blob: 4995ebf5d36a5efa013edddc1014719e94ada8a2 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* The core AEC algorithm, neon version of speed-critical functions.
*
* Based on aec_core_sse2.c.
*/
#include <arm_neon.h>
#include <math.h>
#include <string.h> // memset
extern "C" {
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
}
#include "webrtc/modules/audio_processing/aec/aec_common.h"
#include "webrtc/modules/audio_processing/aec/aec_core_optimized_methods.h"
#include "webrtc/modules/audio_processing/utility/ooura_fft.h"
namespace webrtc {
enum { kShiftExponentIntoTopMantissa = 8 };
enum { kFloatExponentShift = 23 };
__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
return aRe * bRe - aIm * bIm;
}
__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
return aRe * bIm + aIm * bRe;
}
static void FilterFarNEON(int num_partitions,
int x_fft_buf_block_pos,
float x_fft_buf[2]
[kExtendedNumPartitions * PART_LEN1],
float h_fft_buf[2]
[kExtendedNumPartitions * PART_LEN1],
float y_fft[2][PART_LEN1]) {
int i;
for (i = 0; i < num_partitions; i++) {
int j;
int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
int pos = i * PART_LEN1;
// Check for wrap
if (i + x_fft_buf_block_pos >= num_partitions) {
xPos -= num_partitions * PART_LEN1;
}
// vectorized code (four at once)
for (j = 0; j + 3 < PART_LEN1; j += 4) {
const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]);
const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]);
const float32x4_t h_fft_buf_re = vld1q_f32(&h_fft_buf[0][pos + j]);
const float32x4_t h_fft_buf_im = vld1q_f32(&h_fft_buf[1][pos + j]);
const float32x4_t y_fft_re = vld1q_f32(&y_fft[0][j]);
const float32x4_t y_fft_im = vld1q_f32(&y_fft[1][j]);
const float32x4_t a = vmulq_f32(x_fft_buf_re, h_fft_buf_re);
const float32x4_t e = vmlsq_f32(a, x_fft_buf_im, h_fft_buf_im);
const float32x4_t c = vmulq_f32(x_fft_buf_re, h_fft_buf_im);
const float32x4_t f = vmlaq_f32(c, x_fft_buf_im, h_fft_buf_re);
const float32x4_t g = vaddq_f32(y_fft_re, e);
const float32x4_t h = vaddq_f32(y_fft_im, f);
vst1q_f32(&y_fft[0][j], g);
vst1q_f32(&y_fft[1][j], h);
}
// scalar code for the remaining items.
for (; j < PART_LEN1; j++) {
y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
}
}
}
// ARM64's arm_neon.h has already defined vdivq_f32 vsqrtq_f32.
#if !defined(WEBRTC_ARCH_ARM64)
static float32x4_t vdivq_f32(float32x4_t a, float32x4_t b) {
int i;
float32x4_t x = vrecpeq_f32(b);
// from arm documentation
// The Newton-Raphson iteration:
// x[n+1] = x[n] * (2 - d * x[n])
// converges to (1/d) if x0 is the result of VRECPE applied to d.
//
// Note: The precision did not improve after 2 iterations.
for (i = 0; i < 2; i++) {
x = vmulq_f32(vrecpsq_f32(b, x), x);
}
// a/b = a*(1/b)
return vmulq_f32(a, x);
}
static float32x4_t vsqrtq_f32(float32x4_t s) {
int i;
float32x4_t x = vrsqrteq_f32(s);
// Code to handle sqrt(0).
// If the input to sqrtf() is zero, a zero will be returned.
// If the input to vrsqrteq_f32() is zero, positive infinity is returned.
const uint32x4_t vec_p_inf = vdupq_n_u32(0x7F800000);
// check for divide by zero
const uint32x4_t div_by_zero = vceqq_u32(vec_p_inf, vreinterpretq_u32_f32(x));
// zero out the positive infinity results
x = vreinterpretq_f32_u32(
vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(x)));
// from arm documentation
// The Newton-Raphson iteration:
// x[n+1] = x[n] * (3 - d * (x[n] * x[n])) / 2)
// converges to (1/√d) if x0 is the result of VRSQRTE applied to d.
