blob: 362610a1c442dda4d5d838fef876727eb370a898 [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* WebRtcIsacfix_kTransform.c
*
* Transform functions
*
*/
#include "webrtc/modules/audio_coding/codecs/isac/fix/source/codec.h"
#include "webrtc/modules/audio_coding/codecs/isac/fix/source/fft.h"
#include "webrtc/modules/audio_coding/codecs/isac/fix/source/settings.h"
/* Tables are defined in transform_tables.c file or ARM assembly files. */
/* Cosine table 1 in Q14 */
extern const int16_t WebRtcIsacfix_kCosTab1[FRAMESAMPLES/2];
/* Sine table 1 in Q14 */
extern const int16_t WebRtcIsacfix_kSinTab1[FRAMESAMPLES/2];
/* Sine table 2 in Q14 */
extern const int16_t WebRtcIsacfix_kSinTab2[FRAMESAMPLES/4];
void WebRtcIsacfix_Time2SpecC(int16_t *inre1Q9,
int16_t *inre2Q9,
int16_t *outreQ7,
int16_t *outimQ7)
{
int k;
int32_t tmpreQ16[FRAMESAMPLES/2], tmpimQ16[FRAMESAMPLES/2];
int16_t tmp1rQ14, tmp1iQ14;
int32_t xrQ16, xiQ16, yrQ16, yiQ16;
int32_t v1Q16, v2Q16;
int16_t factQ19, sh;
/* Multiply with complex exponentials and combine into one complex vector */
factQ19 = 16921; // 0.5/sqrt(240) in Q19 is round(.5/sqrt(240)*(2^19)) = 16921
for (k = 0; k < FRAMESAMPLES/2; k++) {
tmp1rQ14 = WebRtcIsacfix_kCosTab1[k];
tmp1iQ14 = WebRtcIsacfix_kSinTab1[k];
xrQ16 = (tmp1rQ14 * inre1Q9[k] + tmp1iQ14 * inre2Q9[k]) >> 7;
xiQ16 = (tmp1rQ14 * inre2Q9[k] - tmp1iQ14 * inre1Q9[k]) >> 7;
// Q-domains below: (Q16*Q19>>16)>>3 = Q16
tmpreQ16[k] = (WEBRTC_SPL_MUL_16_32_RSFT16(factQ19, xrQ16) + 4) >> 3;
tmpimQ16[k] = (WEBRTC_SPL_MUL_16_32_RSFT16(factQ19, xiQ16) + 4) >> 3;
}
xrQ16 = WebRtcSpl_MaxAbsValueW32(tmpreQ16, FRAMESAMPLES/2);
yrQ16 = WebRtcSpl_MaxAbsValueW32(tmpimQ16, FRAMESAMPLES/2);
if (yrQ16>xrQ16) {
xrQ16 = yrQ16;
}
sh = WebRtcSpl_NormW32(xrQ16);
sh = sh-24; //if sh becomes >=0, then we should shift sh steps to the left, and the domain will become Q(16+sh)
//if sh becomes <0, then we should shift -sh steps to the right, and the domain will become Q(16+sh)
//"Fastest" vectors
if (sh>=0) {
for (k=0; k<FRAMESAMPLES/2; k++) {
inre1Q9[k] = (int16_t)(tmpreQ16[k] << sh); // Q(16+sh)
inre2Q9[k] = (int16_t)(tmpimQ16[k] << sh); // Q(16+sh)
}
} else {
int32_t round = 1 << (-sh - 1);
for (k=0; k<FRAMESAMPLES/2; k++) {
inre1Q9[k] = (int16_t)((tmpreQ16[k] + round) >> -sh); // Q(16+sh)
inre2Q9[k] = (int16_t)((tmpimQ16[k] + round) >> -sh); // Q(16+sh)
}
}
/* Get DFT */
WebRtcIsacfix_FftRadix16Fastest(inre1Q9, inre2Q9, -1); // real call
