blob: be78a4320ff1b3906f4faea0015b6366aa23fa47 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/rtp_rtcp/source/rtcp_sender.h"
#include <string.h> // memcpy
#include <utility>
#include "webrtc/common_types.h"
#include "webrtc/logging/rtc_event_log/rtc_event_log.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/app.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/bye.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/compound_packet.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/extended_reports.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/fir.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/nack.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/pli.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/receiver_report.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/remb.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/sdes.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/sender_report.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/tmmbn.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/tmmbr.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_rtcp_impl.h"
#include "webrtc/modules/rtp_rtcp/source/time_util.h"
#include "webrtc/modules/rtp_rtcp/source/tmmbr_help.h"
#include "webrtc/rtc_base/checks.h"
#include "webrtc/rtc_base/constructormagic.h"
#include "webrtc/rtc_base/logging.h"
#include "webrtc/rtc_base/trace_event.h"
namespace webrtc {
namespace {
const uint32_t kRtcpAnyExtendedReports =
kRtcpXrVoipMetric | kRtcpXrReceiverReferenceTime | kRtcpXrDlrrReportBlock |
kRtcpXrTargetBitrate;
} // namespace
NACKStringBuilder::NACKStringBuilder()
: stream_(""), count_(0), prevNack_(0), consecutive_(false) {}
NACKStringBuilder::~NACKStringBuilder() {}
void NACKStringBuilder::PushNACK(uint16_t nack) {
if (count_ == 0) {
stream_ << nack;
} else if (nack == prevNack_ + 1) {
consecutive_ = true;
} else {
if (consecutive_) {
stream_ << "-" << prevNack_;
consecutive_ = false;
}
stream_ << "," << nack;
}
count_++;
prevNack_ = nack;
}
std::string NACKStringBuilder::GetResult() {
if (consecutive_) {
stream_ << "-" << prevNack_;
consecutive_ = false;
}
return stream_.str();
}
RTCPSender::FeedbackState::FeedbackState()
: packets_sent(0),
media_bytes_sent(0),
send_bitrate(0),
last_rr_ntp_secs(0),
last_rr_ntp_frac(0),
remote_sr(0),
has_last_xr_rr(false),
module(nullptr) {}
class PacketContainer : public rtcp::CompoundPacket,
public rtcp::RtcpPacket::PacketReadyCallback {
public:
PacketContainer(Transport* transport, RtcEventLog* event_log)
: transport_(transport), event_log_(event_log), bytes_sent_(0) {}
virtual ~PacketContainer() {
for (RtcpPacket* packet : appended_packets_)
delete packet;
}
void OnPacketReady(uint8_t* data, size_t length) override {
if (transport_->SendRtcp(data, length)) {
bytes_sent_ += length;
if (event_log_) {
event_log_->LogRtcpPacket(kOutgoingPacket, data, length);
}
}
}
size_t SendPackets(size_t max_payload_length) {
RTC_DCHECK_LE(max_payload_length, IP_PACKET_SIZE);
uint8_t buffer[IP_PACKET_SIZE];
BuildExternalBuffer(buffer, max_payload_length, this);
return bytes_sent_;
}
private:
Transport* transport_;
RtcEventLog* const event_log_;
size_t bytes_sent_;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(PacketContainer);
};
class RTCPSender::RtcpContext {
public:
RtcpContext(const FeedbackState& feedback_state,
int32_t nack_size,
const uint16_t* nack_list,
NtpTime now)
: feedback_state_(feedback_state),
nack_size_(nack_size),
nack_list_(nack_list),
now_(now) {}
const FeedbackState& feedback_state_;
const int32_t nack_size_;
const uint16_t* nack_list_;
const NtpTime now_;
};
RTCPSender::RTCPSender(
bool audio,
Clock* clock,
ReceiveStatisticsProvider* receive_statistics,
RtcpPacketTypeCounterObserver* packet_type_counter_observer,
RtcEventLog* event_log,
Transport* outgoing_transport)
: audio_(audio),
clock_(clock),
random_(clock_->TimeInMicroseconds()),
method_(RtcpMode::kOff),
event_log_(event_log),
transport_(outgoing_transport),
using_nack_(false),
sending_(false),
remb_enabled_(false),
next_time_to_send_rtcp_(0),
timestamp_offset_(0),
last_rtp_timestamp_(0),
last_frame_capture_time_ms_(-1),
ssrc_(0),
remote_ssrc_(0),
receive_statistics_(receive_statistics),
sequence_number_fir_(0),
remb_bitrate_(0),
tmmbr_send_bps_(0),
packet_oh_send_(0),
max_packet_size_(IP_PACKET_SIZE - 28), // IPv4 + UDP by default.