//
// Note: The precision did not improve after 2 iterations.
for (i = 0; i < 2; i++) {
x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x);
}
// sqrt(s) = s * 1/sqrt(s)
return vmulq_f32(s, x);
}
#endif // WEBRTC_ARCH_ARM64
static void ScaleErrorSignalNEON(float mu,
float error_threshold,
float x_pow[PART_LEN1],
float ef[2][PART_LEN1]) {
const float32x4_t k1e_10f = vdupq_n_f32(1e-10f);
const float32x4_t kMu = vmovq_n_f32(mu);
const float32x4_t kThresh = vmovq_n_f32(error_threshold);
int i;
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const float32x4_t x_pow_local = vld1q_f32(&x_pow[i]);
const float32x4_t ef_re_base = vld1q_f32(&ef[0][i]);
const float32x4_t ef_im_base = vld1q_f32(&ef[1][i]);
const float32x4_t xPowPlus = vaddq_f32(x_pow_local, k1e_10f);
float32x4_t ef_re = vdivq_f32(ef_re_base, xPowPlus);
float32x4_t ef_im = vdivq_f32(ef_im_base, xPowPlus);
const float32x4_t ef_re2 = vmulq_f32(ef_re, ef_re);
const float32x4_t ef_sum2 = vmlaq_f32(ef_re2, ef_im, ef_im);
const float32x4_t absEf = vsqrtq_f32(ef_sum2);
const uint32x4_t bigger = vcgtq_f32(absEf, kThresh);
const float32x4_t absEfPlus = vaddq_f32(absEf, k1e_10f);
const float32x4_t absEfInv = vdivq_f32(kThresh, absEfPlus);
uint32x4_t ef_re_if = vreinterpretq_u32_f32(vmulq_f32(ef_re, absEfInv));
uint32x4_t ef_im_if = vreinterpretq_u32_f32(vmulq_f32(ef_im, absEfInv));
uint32x4_t ef_re_u32 =
vandq_u32(vmvnq_u32(bigger), vreinterpretq_u32_f32(ef_re));
uint32x4_t ef_im_u32 =
vandq_u32(vmvnq_u32(bigger), vreinterpretq_u32_f32(ef_im));
ef_re_if = vandq_u32(bigger, ef_re_if);
ef_im_if = vandq_u32(bigger, ef_im_if);
ef_re_u32 = vorrq_u32(ef_re_u32, ef_re_if);
ef_im_u32 = vorrq_u32(ef_im_u32, ef_im_if);
ef_re = vmulq_f32(vreinterpretq_f32_u32(ef_re_u32), kMu);
ef_im = vmulq_f32(vreinterpretq_f32_u32(ef_im_u32), kMu);
vst1q_f32(&ef[0][i], ef_re);
vst1q_f32(&ef[1][i], ef_im);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
float abs_ef;
ef[0][i] /= (x_pow[i] + 1e-10f);
ef[1][i] /= (x_pow[i] + 1e-10f);
abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
if (abs_ef > error_threshold) {
abs_ef = error_threshold / (abs_ef + 1e-10f);
ef[0][i] *= abs_ef;
ef[1][i] *= abs_ef;
}
// Stepsize factor
ef[0][i] *= mu;
ef[1][i] *= mu;
}
}
static void FilterAdaptationNEON(
const OouraFft& ooura_fft,
int num_partitions,
int x_fft_buf_block_pos,
float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float e_fft[2][PART_LEN1],
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
float fft[PART_LEN2];
int i;
for (i = 0; i < num_partitions; i++) {
int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
int pos = i * PART_LEN1;
int j;
// Check for wrap
if (i + x_fft_buf_block_pos >= num_partitions) {
xPos -= num_partitions * PART_LEN1;
}
// Process the whole array...
for (j = 0; j < PART_LEN; j += 4) {
// Load x_fft_buf and e_fft.
const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]);
const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]);
const float32x4_t e_fft_re = vld1q_f32(&e_fft[0][j]);
const float32x4_t e_fft_im = vld1q_f32(&e_fft[1][j]);
// Calculate the product of conjugate(x_fft_buf) by e_fft.
