blob: 7bb9e15129af389f38fa2e6de3c5205191583801 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/block_processor.h"
#include "webrtc/api/optional.h"
#include "webrtc/modules/audio_processing/aec3/aec3_common.h"
#include "webrtc/modules/audio_processing/aec3/block_processor_metrics.h"
#include "webrtc/modules/audio_processing/aec3/echo_path_variability.h"
#include "webrtc/modules/audio_processing/logging/apm_data_dumper.h"
#include "webrtc/rtc_base/atomicops.h"
#include "webrtc/rtc_base/constructormagic.h"
namespace webrtc {
namespace {
enum class BlockProcessorApiCall { kCapture, kRender };
class BlockProcessorImpl final : public BlockProcessor {
public:
BlockProcessorImpl(int sample_rate_hz,
std::unique_ptr<RenderDelayBuffer> render_buffer,
std::unique_ptr<RenderDelayController> delay_controller,
std::unique_ptr<EchoRemover> echo_remover);
~BlockProcessorImpl() override;
void ProcessCapture(bool echo_path_gain_change,
bool capture_signal_saturation,
std::vector<std::vector<float>>* capture_block) override;
void BufferRender(const std::vector<std::vector<float>>& block) override;
void UpdateEchoLeakageStatus(bool leakage_detected) override;
private:
static int instance_count_;
bool no_capture_data_received_ = true;
bool no_render_data_received_ = true;
std::unique_ptr<ApmDataDumper> data_dumper_;
const size_t sample_rate_hz_;
std::unique_ptr<RenderDelayBuffer> render_buffer_;
std::unique_ptr<RenderDelayController> delay_controller_;
std::unique_ptr<EchoRemover> echo_remover_;
BlockProcessorMetrics metrics_;
bool render_buffer_overrun_occurred_ = false;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(BlockProcessorImpl);
};
int BlockProcessorImpl::instance_count_ = 0;
BlockProcessorImpl::BlockProcessorImpl(
int sample_rate_hz,
std::unique_ptr<RenderDelayBuffer> render_buffer,
std::unique_ptr<RenderDelayController> delay_controller,
std::unique_ptr<EchoRemover> echo_remover)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
sample_rate_hz_(sample_rate_hz),
render_buffer_(std::move(render_buffer)),
delay_controller_(std::move(delay_controller)),
echo_remover_(std::move(echo_remover)) {
RTC_DCHECK(ValidFullBandRate(sample_rate_hz_));
}
BlockProcessorImpl::~BlockProcessorImpl() = default;
void BlockProcessorImpl::ProcessCapture(
bool echo_path_gain_change,
bool capture_signal_saturation,
std::vector<std::vector<float>>* capture_block) {
RTC_DCHECK(capture_block);
RTC_DCHECK_EQ(NumBandsForRate(sample_rate_hz_), capture_block->size());
RTC_DCHECK_EQ(kBlockSize, (*capture_block)[0].size());
data_dumper_->DumpRaw("aec3_processblock_call_order",
static_cast<int>(BlockProcessorApiCall::kCapture));
data_dumper_->DumpWav("aec3_processblock_capture_input", kBlockSize,
&(*capture_block)[0][0],
LowestBandRate(sample_rate_hz_), 1);
// Do not start processing until render data has been buffered as that will
// cause the buffers to be wrongly aligned.
no_capture_data_received_ = false;
if (no_render_data_received_) {
return;
}
data_dumper_->DumpWav("aec3_processblock_capture_input2", kBlockSize,
&(*capture_block)[0][0],
LowestBandRate(sample_rate_hz_), 1);
bool render_buffer_underrun = false;
if (render_buffer_overrun_occurred_) {
// Reset the render buffers and the alignment functionality when there has
// been a render buffer overrun as the buffer alignment may be noncausal.
delay_controller_->Reset();
render_buffer_->Reset();
}
// Update the render buffers with new render data, filling the buffers with
// empty blocks when there is no render data available.
render_buffer_underrun = !render_buffer_->UpdateBuffers();
// Compute and and apply the render delay required to achieve proper signal
// alignment.