app_sub_type_(0),
app_name_(0),
app_data_(nullptr),
app_length_(0),
xr_send_receiver_reference_time_enabled_(false),
packet_type_counter_observer_(packet_type_counter_observer) {
RTC_DCHECK(transport_ != nullptr);
builders_[kRtcpSr] = &RTCPSender::BuildSR;
builders_[kRtcpRr] = &RTCPSender::BuildRR;
builders_[kRtcpSdes] = &RTCPSender::BuildSDES;
builders_[kRtcpPli] = &RTCPSender::BuildPLI;
builders_[kRtcpFir] = &RTCPSender::BuildFIR;
builders_[kRtcpRemb] = &RTCPSender::BuildREMB;
builders_[kRtcpBye] = &RTCPSender::BuildBYE;
builders_[kRtcpApp] = &RTCPSender::BuildAPP;
builders_[kRtcpTmmbr] = &RTCPSender::BuildTMMBR;
builders_[kRtcpTmmbn] = &RTCPSender::BuildTMMBN;
builders_[kRtcpNack] = &RTCPSender::BuildNACK;
builders_[kRtcpAnyExtendedReports] = &RTCPSender::BuildExtendedReports;
}
RTCPSender::~RTCPSender() {}
RtcpMode RTCPSender::Status() const {
rtc::CritScope lock(&critical_section_rtcp_sender_);
return method_;
}
void RTCPSender::SetRTCPStatus(RtcpMode new_method) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
if (method_ == RtcpMode::kOff && new_method != RtcpMode::kOff) {
// When switching on, reschedule the next packet
next_time_to_send_rtcp_ =
clock_->TimeInMilliseconds() +
(audio_ ? RTCP_INTERVAL_AUDIO_MS / 2 : RTCP_INTERVAL_VIDEO_MS / 2);
}
method_ = new_method;
}
bool RTCPSender::Sending() const {
rtc::CritScope lock(&critical_section_rtcp_sender_);
return sending_;
}
int32_t RTCPSender::SetSendingStatus(const FeedbackState& feedback_state,
bool sending) {
bool sendRTCPBye = false;
{
rtc::CritScope lock(&critical_section_rtcp_sender_);
if (method_ != RtcpMode::kOff) {
if (sending == false && sending_ == true) {
// Trigger RTCP bye
sendRTCPBye = true;
}
}
sending_ = sending;
}
if (sendRTCPBye)
return SendRTCP(feedback_state, kRtcpBye);
return 0;
}
bool RTCPSender::REMB() const {
rtc::CritScope lock(&critical_section_rtcp_sender_);
return remb_enabled_;
}
void RTCPSender::SetREMBStatus(bool enable) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
remb_enabled_ = enable;
if (!enable) {
// Stop sending remb each report until it is reenabled and remb data set.
ConsumeFlag(kRtcpRemb, true);
}
}
void RTCPSender::SetREMBData(uint32_t bitrate,
const std::vector<uint32_t>& ssrcs) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
remb_bitrate_ = bitrate;
remb_ssrcs_ = ssrcs;
if (remb_enabled_)
SetFlag(kRtcpRemb, false);
// Send a REMB immediately if we have a new REMB. The frequency of REMBs is
// throttled by the caller.
next_time_to_send_rtcp_ = clock_->TimeInMilliseconds();
}
bool RTCPSender::TMMBR() const {
rtc::CritScope lock(&critical_section_rtcp_sender_);
return IsFlagPresent(RTCPPacketType::kRtcpTmmbr);
}
void RTCPSender::SetTMMBRStatus(bool enable) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
if (enable) {
SetFlag(RTCPPacketType::kRtcpTmmbr, false);
} else {
ConsumeFlag(RTCPPacketType::kRtcpTmmbr, true);
}
}
void RTCPSender::SetMaxRtpPacketSize(size_t max_packet_size) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
max_packet_size_ = max_packet_size;
}
void RTCPSender::SetTimestampOffset(uint32_t timestamp_offset) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
timestamp_offset_ = timestamp_offset;
}
void RTCPSender::SetLastRtpTime(uint32_t rtp_timestamp,
int64_t capture_time_ms) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
last_rtp_timestamp_ = rtp_timestamp;
if (capture_time_ms < 0) {
// We don't currently get a capture time from VoiceEngine.