//"Fastest" vectors
if (sh>=0) {
for (k=0; k<FRAMESAMPLES/2; k++) {
tmpreQ16[k] = inre1Q9[k] >> sh; // Q(16+sh) -> Q16
tmpimQ16[k] = inre2Q9[k] >> sh; // Q(16+sh) -> Q16
}
} else {
for (k=0; k<FRAMESAMPLES/2; k++) {
tmpreQ16[k] = inre1Q9[k] << -sh; // Q(16+sh) -> Q16
tmpimQ16[k] = inre2Q9[k] << -sh; // Q(16+sh) -> Q16
}
}
/* Use symmetry to separate into two complex vectors and center frames in time around zero */
for (k = 0; k < FRAMESAMPLES/4; k++) {
xrQ16 = tmpreQ16[k] + tmpreQ16[FRAMESAMPLES/2 - 1 - k];
yiQ16 = -tmpreQ16[k] + tmpreQ16[FRAMESAMPLES/2 - 1 - k];
xiQ16 = tmpimQ16[k] - tmpimQ16[FRAMESAMPLES/2 - 1 - k];
yrQ16 = tmpimQ16[k] + tmpimQ16[FRAMESAMPLES/2 - 1 - k];
tmp1rQ14 = -WebRtcIsacfix_kSinTab2[FRAMESAMPLES/4 - 1 - k];
tmp1iQ14 = WebRtcIsacfix_kSinTab2[k];
v1Q16 = WEBRTC_SPL_MUL_16_32_RSFT14(tmp1rQ14, xrQ16) - WEBRTC_SPL_MUL_16_32_RSFT14(tmp1iQ14, xiQ16);
v2Q16 = WEBRTC_SPL_MUL_16_32_RSFT14(tmp1iQ14, xrQ16) + WEBRTC_SPL_MUL_16_32_RSFT14(tmp1rQ14, xiQ16);
outreQ7[k] = (int16_t)(v1Q16 >> 9);
outimQ7[k] = (int16_t)(v2Q16 >> 9);
v1Q16 = -WEBRTC_SPL_MUL_16_32_RSFT14(tmp1iQ14, yrQ16) - WEBRTC_SPL_MUL_16_32_RSFT14(tmp1rQ14, yiQ16);
v2Q16 = -WEBRTC_SPL_MUL_16_32_RSFT14(tmp1rQ14, yrQ16) + WEBRTC_SPL_MUL_16_32_RSFT14(tmp1iQ14, yiQ16);
// CalcLrIntQ(v1Q16, 9);
outreQ7[FRAMESAMPLES / 2 - 1 - k] = (int16_t)(v1Q16 >> 9);
// CalcLrIntQ(v2Q16, 9);
outimQ7[FRAMESAMPLES / 2 - 1 - k] = (int16_t)(v2Q16 >> 9);
}
}
void WebRtcIsacfix_Spec2TimeC(int16_t *inreQ7, int16_t *inimQ7, int32_t *outre1Q16, int32_t *outre2Q16)
{
int k;
int16_t tmp1rQ14, tmp1iQ14;
int32_t xrQ16, xiQ16, yrQ16, yiQ16;
int32_t tmpInRe, tmpInIm, tmpInRe2, tmpInIm2;
int16_t factQ11;
int16_t sh;
for (k = 0; k < FRAMESAMPLES/4; k++) {
/* Move zero in time to beginning of frames */
tmp1rQ14 = -WebRtcIsacfix_kSinTab2[FRAMESAMPLES/4 - 1 - k];
tmp1iQ14 = WebRtcIsacfix_kSinTab2[k];
tmpInRe = inreQ7[k] * (1 << 9); // Q7 -> Q16
tmpInIm = inimQ7[k] * (1 << 9); // Q7 -> Q16
tmpInRe2 = inreQ7[FRAMESAMPLES / 2 - 1 - k] * (1 << 9); // Q7 -> Q16
tmpInIm2 = inimQ7[FRAMESAMPLES / 2 - 1 - k] * (1 << 9); // Q7 -> Q16
xrQ16 = WEBRTC_SPL_MUL_16_32_RSFT14(tmp1rQ14, tmpInRe) + WEBRTC_SPL_MUL_16_32_RSFT14(tmp1iQ14, tmpInIm);
xiQ16 = WEBRTC_SPL_MUL_16_32_RSFT14(tmp1rQ14, tmpInIm) - WEBRTC_SPL_MUL_16_32_RSFT14(tmp1iQ14, tmpInRe);
yrQ16 = -WEBRTC_SPL_MUL_16_32_RSFT14(tmp1rQ14, tmpInIm2) - WEBRTC_SPL_MUL_16_32_RSFT14(tmp1iQ14, tmpInRe2);