// re(conjugate(a) * b) = aRe * bRe + aIm * bIm
// im(conjugate(a) * b)= aRe * bIm - aIm * bRe
const float32x4_t a = vmulq_f32(x_fft_buf_re, e_fft_re);
const float32x4_t e = vmlaq_f32(a, x_fft_buf_im, e_fft_im);
const float32x4_t c = vmulq_f32(x_fft_buf_re, e_fft_im);
const float32x4_t f = vmlsq_f32(c, x_fft_buf_im, e_fft_re);
// Interleave real and imaginary parts.
const float32x4x2_t g_n_h = vzipq_f32(e, f);
// Store
vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]);
vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]);
}
// ... and fixup the first imaginary entry.
fft[1] =
MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN],
e_fft[0][PART_LEN], e_fft[1][PART_LEN]);
ooura_fft.InverseFft(fft);
memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
// fft scaling
{
const float scale = 2.0f / PART_LEN2;
const float32x4_t scale_ps = vmovq_n_f32(scale);
for (j = 0; j < PART_LEN; j += 4) {
const float32x4_t fft_ps = vld1q_f32(&fft[j]);
const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps);
vst1q_f32(&fft[j], fft_scale);
}
}
ooura_fft.Fft(fft);
{
const float wt1 = h_fft_buf[1][pos];
h_fft_buf[0][pos + PART_LEN] += fft[1];
for (j = 0; j < PART_LEN; j += 4) {
float32x4_t wtBuf_re = vld1q_f32(&h_fft_buf[0][pos + j]);
float32x4_t wtBuf_im = vld1q_f32(&h_fft_buf[1][pos + j]);
const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]);
const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]);
const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4);
wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]);
wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]);
vst1q_f32(&h_fft_buf[0][pos + j], wtBuf_re);
vst1q_f32(&h_fft_buf[1][pos + j], wtBuf_im);
}
h_fft_buf[1][pos] = wt1;
}
}
}
static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) {
// a^b = exp2(b * log2(a))
// exp2(x) and log2(x) are calculated using polynomial approximations.
float32x4_t log2_a, b_log2_a, a_exp_b;
// Calculate log2(x), x = a.
{
// To calculate log2(x), we decompose x like this:
// x = y * 2^n
// n is an integer
// y is in the [1.0, 2.0) range
//
// log2(x) = log2(y) + n
// n can be evaluated by playing with float representation.
// log2(y) in a small range can be approximated, this code uses an order
// five polynomial approximation. The coefficients have been
// estimated with the Remez algorithm and the resulting
// polynomial has a maximum relative error of 0.00086%.
// Compute n.
// This is done by masking the exponent, shifting it into the top bit of
// the mantissa, putting eight into the biased exponent (to shift/
// compensate the fact that the exponent has been shifted in the top/
// fractional part and finally getting rid of the implicit leading one
// from the mantissa by substracting it out.
const uint32x4_t vec_float_exponent_mask = vdupq_n_u32(0x7F800000);
const uint32x4_t vec_eight_biased_exponent = vdupq_n_u32(0x43800000);
const uint32x4_t vec_implicit_leading_one = vdupq_n_u32(0x43BF8000);
const uint32x4_t two_n =
vandq_u32(vreinterpretq_u32_f32(a), vec_float_exponent_mask);
const uint32x4_t n_1 = vshrq_n_u32(two_n, kShiftExponentIntoTopMantissa);
const uint32x4_t n_0 = vorrq_u32(n_1, vec_eight_biased_exponent);
const float32x4_t n =
vsubq_f32(vreinterpretq_f32_u32(n_0),
vreinterpretq_f32_u32(vec_implicit_leading_one));
// Compute y.
const uint32x4_t vec_mantissa_mask = vdupq_n_u32(0x007FFFFF);
const uint32x4_t vec_zero_biased_exponent_is_one = vdupq_n_u32(0x3F800000);
const uint32x4_t mantissa =
vandq_u32(vreinterpretq_u32_f32(a), vec_mantissa_mask);
const float32x4_t y = vreinterpretq_f32_u32(
vorrq_u32(mantissa, vec_zero_biased_exponent_is_one));
// Approximate log2(y) ~= (y - 1) * pol5(y).
// pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
const float32x4_t C5 = vdupq_n_f32(-3.4436006e-2f);
const float32x4_t C4 = vdupq_n_f32(3.1821337e-1f);
const float32x4_t C3 = vdupq_n_f32(-1.2315303f);
const float32x4_t C2 = vdupq_n_f32(2.5988452f);
const float32x4_t C1 = vdupq_n_f32(-3.3241990f);
const float32x4_t C0 = vdupq_n_f32(3.1157899f);
float32x4_t pol5_y = C5;
pol5_y = vmlaq_f32(C4, y, pol5_y);
pol5_y = vmlaq_f32(C3, y, pol5_y);
pol5_y = vmlaq_f32(C2, y, pol5_y);
pol5_y = vmlaq_f32(C1, y, pol5_y);
pol5_y = vmlaq_f32(C0, y, pol5_y);
const float32x4_t y_minus_one =
vsubq_f32(y, vreinterpretq_f32_u32(vec_zero_biased_exponent_is_one));
const float32x4_t log2_y = vmulq_f32(y_minus_one, pol5_y);
// Combine parts.
log2_a = vaddq_f32(n, log2_y);
}
// b * log2(a)
b_log2_a = vmulq_f32(b, log2_a);
// Calculate exp2(x), x = b * log2(a).
{
// To calculate 2^x, we decompose x like this:
// x = n + y
// n is an integer, the value of x - 0.5 rounded down, therefore
// y is in the [0.5, 1.5) range
//
// 2^x = 2^n * 2^y
// 2^n can be evaluated by playing with float representation.
// 2^y in a small range can be approximated, this code uses an order two
// polynomial approximation. The coefficients have been estimated
// with the Remez algorithm and the resulting polynomial has a
// maximum relative error of 0.17%.
// To avoid over/underflow, we reduce the range of input to ]-127, 129].
const float32x4_t max_input = vdupq_n_f32(129.f);
const float32x4_t min_input = vdupq_n_f32(-126.99999f);
const float32x4_t x_min = vminq_f32(b_log2_a, max_input);
const float32x4_t x_max = vmaxq_f32(x_min, min_input);
// Compute n.
const float32x4_t half = vdupq_n_f32(0.5f);
const float32x4_t x_minus_half = vsubq_f32(x_max, half);
const int32x4_t x_minus_half_floor = vcvtq_s32_f32(x_minus_half);
// Compute 2^n.
const int32x4_t float_exponent_bias = vdupq_n_s32(127);
const int32x4_t two_n_exponent =
vaddq_s32(x_minus_half_floor, float_exponent_bias);
const float32x4_t two_n =
vreinterpretq_f32_s32(vshlq_n_s32(two_n_exponent, kFloatExponentShift));
// Compute y.
const float32x4_t y = vsubq_f32(x_max, vcvtq_f32_s32(x_minus_half_floor));
// Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
const float32x4_t C2 = vdupq_n_f32(3.3718944e-1f);
const float32x4_t C1 = vdupq_n_f32(6.5763628e-1f);
const float32x4_t C0 = vdupq_n_f32(1.0017247f);
float32x4_t exp2_y = C2;
exp2_y = vmlaq_f32(C1, y, exp2_y);
exp2_y = vmlaq_f32(C0, y, exp2_y);
// Combine parts.