last_frame_capture_time_ms_ = clock_->TimeInMilliseconds();
} else {
last_frame_capture_time_ms_ = capture_time_ms;
}
}
uint32_t RTCPSender::SSRC() const {
rtc::CritScope lock(&critical_section_rtcp_sender_);
return ssrc_;
}
void RTCPSender::SetSSRC(uint32_t ssrc) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
if (ssrc_ != 0) {
// not first SetSSRC, probably due to a collision
// schedule a new RTCP report
// make sure that we send a RTP packet
next_time_to_send_rtcp_ = clock_->TimeInMilliseconds() + 100;
}
ssrc_ = ssrc;
}
void RTCPSender::SetRemoteSSRC(uint32_t ssrc) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
remote_ssrc_ = ssrc;
}
int32_t RTCPSender::SetCNAME(const char* c_name) {
if (!c_name)
return -1;
RTC_DCHECK_LT(strlen(c_name), RTCP_CNAME_SIZE);
rtc::CritScope lock(&critical_section_rtcp_sender_);
cname_ = c_name;
return 0;
}
int32_t RTCPSender::AddMixedCNAME(uint32_t SSRC, const char* c_name) {
RTC_DCHECK(c_name);
RTC_DCHECK_LT(strlen(c_name), RTCP_CNAME_SIZE);
rtc::CritScope lock(&critical_section_rtcp_sender_);
// One spot is reserved for ssrc_/cname_.
// TODO(danilchap): Add support for more than 30 contributes by sending
// several sdes packets.
if (csrc_cnames_.size() >= rtcp::Sdes::kMaxNumberOfChunks - 1)
return -1;
csrc_cnames_[SSRC] = c_name;
return 0;
}
int32_t RTCPSender::RemoveMixedCNAME(uint32_t SSRC) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
auto it = csrc_cnames_.find(SSRC);
if (it == csrc_cnames_.end())
return -1;
csrc_cnames_.erase(it);
return 0;
}
bool RTCPSender::TimeToSendRTCPReport(bool sendKeyframeBeforeRTP) const {
/*
For audio we use a fix 5 sec interval
For video we use 1 sec interval fo a BW smaller than 360 kbit/s,
technicaly we break the max 5% RTCP BW for video below 10 kbit/s but
that should be extremely rare
From RFC 3550
MAX RTCP BW is 5% if the session BW
A send report is approximately 65 bytes inc CNAME
A receiver report is approximately 28 bytes
The RECOMMENDED value for the reduced minimum in seconds is 360
divided by the session bandwidth in kilobits/second. This minimum
is smaller than 5 seconds for bandwidths greater than 72 kb/s.
If the participant has not yet sent an RTCP packet (the variable
initial is true), the constant Tmin is set to 2.5 seconds, else it
is set to 5 seconds.
The interval between RTCP packets is varied randomly over the
range [0.5,1.5] times the calculated interval to avoid unintended
synchronization of all participants
if we send
If the participant is a sender (we_sent true), the constant C is
set to the average RTCP packet size (avg_rtcp_size) divided by 25%
of the RTCP bandwidth (rtcp_bw), and the constant n is set to the
number of senders.
if we receive only
If we_sent is not true, the constant C is set
to the average RTCP packet size divided by 75% of the RTCP
bandwidth. The constant n is set to the number of receivers
(members - senders). If the number of senders is greater than
25%, senders and receivers are treated together.
reconsideration NOT required for peer-to-peer
"timer reconsideration" is
employed. This algorithm implements a simple back-off mechanism
which causes users to hold back RTCP packet transmission if the
group sizes are increasing.
n = number of members
C = avg_size/(rtcpBW/4)
3. The deterministic calculated interval Td is set to max(Tmin, n*C).
4. The calculated interval T is set to a number uniformly distributed
between 0.5 and 1.5 times the deterministic calculated interval.