yiQ16 = -WEBRTC_SPL_MUL_16_32_RSFT14(tmp1rQ14, tmpInRe2) + WEBRTC_SPL_MUL_16_32_RSFT14(tmp1iQ14, tmpInIm2);
/* Combine into one vector, z = x + j * y */
outre1Q16[k] = xrQ16 - yiQ16;
outre1Q16[FRAMESAMPLES/2 - 1 - k] = xrQ16 + yiQ16;
outre2Q16[k] = xiQ16 + yrQ16;
outre2Q16[FRAMESAMPLES/2 - 1 - k] = -xiQ16 + yrQ16;
}
/* Get IDFT */
tmpInRe = WebRtcSpl_MaxAbsValueW32(outre1Q16, 240);
tmpInIm = WebRtcSpl_MaxAbsValueW32(outre2Q16, 240);
if (tmpInIm>tmpInRe) {
tmpInRe = tmpInIm;
}
sh = WebRtcSpl_NormW32(tmpInRe);
sh = sh-24; //if sh becomes >=0, then we should shift sh steps to the left, and the domain will become Q(16+sh)
//if sh becomes <0, then we should shift -sh steps to the right, and the domain will become Q(16+sh)
//"Fastest" vectors
if (sh>=0) {
for (k=0; k<240; k++) {
inreQ7[k] = (int16_t)(outre1Q16[k] << sh); // Q(16+sh)
inimQ7[k] = (int16_t)(outre2Q16[k] << sh); // Q(16+sh)
}
} else {
int32_t round = 1 << (-sh - 1);
for (k=0; k<240; k++) {
inreQ7[k] = (int16_t)((outre1Q16[k] + round) >> -sh); // Q(16+sh)
inimQ7[k] = (int16_t)((outre2Q16[k] + round) >> -sh); // Q(16+sh)
}
}
WebRtcIsacfix_FftRadix16Fastest(inreQ7, inimQ7, 1); // real call
//"Fastest" vectors
if (sh>=0) {
for (k=0; k<240; k++) {
outre1Q16[k] = inreQ7[k] >> sh; // Q(16+sh) -> Q16
outre2Q16[k] = inimQ7[k] >> sh; // Q(16+sh) -> Q16
}
} else {
for (k=0; k<240; k++) {
outre1Q16[k] = inreQ7[k] * (1 << -sh); // Q(16+sh) -> Q16
outre2Q16[k] = inimQ7[k] * (1 << -sh); // Q(16+sh) -> Q16
}
}
/* Divide through by the normalizing constant: */
/* scale all values with 1/240, i.e. with 273 in Q16 */
/* 273/65536 ~= 0.0041656 */
/* 1/240 ~= 0.0041666 */
for (k=0; k<240; k++) {
outre1Q16[k] = WEBRTC_SPL_MUL_16_32_RSFT16(273, outre1Q16[k]);
outre2Q16[k] = WEBRTC_SPL_MUL_16_32_RSFT16(273, outre2Q16[k]);
}
/* Demodulate and separate */
factQ11 = 31727; // sqrt(240) in Q11 is round(15.49193338482967*2048) = 31727
for (k = 0; k < FRAMESAMPLES/2; k++) {
tmp1rQ14 = WebRtcIsacfix_kCosTab1[k];
tmp1iQ14 = WebRtcIsacfix_kSinTab1[k];
xrQ16 = WEBRTC_SPL_MUL_16_32_RSFT14(tmp1rQ14, outre1Q16[k]) - WEBRTC_SPL_MUL_16_32_RSFT14(tmp1iQ14, outre2Q16[k]);
xiQ16 = WEBRTC_SPL_MUL_16_32_RSFT14(tmp1rQ14, outre2Q16[k]) + WEBRTC_SPL_MUL_16_32_RSFT14(tmp1iQ14, outre1Q16[k]);
xrQ16 = WEBRTC_SPL_MUL_16_32_RSFT11(factQ11, xrQ16);
xiQ16 = WEBRTC_SPL_MUL_16_32_RSFT11(factQ11, xiQ16);
outre2Q16[k] = xiQ16;
outre1Q16[k] = xrQ16;
}
}