a_exp_b = vmulq_f32(exp2_y, two_n);
}
return a_exp_b;
}
static void OverdriveNEON(float overdrive_scaling,
float hNlFb,
float hNl[PART_LEN1]) {
int i;
const float32x4_t vec_hNlFb = vmovq_n_f32(hNlFb);
const float32x4_t vec_one = vdupq_n_f32(1.0f);
const float32x4_t vec_overdrive_scaling = vmovq_n_f32(overdrive_scaling);
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
// Weight subbands
float32x4_t vec_hNl = vld1q_f32(&hNl[i]);
const float32x4_t vec_weightCurve = vld1q_f32(&WebRtcAec_weightCurve[i]);
const uint32x4_t bigger = vcgtq_f32(vec_hNl, vec_hNlFb);
const float32x4_t vec_weightCurve_hNlFb =
vmulq_f32(vec_weightCurve, vec_hNlFb);
const float32x4_t vec_one_weightCurve = vsubq_f32(vec_one, vec_weightCurve);
const float32x4_t vec_one_weightCurve_hNl =
vmulq_f32(vec_one_weightCurve, vec_hNl);
const uint32x4_t vec_if0 =
vandq_u32(vmvnq_u32(bigger), vreinterpretq_u32_f32(vec_hNl));
const float32x4_t vec_one_weightCurve_add =
vaddq_f32(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl);
const uint32x4_t vec_if1 =
vandq_u32(bigger, vreinterpretq_u32_f32(vec_one_weightCurve_add));
vec_hNl = vreinterpretq_f32_u32(vorrq_u32(vec_if0, vec_if1));
const float32x4_t vec_overDriveCurve =
vld1q_f32(&WebRtcAec_overDriveCurve[i]);
const float32x4_t vec_overDriveSm_overDriveCurve =
vmulq_f32(vec_overdrive_scaling, vec_overDriveCurve);
vec_hNl = vpowq_f32(vec_hNl, vec_overDriveSm_overDriveCurve);
vst1q_f32(&hNl[i], vec_hNl);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
// Weight subbands
if (hNl[i] > hNlFb) {
hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
(1 - WebRtcAec_weightCurve[i]) * hNl[i];
}
hNl[i] = powf(hNl[i], overdrive_scaling * WebRtcAec_overDriveCurve[i]);
}
}
static void SuppressNEON(const float hNl[PART_LEN1], float efw[2][PART_LEN1]) {
int i;
const float32x4_t vec_minus_one = vdupq_n_f32(-1.0f);
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
float32x4_t vec_hNl = vld1q_f32(&hNl[i]);
float32x4_t vec_efw_re = vld1q_f32(&efw[0][i]);
float32x4_t vec_efw_im = vld1q_f32(&efw[1][i]);
vec_efw_re = vmulq_f32(vec_efw_re, vec_hNl);
vec_efw_im = vmulq_f32(vec_efw_im, vec_hNl);
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
vec_efw_im = vmulq_f32(vec_efw_im, vec_minus_one);
vst1q_f32(&efw[0][i], vec_efw_re);
vst1q_f32(&efw[1][i], vec_efw_im);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
efw[0][i] *= hNl[i];
efw[1][i] *= hNl[i];
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
efw[1][i] *= -1;
}
}
static int PartitionDelayNEON(
int num_partitions,
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
// Measures the energy in each filter partition and returns the partition with
// highest energy.
// TODO(bjornv): Spread computational cost by computing one partition per
// block?
float wfEnMax = 0;
int i;
int delay = 0;
for (i = 0; i < num_partitions; i++) {
int j;
int pos = i * PART_LEN1;
float wfEn = 0;
float32x4_t vec_wfEn = vdupq_n_f32(0.0f);
// vectorized code (four at once)
for (j = 0; j + 3 < PART_LEN1; j += 4) {
const float32x4_t vec_wfBuf0 = vld1q_f32(&h_fft_buf[0][pos + j]);
const float32x4_t vec_wfBuf1 = vld1q_f32(&h_fft_buf[1][pos + j]);
vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf0, vec_wfBuf0);
vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf1, vec_wfBuf1);
}
{
float32x2_t vec_total;
// A B C D
vec_total = vpadd_f32(vget_low_f32(vec_wfEn), vget_high_f32(vec_wfEn));
// A+B C+D
vec_total = vpadd_f32(vec_total, vec_total);
// A+B+C+D A+B+C+D
wfEn = vget_lane_f32(vec_total, 0);
}
// scalar code for the remaining items.
for (; j < PART_LEN1; j++) {
wfEn += h_fft_buf[0][pos + j] * h_fft_buf[0][pos + j] +
h_fft_buf[1][pos + j] * h_fft_buf[1][pos + j];
}
if (wfEn > wfEnMax) {
wfEnMax = wfEn;
delay = i;
}
}
return delay;
}
// Updates the following smoothed Power Spectral Densities (PSD):
// - sd : near-end
// - se : residual echo
// - sx : far-end
// - sde : cross-PSD of near-end and residual echo
// - sxd : cross-PSD of near-end and far-end
//
// In addition to updating the PSDs, also the filter diverge state is determined
// upon actions are taken.