5. The resulting value of T is divided by e-3/2=1.21828 to compensate
for the fact that the timer reconsideration algorithm converges to
a value of the RTCP bandwidth below the intended average
*/
int64_t now = clock_->TimeInMilliseconds();
rtc::CritScope lock(&critical_section_rtcp_sender_);
if (method_ == RtcpMode::kOff)
return false;
if (!audio_ && sendKeyframeBeforeRTP) {
// for video key-frames we want to send the RTCP before the large key-frame
// if we have a 100 ms margin
now += RTCP_SEND_BEFORE_KEY_FRAME_MS;
}
if (now >= next_time_to_send_rtcp_) {
return true;
} else if (now < 0x0000ffff &&
next_time_to_send_rtcp_ > 0xffff0000) { // 65 sec margin
// wrap
return true;
}
return false;
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildSR(const RtcpContext& ctx) {
// Timestamp shouldn't be estimated before first media frame.
RTC_DCHECK_GE(last_frame_capture_time_ms_, 0);
// The timestamp of this RTCP packet should be estimated as the timestamp of
// the frame being captured at this moment. We are calculating that
// timestamp as the last frame's timestamp + the time since the last frame
// was captured.
uint32_t rtp_rate =
(audio_ ? kBogusRtpRateForAudioRtcp : kVideoPayloadTypeFrequency) / 1000;
uint32_t rtp_timestamp =
timestamp_offset_ + last_rtp_timestamp_ +
(clock_->TimeInMilliseconds() - last_frame_capture_time_ms_) * rtp_rate;
rtcp::SenderReport* report = new rtcp::SenderReport();
report->SetSenderSsrc(ssrc_);
report->SetNtp(ctx.now_);
report->SetRtpTimestamp(rtp_timestamp);
report->SetPacketCount(ctx.feedback_state_.packets_sent);
report->SetOctetCount(ctx.feedback_state_.media_bytes_sent);
report->SetReportBlocks(CreateReportBlocks(ctx.feedback_state_));
return std::unique_ptr<rtcp::RtcpPacket>(report);
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildSDES(
const RtcpContext& ctx) {
size_t length_cname = cname_.length();
RTC_CHECK_LT(length_cname, RTCP_CNAME_SIZE);
rtcp::Sdes* sdes = new rtcp::Sdes();
sdes->AddCName(ssrc_, cname_);
for (const auto& it : csrc_cnames_)
RTC_CHECK(sdes->AddCName(it.first, it.second));
return std::unique_ptr<rtcp::RtcpPacket>(sdes);
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildRR(const RtcpContext& ctx) {
rtcp::ReceiverReport* report = new rtcp::ReceiverReport();
report->SetSenderSsrc(ssrc_);
report->SetReportBlocks(CreateReportBlocks(ctx.feedback_state_));
return std::unique_ptr<rtcp::RtcpPacket>(report);
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildPLI(const RtcpContext& ctx) {
rtcp::Pli* pli = new rtcp::Pli();
pli->SetSenderSsrc(ssrc_);
pli->SetMediaSsrc(remote_ssrc_);
TRACE_EVENT_INSTANT0(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"),
"RTCPSender::PLI");
++packet_type_counter_.pli_packets;
TRACE_COUNTER_ID1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RTCP_PLICount",
ssrc_, packet_type_counter_.pli_packets);
return std::unique_ptr<rtcp::RtcpPacket>(pli);
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildFIR(const RtcpContext& ctx) {
++sequence_number_fir_;
rtcp::Fir* fir = new rtcp::Fir();
fir->SetSenderSsrc(ssrc_);
fir->AddRequestTo(remote_ssrc_, sequence_number_fir_);
TRACE_EVENT_INSTANT0(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"),
"RTCPSender::FIR");
++packet_type_counter_.fir_packets;
TRACE_COUNTER_ID1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RTCP_FIRCount",
ssrc_, packet_type_counter_.fir_packets);
return std::unique_ptr<rtcp::RtcpPacket>(fir);
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildREMB(
const RtcpContext& ctx) {
rtcp::Remb* remb = new rtcp::Remb();
remb->SetSenderSsrc(ssrc_);
remb->SetBitrateBps(remb_bitrate_);
remb->SetSsrcs(remb_ssrcs_);
TRACE_EVENT_INSTANT0(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"),
"RTCPSender::REMB");
return std::unique_ptr<rtcp::RtcpPacket>(remb);
}
void RTCPSender::SetTargetBitrate(unsigned int target_bitrate) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
tmmbr_send_bps_ = target_bitrate;
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildTMMBR(
const RtcpContext& ctx) {
if (ctx.feedback_state_.module == nullptr)
return nullptr;
// Before sending the TMMBR check the received TMMBN, only an owner is
// allowed to raise the bitrate:
// * If the sender is an owner of the TMMBN -> send TMMBR
// * If not an owner but the TMMBR would enter the TMMBN -> send TMMBR
// get current bounding set from RTCP receiver
bool tmmbr_owner = false;
// holding critical_section_rtcp_sender_ while calling RTCPreceiver which
// will accuire criticalSectionRTCPReceiver_ is a potental deadlock but
// since RTCPreceiver is not doing the reverse we should be fine
std::vector<rtcp::TmmbItem> candidates =
ctx.feedback_state_.module->BoundingSet(&tmmbr_owner);
if (!candidates.empty()) {
for (const auto& candidate : candidates) {
if (candidate.bitrate_bps() == tmmbr_send_bps_ &&
candidate.packet_overhead() == packet_oh_send_) {
// Do not send the same tuple.
