blob: 9218a3a0e8349554812df366c8442f0f1ecbec3f [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <arm_neon.h>
#include "webrtc/modules/audio_coding/codecs/isac/fix/source/codec.h"
#include "webrtc/modules/audio_coding/codecs/isac/fix/source/settings.h"
// Contains a function for the core loop in the normalized lattice MA
// filter routine for iSAC codec, optimized for ARM Neon platform.
// It does:
// for 0 <= n < HALF_SUBFRAMELEN - 1:
// *ptr2 = input2 * ((*ptr2) + input0 * (*ptr0));
// *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
// Output is not bit-exact with the reference C code, due to the replacement
// of WEBRTC_SPL_MUL_16_32_RSFT15 and LATTICE_MUL_32_32_RSFT16 with Neon
// instructions. The difference should not be bigger than 1.
void WebRtcIsacfix_FilterMaLoopNeon(int16_t input0, // Filter coefficient
int16_t input1, // Filter coefficient
int32_t input2, // Inverse coefficient
int32_t* ptr0, // Sample buffer
int32_t* ptr1, // Sample buffer
int32_t* ptr2) // Sample buffer
{
int n = 0;
int loop = (HALF_SUBFRAMELEN - 1) >> 3;
int loop_tail = (HALF_SUBFRAMELEN - 1) & 0x7;
int32x4_t input0_v = vdupq_n_s32((int32_t)input0 << 16);
int32x4_t input1_v = vdupq_n_s32((int32_t)input1 << 16);
int32x4_t input2_v = vdupq_n_s32(input2);
int32x4_t tmp0a, tmp1a, tmp2a, tmp3a;
int32x4_t tmp0b, tmp1b, tmp2b, tmp3b;
int32x4_t ptr0va, ptr1va, ptr2va;
int32x4_t ptr0vb, ptr1vb, ptr2vb;
int64x2_t tmp2al_low, tmp2al_high, tmp2bl_low, tmp2bl_high;
// Unroll to process 8 samples at once.
for (n = 0; n < loop; n++) {
ptr0va = vld1q_s32(ptr0);
ptr0vb = vld1q_s32(ptr0 + 4);
ptr0 += 8;
ptr2va = vld1q_s32(ptr2);
ptr2vb = vld1q_s32(ptr2 + 4);
// Calculate tmp0 = (*ptr0) * input0.
tmp0a = vqrdmulhq_s32(ptr0va, input0_v);
tmp0b = vqrdmulhq_s32(ptr0vb, input0_v);
// Calculate tmp1 = (*ptr0) * input1.
tmp1a = vqrdmulhq_s32(ptr0va, input1_v);
tmp1b = vqrdmulhq_s32(ptr0vb, input1_v);
// Calculate tmp2 = tmp0 + *(ptr2).
tmp2a = vaddq_s32(tmp0a, ptr2va);
tmp2b = vaddq_s32(tmp0b, ptr2vb);
// Calculate *ptr2 = input2 * tmp2.
tmp2al_low = vmull_s32(vget_low_s32(tmp2a), vget_low_s32(input2_v));
#if defined(WEBRTC_ARCH_ARM64)
tmp2al_high = vmull_high_s32(tmp2a, input2_v);
#else
tmp2al_high = vmull_s32(vget_high_s32(tmp2a), vget_high_s32(input2_v));
#endif
ptr2va = vcombine_s32(vrshrn_n_s64(tmp2al_low, 16),
vrshrn_n_s64(tmp2al_high, 16));
tmp2bl_low = vmull_s32(vget_low_s32(tmp2b), vget_low_s32(input2_v));
#if defined(WEBRTC_ARCH_ARM64)
tmp2bl_high = vmull_high_s32(tmp2b, input2_v);
#else
tmp2bl_high = vmull_s32(vget_high_s32(tmp2b), vget_high_s32(input2_v));
#endif
ptr2vb = vcombine_s32(vrshrn_n_s64(tmp2bl_low, 16),
vrshrn_n_s64(tmp2bl_high, 16));
vst1q_s32(ptr2, ptr2va);
vst1q_s32(ptr2 + 4, ptr2vb);
ptr2 += 8;
// Calculate tmp3 = ptr2v * input0.
tmp3a = vqrdmulhq_s32(ptr2va, input0_v);
tmp3b = vqrdmulhq_s32(ptr2vb, input0_v);
// Calculate *ptr1 = tmp1 + tmp3.