static void UpdateCoherenceSpectraNEON(int mult,
bool extended_filter_enabled,
float efw[2][PART_LEN1],
float dfw[2][PART_LEN1],
float xfw[2][PART_LEN1],
CoherenceState* coherence_state,
short* filter_divergence_state,
int* extreme_filter_divergence) {
// Power estimate smoothing coefficients.
const float* ptrGCoh =
extended_filter_enabled
? WebRtcAec_kExtendedSmoothingCoefficients[mult - 1]
: WebRtcAec_kNormalSmoothingCoefficients[mult - 1];
int i;
float sdSum = 0, seSum = 0;
const float32x4_t vec_15 = vdupq_n_f32(WebRtcAec_kMinFarendPSD);
float32x4_t vec_sdSum = vdupq_n_f32(0.0f);
float32x4_t vec_seSum = vdupq_n_f32(0.0f);
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const float32x4_t vec_dfw0 = vld1q_f32(&dfw[0][i]);
const float32x4_t vec_dfw1 = vld1q_f32(&dfw[1][i]);
const float32x4_t vec_efw0 = vld1q_f32(&efw[0][i]);
const float32x4_t vec_efw1 = vld1q_f32(&efw[1][i]);
const float32x4_t vec_xfw0 = vld1q_f32(&xfw[0][i]);
const float32x4_t vec_xfw1 = vld1q_f32(&xfw[1][i]);
float32x4_t vec_sd =
vmulq_n_f32(vld1q_f32(&coherence_state->sd[i]), ptrGCoh[0]);
float32x4_t vec_se =
vmulq_n_f32(vld1q_f32(&coherence_state->se[i]), ptrGCoh[0]);
float32x4_t vec_sx =
vmulq_n_f32(vld1q_f32(&coherence_state->sx[i]), ptrGCoh[0]);
float32x4_t vec_dfw_sumsq = vmulq_f32(vec_dfw0, vec_dfw0);
float32x4_t vec_efw_sumsq = vmulq_f32(vec_efw0, vec_efw0);
float32x4_t vec_xfw_sumsq = vmulq_f32(vec_xfw0, vec_xfw0);
vec_dfw_sumsq = vmlaq_f32(vec_dfw_sumsq, vec_dfw1, vec_dfw1);
vec_efw_sumsq = vmlaq_f32(vec_efw_sumsq, vec_efw1, vec_efw1);
vec_xfw_sumsq = vmlaq_f32(vec_xfw_sumsq, vec_xfw1, vec_xfw1);
vec_xfw_sumsq = vmaxq_f32(vec_xfw_sumsq, vec_15);
vec_sd = vmlaq_n_f32(vec_sd, vec_dfw_sumsq, ptrGCoh[1]);
vec_se = vmlaq_n_f32(vec_se, vec_efw_sumsq, ptrGCoh[1]);
vec_sx = vmlaq_n_f32(vec_sx, vec_xfw_sumsq, ptrGCoh[1]);
vst1q_f32(&coherence_state->sd[i], vec_sd);
vst1q_f32(&coherence_state->se[i], vec_se);
vst1q_f32(&coherence_state->sx[i], vec_sx);
{
float32x4x2_t vec_sde = vld2q_f32(&coherence_state->sde[i][0]);
float32x4_t vec_dfwefw0011 = vmulq_f32(vec_dfw0, vec_efw0);
float32x4_t vec_dfwefw0110 = vmulq_f32(vec_dfw0, vec_efw1);
vec_sde.val[0] = vmulq_n_f32(vec_sde.val[0], ptrGCoh[0]);
vec_sde.val[1] = vmulq_n_f32(vec_sde.val[1], ptrGCoh[0]);
vec_dfwefw0011 = vmlaq_f32(vec_dfwefw0011, vec_dfw1, vec_efw1);
vec_dfwefw0110 = vmlsq_f32(vec_dfwefw0110, vec_dfw1, vec_efw0);
vec_sde.val[0] = vmlaq_n_f32(vec_sde.val[0], vec_dfwefw0011, ptrGCoh[1]);
vec_sde.val[1] = vmlaq_n_f32(vec_sde.val[1], vec_dfwefw0110, ptrGCoh[1]);
vst2q_f32(&coherence_state->sde[i][0], vec_sde);
}
{
float32x4x2_t vec_sxd = vld2q_f32(&coherence_state->sxd[i][0]);
float32x4_t vec_dfwxfw0011 = vmulq_f32(vec_dfw0, vec_xfw0);