return nullptr;
}
}
if (!tmmbr_owner) {
// Use received bounding set as candidate set.
// Add current tuple.
candidates.emplace_back(ssrc_, tmmbr_send_bps_, packet_oh_send_);
// Find bounding set.
std::vector<rtcp::TmmbItem> bounding =
TMMBRHelp::FindBoundingSet(std::move(candidates));
tmmbr_owner = TMMBRHelp::IsOwner(bounding, ssrc_);
if (!tmmbr_owner) {
// Did not enter bounding set, no meaning to send this request.
return nullptr;
}
}
}
if (!tmmbr_send_bps_)
return nullptr;
rtcp::Tmmbr* tmmbr = new rtcp::Tmmbr();
tmmbr->SetSenderSsrc(ssrc_);
rtcp::TmmbItem request;
request.set_ssrc(remote_ssrc_);
request.set_bitrate_bps(tmmbr_send_bps_);
request.set_packet_overhead(packet_oh_send_);
tmmbr->AddTmmbr(request);
return std::unique_ptr<rtcp::RtcpPacket>(tmmbr);
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildTMMBN(
const RtcpContext& ctx) {
rtcp::Tmmbn* tmmbn = new rtcp::Tmmbn();
tmmbn->SetSenderSsrc(ssrc_);
for (const rtcp::TmmbItem& tmmbr : tmmbn_to_send_) {
if (tmmbr.bitrate_bps() > 0) {
tmmbn->AddTmmbr(tmmbr);
}
}
return std::unique_ptr<rtcp::RtcpPacket>(tmmbn);
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildAPP(const RtcpContext& ctx) {
rtcp::App* app = new rtcp::App();
app->SetSsrc(ssrc_);
app->SetSubType(app_sub_type_);
app->SetName(app_name_);
app->SetData(app_data_.get(), app_length_);
return std::unique_ptr<rtcp::RtcpPacket>(app);
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildNACK(
const RtcpContext& ctx) {
rtcp::Nack* nack = new rtcp::Nack();
nack->SetSenderSsrc(ssrc_);
nack->SetMediaSsrc(remote_ssrc_);
nack->SetPacketIds(ctx.nack_list_, ctx.nack_size_);
// Report stats.