ptr1va = vaddq_s32(tmp1a, tmp3a);
ptr1vb = vaddq_s32(tmp1b, tmp3b);
vst1q_s32(ptr1, ptr1va);
vst1q_s32(ptr1 + 4, ptr1vb);
ptr1 += 8;
}
// Process four more samples.
if (loop_tail & 0x4) {
ptr0va = vld1q_s32(ptr0);
ptr2va = vld1q_s32(ptr2);
ptr0 += 4;
// Calculate tmp0 = (*ptr0) * input0.
tmp0a = vqrdmulhq_s32(ptr0va, input0_v);
// Calculate tmp1 = (*ptr0) * input1.
tmp1a = vqrdmulhq_s32(ptr0va, input1_v);
// Calculate tmp2 = tmp0 + *(ptr2).
tmp2a = vaddq_s32(tmp0a, ptr2va);
// Calculate *ptr2 = input2 * tmp2.
tmp2al_low = vmull_s32(vget_low_s32(tmp2a), vget_low_s32(input2_v));
#if defined(WEBRTC_ARCH_ARM64)
tmp2al_high = vmull_high_s32(tmp2a, input2_v);
#else
tmp2al_high = vmull_s32(vget_high_s32(tmp2a), vget_high_s32(input2_v));
#endif
ptr2va = vcombine_s32(vrshrn_n_s64(tmp2al_low, 16),
vrshrn_n_s64(tmp2al_high, 16));
vst1q_s32(ptr2, ptr2va);
ptr2 += 4;
// Calculate tmp3 = *(ptr2) * input0.
tmp3a = vqrdmulhq_s32(ptr2va, input0_v);
// Calculate *ptr1 = tmp1 + tmp3.
ptr1va = vaddq_s32(tmp1a, tmp3a);
vst1q_s32(ptr1, ptr1va);
ptr1 += 4;
}
// Process two more samples.
if (loop_tail & 0x2) {
int32x2_t ptr0v_tail, ptr2v_tail, ptr1v_tail;
int32x2_t tmp0_tail, tmp1_tail, tmp2_tail, tmp3_tail;
int64x2_t tmp2l_tail;
ptr0v_tail = vld1_s32(ptr0);
ptr2v_tail = vld1_s32(ptr2);
ptr0 += 2;
// Calculate tmp0 = (*ptr0) * input0.
tmp0_tail = vqrdmulh_s32(ptr0v_tail, vget_low_s32(input0_v));
// Calculate tmp1 = (*ptr0) * input1.
tmp1_tail = vqrdmulh_s32(ptr0v_tail, vget_low_s32(input1_v));
// Calculate tmp2 = tmp0 + *(ptr2).
tmp2_tail = vadd_s32(tmp0_tail, ptr2v_tail);
// Calculate *ptr2 = input2 * tmp2.
tmp2l_tail = vmull_s32(tmp2_tail, vget_low_s32(input2_v));
ptr2v_tail = vrshrn_n_s64(tmp2l_tail, 16);
vst1_s32(ptr2, ptr2v_tail);
ptr2 += 2;
// Calculate tmp3 = *(ptr2) * input0.
tmp3_tail = vqrdmulh_s32(ptr2v_tail, vget_low_s32(input0_v));
// Calculate *ptr1 = tmp1 + tmp3.
ptr1v_tail = vadd_s32(tmp1_tail, tmp3_tail);
vst1_s32(ptr1, ptr1v_tail);
ptr1 += 2;
}
// Process one more sample.
if (loop_tail & 0x1) {
int16_t t16a = (int16_t)(input2 >> 16);
int16_t t16b = (int16_t)input2;
if (t16b < 0) t16a++;
int32_t tmp32a;
int32_t tmp32b;
// Calculate *ptr2 = input2 * (*ptr2 + input0 * (*ptr0)).
tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr0);
tmp32b = *ptr2 + tmp32a;
*ptr2 = (int32_t)(WEBRTC_SPL_MUL(t16a, tmp32b) +
(WEBRTC_SPL_MUL_16_32_RSFT16(t16b, tmp32b)));
// Calculate *ptr1 = input1 * (*ptr0) + input0 * (*ptr2).
tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input1, *ptr0);
tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr2);
*ptr1 = tmp32a + tmp32b;
}
}