float32x4_t vec_dfwxfw0110 = vmulq_f32(vec_dfw0, vec_xfw1);
vec_sxd.val[0] = vmulq_n_f32(vec_sxd.val[0], ptrGCoh[0]);
vec_sxd.val[1] = vmulq_n_f32(vec_sxd.val[1], ptrGCoh[0]);
vec_dfwxfw0011 = vmlaq_f32(vec_dfwxfw0011, vec_dfw1, vec_xfw1);
vec_dfwxfw0110 = vmlsq_f32(vec_dfwxfw0110, vec_dfw1, vec_xfw0);
vec_sxd.val[0] = vmlaq_n_f32(vec_sxd.val[0], vec_dfwxfw0011, ptrGCoh[1]);
vec_sxd.val[1] = vmlaq_n_f32(vec_sxd.val[1], vec_dfwxfw0110, ptrGCoh[1]);
vst2q_f32(&coherence_state->sxd[i][0], vec_sxd);
}
vec_sdSum = vaddq_f32(vec_sdSum, vec_sd);
vec_seSum = vaddq_f32(vec_seSum, vec_se);
}
{
float32x2_t vec_sdSum_total;
float32x2_t vec_seSum_total;
// A B C D
vec_sdSum_total =
vpadd_f32(vget_low_f32(vec_sdSum), vget_high_f32(vec_sdSum));
vec_seSum_total =
vpadd_f32(vget_low_f32(vec_seSum), vget_high_f32(vec_seSum));
// A+B C+D
vec_sdSum_total = vpadd_f32(vec_sdSum_total, vec_sdSum_total);
vec_seSum_total = vpadd_f32(vec_seSum_total, vec_seSum_total);
// A+B+C+D A+B+C+D
sdSum = vget_lane_f32(vec_sdSum_total, 0);
seSum = vget_lane_f32(vec_seSum_total, 0);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
coherence_state->sd[i] =
ptrGCoh[0] * coherence_state->sd[i] +
ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
coherence_state->se[i] =
ptrGCoh[0] * coherence_state->se[i] +
ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
// We threshold here to protect against the ill-effects of a zero farend.
// The threshold is not arbitrarily chosen, but balances protection and
// adverse interaction with the algorithm's tuning.
// TODO(bjornv): investigate further why this is so sensitive.
coherence_state->sx[i] =
ptrGCoh[0] * coherence_state->sx[i] +
ptrGCoh[1] *
WEBRTC_SPL_MAX(xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
WebRtcAec_kMinFarendPSD);
coherence_state->sde[i][0] =
ptrGCoh[0] * coherence_state->sde[i][0] +
ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
coherence_state->sde[i][1] =
ptrGCoh[0] * coherence_state->sde[i][1] +
ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
coherence_state->sxd[i][0] =
ptrGCoh[0] * coherence_state->sxd[i][0] +
ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
coherence_state->sxd[i][1] =
ptrGCoh[0] * coherence_state->sxd[i][1] +
ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
sdSum += coherence_state->sd[i];
seSum += coherence_state->se[i];
}
// Divergent filter safeguard update.
*filter_divergence_state =
(*filter_divergence_state ? 1.05f : 1.0f) * seSum > sdSum;
// Signal extreme filter divergence if the error is significantly larger
// than the nearend (13 dB).
*extreme_filter_divergence = (seSum > (19.95f * sdSum));
}
// Window time domain data to be used by the fft.