NACKStringBuilder stringBuilder;
for (int idx = 0; idx < ctx.nack_size_; ++idx) {
stringBuilder.PushNACK(ctx.nack_list_[idx]);
nack_stats_.ReportRequest(ctx.nack_list_[idx]);
}
packet_type_counter_.nack_requests = nack_stats_.requests();
packet_type_counter_.unique_nack_requests = nack_stats_.unique_requests();
TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"),
"RTCPSender::NACK", "nacks",
TRACE_STR_COPY(stringBuilder.GetResult().c_str()));
++packet_type_counter_.nack_packets;
TRACE_COUNTER_ID1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RTCP_NACKCount",
ssrc_, packet_type_counter_.nack_packets);
return std::unique_ptr<rtcp::RtcpPacket>(nack);
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildBYE(const RtcpContext& ctx) {
rtcp::Bye* bye = new rtcp::Bye();
bye->SetSenderSsrc(ssrc_);
bye->SetCsrcs(csrcs_);
return std::unique_ptr<rtcp::RtcpPacket>(bye);
}
std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildExtendedReports(
const RtcpContext& ctx) {
std::unique_ptr<rtcp::ExtendedReports> xr(new rtcp::ExtendedReports());
xr->SetSenderSsrc(ssrc_);
if (!sending_ && xr_send_receiver_reference_time_enabled_) {
rtcp::Rrtr rrtr;
rrtr.SetNtp(ctx.now_);
xr->SetRrtr(rrtr);
}
if (ctx.feedback_state_.has_last_xr_rr) {
xr->AddDlrrItem(ctx.feedback_state_.last_xr_rr);
}
if (video_bitrate_allocation_) {
rtcp::TargetBitrate target_bitrate;
for (int sl = 0; sl < kMaxSpatialLayers; ++sl) {
for (int tl = 0; tl < kMaxTemporalStreams; ++tl) {
uint32_t layer_bitrate_bps =
video_bitrate_allocation_->GetBitrate(sl, tl);
if (layer_bitrate_bps > 0)
target_bitrate.AddTargetBitrate(sl, tl, layer_bitrate_bps / 1000);
}
}
xr->SetTargetBitrate(target_bitrate);
video_bitrate_allocation_.reset();
}
if (xr_voip_metric_) {
rtcp::VoipMetric voip;
voip.SetMediaSsrc(remote_ssrc_);
voip.SetVoipMetric(*xr_voip_metric_);
xr_voip_metric_.reset();
xr->SetVoipMetric(voip);
}
return std::move(xr);
}
int32_t RTCPSender::SendRTCP(const FeedbackState& feedback_state,
RTCPPacketType packetType,
int32_t nack_size,
const uint16_t* nack_list) {
return SendCompoundRTCP(
feedback_state, std::set<RTCPPacketType>(&packetType, &packetType + 1),
nack_size, nack_list);
}
int32_t RTCPSender::SendCompoundRTCP(
const FeedbackState& feedback_state,
const std::set<RTCPPacketType>& packet_types,
int32_t nack_size,
const uint16_t* nack_list) {
PacketContainer container(transport_, event_log_);
size_t max_packet_size;
{
rtc::CritScope lock(&critical_section_rtcp_sender_);
if (method_ == RtcpMode::kOff) {
LOG(LS_WARNING) << "Can't send rtcp if it is disabled.";
return -1;
}
// Add all flags as volatile. Non volatile entries will not be overwritten.
// All new volatile flags added will be consumed by the end of this call.
SetFlags(packet_types, true);
// Prevent sending streams to send SR before any media has been sent.
const bool can_calculate_rtp_timestamp = (last_frame_capture_time_ms_ >= 0);
if (!can_calculate_rtp_timestamp) {
bool consumed_sr_flag = ConsumeFlag(kRtcpSr);
bool consumed_report_flag = sending_ && ConsumeFlag(kRtcpReport);
bool sender_report = consumed_report_flag || consumed_sr_flag;
if (sender_report && AllVolatileFlagsConsumed()) {
// This call was for Sender Report and nothing else.
return 0;
}
if (sending_ && method_ == RtcpMode::kCompound) {
// Not allowed to send any RTCP packet without sender report.
return -1;
}
}
if (packet_type_counter_.first_packet_time_ms == -1)
packet_type_counter_.first_packet_time_ms = clock_->TimeInMilliseconds();
// We need to send our NTP even if we haven't received any reports.
RtcpContext context(feedback_state, nack_size, nack_list,
clock_->CurrentNtpTime());
PrepareReport(feedback_state);
std::unique_ptr<rtcp::RtcpPacket> packet_bye;
auto it = report_flags_.begin();
while (it != report_flags_.end()) {
auto builder_it = builders_.find(it->type);
RTC_DCHECK(builder_it != builders_.end())
<< "Could not find builder for packet type " << it->type;
if (it->is_volatile) {
report_flags_.erase(it++);
} else {
++it;
}
BuilderFunc func = builder_it->second;
std::unique_ptr<rtcp::RtcpPacket> packet = (this->*func)(context);
if (packet.get() == nullptr)
return -1;
// If there is a BYE, don't append now - save it and append it
// at the end later.
