData dataWithBytesNoCopy:buffer->data() length:buffer->size() freeWhenDone:NO];
frame.encodedWidth = width;
frame.encodedHeight = height;
frame.completeFrame = YES;
frame.frameType = isKeyframe ? RTCFrameTypeVideoFrameKey : RTCFrameTypeVideoFrameDelta;
frame.captureTimeMs = renderTimeMs;
frame.timeStamp = timestamp;
frame.rotation = rotation;
frame.contentType = (_mode == RTCVideoCodecModeScreensharing) ? RTCVideoContentTypeScreenshare :
RTCVideoContentTypeUnspecified;
frame.flags = webrtc::TimingFrameFlags::kInvalid;
int qp;
_h264BitstreamParser.ParseBitstream(buffer->data(), buffer->size());
_h264BitstreamParser.GetLastSliceQp(&qp);
frame.qp = @(qp);
BOOL res = _callback(frame, codecSpecificInfo, header);
if (!res) {
LOG(LS_ERROR) << "Encode callback failed";
return;
}
_bitrateAdjuster->Update(frame.buffer.length);
}
- (RTCVideoEncoderQpThresholds *)scalingSettings {
return [[RTCVideoEncoderQpThresholds alloc] initWithThresholdsLow:kLowH264QpThreshold
high:kHighH264QpThreshold];
}
@end