static void WindowDataNEON(float* x_windowed, const float* x) {
int i;
for (i = 0; i < PART_LEN; i += 4) {
const float32x4_t vec_Buf1 = vld1q_f32(&x[i]);
const float32x4_t vec_Buf2 = vld1q_f32(&x[PART_LEN + i]);
const float32x4_t vec_sqrtHanning = vld1q_f32(&WebRtcAec_sqrtHanning[i]);
// A B C D
float32x4_t vec_sqrtHanning_rev =
vld1q_f32(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
// B A D C
vec_sqrtHanning_rev = vrev64q_f32(vec_sqrtHanning_rev);
// D C B A
vec_sqrtHanning_rev = vcombine_f32(vget_high_f32(vec_sqrtHanning_rev),
vget_low_f32(vec_sqrtHanning_rev));
vst1q_f32(&x_windowed[i], vmulq_f32(vec_Buf1, vec_sqrtHanning));
vst1q_f32(&x_windowed[PART_LEN + i],
vmulq_f32(vec_Buf2, vec_sqrtHanning_rev));
}
}
// Puts fft output data into a complex valued array.
static void StoreAsComplexNEON(const float* data,
float data_complex[2][PART_LEN1]) {
int i;
for (i = 0; i < PART_LEN; i += 4) {
const float32x4x2_t vec_data = vld2q_f32(&data[2 * i]);
vst1q_f32(&data_complex[0][i], vec_data.val[0]);
vst1q_f32(&data_complex[1][i], vec_data.val[1]);
}
// fix beginning/end values
data_complex[1][0] = 0;
data_complex[1][PART_LEN] = 0;
data_complex[0][0] = data[0];
data_complex[0][PART_LEN] = data[1];
}
static void ComputeCoherenceNEON(const CoherenceState* coherence_state,
float* cohde,
float* cohxd) {
int i;
{
const float32x4_t vec_1eminus10 = vdupq_n_f32(1e-10f);
// Subband coherence
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const float32x4_t vec_sd = vld1q_f32(&coherence_state->sd[i]);
const float32x4_t vec_se = vld1q_f32(&coherence_state->se[i]);
const float32x4_t vec_sx = vld1q_f32(&coherence_state->sx[i]);
const float32x4_t vec_sdse = vmlaq_f32(vec_1eminus10, vec_sd, vec_se);
const float32x4_t vec_sdsx = vmlaq_f32(vec_1eminus10, vec_sd, vec_sx);
float32x4x2_t vec_sde = vld2q_f32(&coherence_state->sde[i][0]);
float32x4x2_t vec_sxd = vld2q_f32(&coherence_state->sxd[i][0]);
float32x4_t vec_cohde = vmulq_f32(vec_sde.val[0], vec_sde.val[0]);
float32x4_t vec_cohxd = vmulq_f32(vec_sxd.val[0], vec_sxd.val[0]);
vec_cohde = vmlaq_f32(vec_cohde, vec_sde.val[1], vec_sde.val[1]);
vec_cohde = vdivq_f32(vec_cohde, vec_sdse);
vec_cohxd = vmlaq_f32(vec_cohxd, vec_sxd.val[1], vec_sxd.val[1]);
vec_cohxd = vdivq_f32(vec_cohxd, vec_sdsx);
vst1q_f32(&cohde[i], vec_cohde);
vst1q_f32(&cohxd[i], vec_cohxd);
}
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
cohde[i] = (coherence_state->sde[i][0] * coherence_state->sde[i][0] +
coherence_state->sde[i][1] * coherence_state->sde[i][1]) /
(coherence_state->sd[i] * coherence_state->se[i] + 1e-10f);
cohxd[i] = (coherence_state->sxd[i][0] * coherence_state->sxd[i][0] +
coherence_state->sxd[i][1] * coherence_state->sxd[i][1]) /
(coherence_state->sx[i] * coherence_state->sd[i] + 1e-10f);
}
}
void WebRtcAec_InitAec_neon(void) {
WebRtcAec_FilterFar = FilterFarNEON;
WebRtcAec_ScaleErrorSignal = ScaleErrorSignalNEON;
WebRtcAec_FilterAdaptation = FilterAdaptationNEON;
WebRtcAec_Overdrive = OverdriveNEON;
WebRtcAec_Suppress = SuppressNEON;
WebRtcAec_ComputeCoherence = ComputeCoherenceNEON;
WebRtcAec_UpdateCoherenceSpectra = UpdateCoherenceSpectraNEON;
WebRtcAec_StoreAsComplex = StoreAsComplexNEON;
WebRtcAec_PartitionDelay = PartitionDelayNEON;
WebRtcAec_WindowData = WindowDataNEON;
}
} // namespace webrtc