if (builder_it->first == kRtcpBye) {
packet_bye = std::move(packet);
} else {
container.Append(packet.release());
}
}
// Append the BYE now at the end
if (packet_bye) {
container.Append(packet_bye.release());
}
if (packet_type_counter_observer_ != nullptr) {
packet_type_counter_observer_->RtcpPacketTypesCounterUpdated(
remote_ssrc_, packet_type_counter_);
}
RTC_DCHECK(AllVolatileFlagsConsumed());
max_packet_size = max_packet_size_;
}
size_t bytes_sent = container.SendPackets(max_packet_size);
return bytes_sent == 0 ? -1 : 0;
}
void RTCPSender::PrepareReport(const FeedbackState& feedback_state) {
bool generate_report;
if (IsFlagPresent(kRtcpSr) || IsFlagPresent(kRtcpRr)) {
// Report type already explicitly set, don't automatically populate.
generate_report = true;
RTC_DCHECK(ConsumeFlag(kRtcpReport) == false);
} else {
generate_report =
(ConsumeFlag(kRtcpReport) && method_ == RtcpMode::kReducedSize) ||
method_ == RtcpMode::kCompound;
if (generate_report)
SetFlag(sending_ ? kRtcpSr : kRtcpRr, true);
}
if (IsFlagPresent(kRtcpSr) || (IsFlagPresent(kRtcpRr) && !cname_.empty()))
SetFlag(kRtcpSdes, true);
if (generate_report) {
if ((!sending_ && xr_send_receiver_reference_time_enabled_) ||
feedback_state.has_last_xr_rr || video_bitrate_allocation_) {
SetFlag(kRtcpAnyExtendedReports, true);
}
// generate next time to send an RTCP report
uint32_t minIntervalMs = RTCP_INTERVAL_AUDIO_MS;
if (!audio_) {
if (sending_) {
// Calculate bandwidth for video; 360 / send bandwidth in kbit/s.
uint32_t send_bitrate_kbit = feedback_state.send_bitrate / 1000;
if (send_bitrate_kbit != 0)
minIntervalMs = 360000 / send_bitrate_kbit;
}
if (minIntervalMs > RTCP_INTERVAL_VIDEO_MS)
minIntervalMs = RTCP_INTERVAL_VIDEO_MS;
}
// The interval between RTCP packets is varied randomly over the
// range [1/2,3/2] times the calculated interval.
uint32_t timeToNext =
random_.Rand(minIntervalMs * 1 / 2, minIntervalMs * 3 / 2);
next_time_to_send_rtcp_ = clock_->TimeInMilliseconds() + timeToNext;
// RtcpSender expected to be used for sending either just sender reports
// or just receiver reports.
RTC_DCHECK(!(IsFlagPresent(kRtcpSr) && IsFlagPresent(kRtcpRr)));
}
}
std::vector<rtcp::ReportBlock> RTCPSender::CreateReportBlocks(
const FeedbackState& feedback_state) {
std::vector<rtcp::ReportBlock> result;
if (!receive_statistics_)
return result;
// TODO(danilchap): Support sending more than |RTCP_MAX_REPORT_BLOCKS| per
// compound rtcp packet when single rtcp module is used for multiple media
// streams.
result = receive_statistics_->RtcpReportBlocks(RTCP_MAX_REPORT_BLOCKS);
if (!result.empty() && ((feedback_state.last_rr_ntp_secs != 0) ||
(feedback_state.last_rr_ntp_frac != 0))) {
// Get our NTP as late as possible to avoid a race.
uint32_t now = CompactNtp(clock_->CurrentNtpTime());
uint32_t receive_time = feedback_state.last_rr_ntp_secs & 0x0000FFFF;
receive_time <<= 16;
receive_time += (feedback_state.last_rr_ntp_frac & 0xffff0000) >> 16;
uint32_t delay_since_last_sr = now - receive_time;
// TODO(danilchap): Instead of setting same value on all report blocks,
// set only when media_ssrc match sender ssrc of the sender report
// remote times were taken from.