const size_t old_delay = render_buffer_->Delay();
const size_t new_delay = delay_controller_->GetDelay(
render_buffer_->GetDownsampledRenderBuffer(), (*capture_block)[0]);
bool delay_change;
if (new_delay >= kMinEchoPathDelayBlocks) {
render_buffer_->SetDelay(new_delay);
const size_t achieved_delay = render_buffer_->Delay();
delay_change = old_delay != achieved_delay || old_delay != new_delay ||
render_buffer_overrun_occurred_;
// Inform the delay controller of the actually set delay to allow it to
// properly react to a non-feasible delay.
delay_controller_->SetDelay(achieved_delay);
} else {
delay_controller_->Reset();
render_buffer_->Reset();
delay_change = true;
}
// Remove the echo from the capture signal.
echo_remover_->ProcessCapture(
delay_controller_->AlignmentHeadroomSamples(),
EchoPathVariability(echo_path_gain_change, delay_change),
capture_signal_saturation, render_buffer_->GetRenderBuffer(),
capture_block);
// Update the metrics.
metrics_.UpdateCapture(render_buffer_underrun);
render_buffer_overrun_occurred_ = false;
}
void BlockProcessorImpl::BufferRender(
const std::vector<std::vector<float>>& block) {
RTC_DCHECK_EQ(NumBandsForRate(sample_rate_hz_), block.size());
RTC_DCHECK_EQ(kBlockSize, block[0].size());
data_dumper_->DumpRaw("aec3_processblock_call_order",
static_cast<int>(BlockProcessorApiCall::kRender));
data_dumper_->DumpWav("aec3_processblock_render_input", kBlockSize,
&block[0][0], LowestBandRate(sample_rate_hz_), 1);
no_render_data_received_ = false;
// Do not start buffer render data until capture data has been received as
// that data may give a false alignment.
if (no_capture_data_received_) {
return;
}
data_dumper_->DumpWav("aec3_processblock_render_input2", kBlockSize,
&block[0][0], LowestBandRate(sample_rate_hz_), 1);
// Buffer the render data.
render_buffer_overrun_occurred_ = !render_buffer_->Insert(block);
// Update the metrics.
metrics_.UpdateRender(render_buffer_overrun_occurred_);
}
void BlockProcessorImpl::UpdateEchoLeakageStatus(bool leakage_detected) {
echo_remover_->UpdateEchoLeakageStatus(leakage_detected);
}
} // namespace
BlockProcessor* BlockProcessor::Create(
const AudioProcessing::Config::EchoCanceller3& config,
int sample_rate_hz) {
std::unique_ptr<RenderDelayBuffer> render_buffer(
RenderDelayBuffer::Create(NumBandsForRate(sample_rate_hz)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(config, sample_rate_hz));
std::unique_ptr<EchoRemover> echo_remover(
EchoRemover::Create(config, sample_rate_hz));
return Create(config, sample_rate_hz, std::move(render_buffer),
std::move(delay_controller), std::move(echo_remover));
}
BlockProcessor* BlockProcessor::Create(
const AudioProcessing::Config::EchoCanceller3& config,
int sample_rate_hz,
std::unique_ptr<RenderDelayBuffer> render_buffer) {
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(config, sample_rate_hz));
std::unique_ptr<EchoRemover> echo_remover(
EchoRemover::Create(config, sample_rate_hz));
return Create(config, sample_rate_hz, std::move(render_buffer),
std::move(delay_controller), std::move(echo_remover));
}
BlockProcessor* BlockProcessor::Create(
const AudioProcessing::Config::EchoCanceller3& config,
int sample_rate_hz,
std::unique_ptr<RenderDelayBuffer> render_buffer,
std::unique_ptr<RenderDelayController> delay_controller,
std::unique_ptr<EchoRemover> echo_remover) {
return new BlockProcessorImpl(sample_rate_hz, std::move(render_buffer),
std::move(delay_controller),
std::move(echo_remover));
}
} // namespace webrtc