for (auto& report_block : result) {
report_block.SetLastSr(feedback_state.remote_sr);
report_block.SetDelayLastSr(delay_since_last_sr);
}
}
return result;
}
void RTCPSender::SetCsrcs(const std::vector<uint32_t>& csrcs) {
RTC_DCHECK_LE(csrcs.size(), kRtpCsrcSize);
rtc::CritScope lock(&critical_section_rtcp_sender_);
csrcs_ = csrcs;
}
int32_t RTCPSender::SetApplicationSpecificData(uint8_t subType,
uint32_t name,
const uint8_t* data,
uint16_t length) {
if (length % 4 != 0) {
LOG(LS_ERROR) << "Failed to SetApplicationSpecificData.";
return -1;
}
rtc::CritScope lock(&critical_section_rtcp_sender_);
SetFlag(kRtcpApp, true);
app_sub_type_ = subType;
app_name_ = name;
app_data_.reset(new uint8_t[length]);
app_length_ = length;
memcpy(app_data_.get(), data, length);
return 0;
}
// TODO(sprang): Remove support for VoIP metrics? (Not used in receiver.)
int32_t RTCPSender::SetRTCPVoIPMetrics(const RTCPVoIPMetric* VoIPMetric) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
xr_voip_metric_.emplace(*VoIPMetric);
SetFlag(kRtcpAnyExtendedReports, true);
return 0;
}
void RTCPSender::SendRtcpXrReceiverReferenceTime(bool enable) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
xr_send_receiver_reference_time_enabled_ = enable;
}
bool RTCPSender::RtcpXrReceiverReferenceTime() const {
rtc::CritScope lock(&critical_section_rtcp_sender_);
return xr_send_receiver_reference_time_enabled_;
}
void RTCPSender::SetTmmbn(std::vector<rtcp::TmmbItem> bounding_set) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
tmmbn_to_send_ = std::move(bounding_set);
SetFlag(kRtcpTmmbn, true);
}
void RTCPSender::SetFlag(uint32_t type, bool is_volatile) {
if (type & kRtcpAnyExtendedReports) {
report_flags_.insert(ReportFlag(kRtcpAnyExtendedReports, is_volatile));
} else {
report_flags_.insert(ReportFlag(type, is_volatile));
}
}
void RTCPSender::SetFlags(const std::set<RTCPPacketType>& types,
bool is_volatile) {
for (RTCPPacketType type : types)
SetFlag(type, is_volatile);
}
bool RTCPSender::IsFlagPresent(uint32_t type) const {
return report_flags_.find(ReportFlag(type, false)) != report_flags_.end();
}
bool RTCPSender::ConsumeFlag(uint32_t type, bool forced) {
auto it = report_flags_.find(ReportFlag(type, false));
if (it == report_flags_.end())
return false;
if (it->is_volatile || forced)
report_flags_.erase((it));
return true;
}
bool RTCPSender::AllVolatileFlagsConsumed() const {
for (const ReportFlag& flag : report_flags_) {
if (flag.is_volatile)
return false;
}
return true;
}
void RTCPSender::SetVideoBitrateAllocation(const BitrateAllocation& bitrate) {
rtc::CritScope lock(&critical_section_rtcp_sender_);
video_bitrate_allocation_.emplace(bitrate);
SetFlag(kRtcpAnyExtendedReports, true);
}
bool RTCPSender::SendFeedbackPacket(const rtcp::TransportFeedback& packet) {
class Sender : public rtcp::RtcpPacket::PacketReadyCallback {
public:
Sender(Transport* transport, RtcEventLog* event_log)
: transport_(transport), event_log_(event_log), send_failure_(false) {}
void OnPacketReady(uint8_t* data, size_t length) override {
if (transport_->SendRtcp(data, length)) {
if (event_log_) {
event_log_->LogRtcpPacket(kOutgoingPacket, data, length);
}
} else {
send_failure_ = true;
}
}
Transport* const transport_;
RtcEventLog* const event_log_;
bool send_failure_;
// TODO(terelius): We would like to
// RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(Sender);
// but we can't because of an incorrect warning (C4822) in MVS 2013.
} sender(transport_, event_log_);
size_t max_packet_size;
{
rtc::CritScope lock(&critical_section_rtcp_sender_);
if (method_ == RtcpMode::kOff)
return false;
max_packet_size = max_packet_size_;
}
RTC_DCHECK_LE(max_packet_size, IP_PACKET_SIZE);
uint8_t buffer[IP_PACKET_SIZE];
return packet.BuildExternalBuffer(buffer, max_packet_size, &sender) &&
!sender.send_failure_;
}
} // namespace webrtc