|  | /* | 
|  | *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "rtc_tools/rtc_event_log_visualizer/analyzer.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <limits> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <utility> | 
|  |  | 
|  | #include "absl/algorithm/container.h" | 
|  | #include "absl/functional/bind_front.h" | 
|  | #include "absl/strings/string_view.h" | 
|  | #include "api/function_view.h" | 
|  | #include "api/network_state_predictor.h" | 
|  | #include "api/transport/field_trial_based_config.h" | 
|  | #include "api/transport/goog_cc_factory.h" | 
|  | #include "call/audio_receive_stream.h" | 
|  | #include "call/audio_send_stream.h" | 
|  | #include "call/call.h" | 
|  | #include "call/video_receive_stream.h" | 
|  | #include "call/video_send_stream.h" | 
|  | #include "logging/rtc_event_log/rtc_event_processor.h" | 
|  | #include "logging/rtc_event_log/rtc_stream_config.h" | 
|  | #include "modules/audio_coding/audio_network_adaptor/include/audio_network_adaptor.h" | 
|  | #include "modules/congestion_controller/goog_cc/acknowledged_bitrate_estimator.h" | 
|  | #include "modules/congestion_controller/goog_cc/bitrate_estimator.h" | 
|  | #include "modules/congestion_controller/goog_cc/delay_based_bwe.h" | 
|  | #include "modules/congestion_controller/include/receive_side_congestion_controller.h" | 
|  | #include "modules/congestion_controller/rtp/transport_feedback_adapter.h" | 
|  | #include "modules/pacing/paced_sender.h" | 
|  | #include "modules/pacing/packet_router.h" | 
|  | #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" | 
|  | #include "modules/rtp_rtcp/source/rtcp_packet.h" | 
|  | #include "modules/rtp_rtcp/source/rtcp_packet/common_header.h" | 
|  | #include "modules/rtp_rtcp/source/rtcp_packet/receiver_report.h" | 
|  | #include "modules/rtp_rtcp/source/rtcp_packet/remb.h" | 
|  | #include "modules/rtp_rtcp/source/rtcp_packet/sender_report.h" | 
|  | #include "modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h" | 
|  | #include "modules/rtp_rtcp/source/rtp_header_extensions.h" | 
|  | #include "modules/rtp_rtcp/source/rtp_rtcp_interface.h" | 
|  | #include "modules/rtp_rtcp/source/rtp_utility.h" | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/format_macros.h" | 
|  | #include "rtc_base/logging.h" | 
|  | #include "rtc_base/numerics/sequence_number_util.h" | 
|  | #include "rtc_base/rate_statistics.h" | 
|  | #include "rtc_base/strings/string_builder.h" | 
|  | #include "rtc_tools/rtc_event_log_visualizer/log_simulation.h" | 
|  | #include "test/explicit_key_value_config.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | std::string SsrcToString(uint32_t ssrc) { | 
|  | rtc::StringBuilder ss; | 
|  | ss << "SSRC " << ssrc; | 
|  | return ss.Release(); | 
|  | } | 
|  |  | 
|  | // Checks whether an SSRC is contained in the list of desired SSRCs. | 
|  | // Note that an empty SSRC list matches every SSRC. | 
|  | bool MatchingSsrc(uint32_t ssrc, const std::vector<uint32_t>& desired_ssrc) { | 
|  | if (desired_ssrc.empty()) | 
|  | return true; | 
|  | return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) != | 
|  | desired_ssrc.end(); | 
|  | } | 
|  |  | 
|  | double AbsSendTimeToMicroseconds(int64_t abs_send_time) { | 
|  | // The timestamp is a fixed point representation with 6 bits for seconds | 
|  | // and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the | 
|  | // time in seconds and then multiply by kNumMicrosecsPerSec to convert to | 
|  | // microseconds. | 
|  | static constexpr double kTimestampToMicroSec = | 
|  | static_cast<double>(kNumMicrosecsPerSec) / static_cast<double>(1ul << 18); | 
|  | return abs_send_time * kTimestampToMicroSec; | 
|  | } | 
|  |  | 
|  | // Computes the difference |later| - |earlier| where |later| and |earlier| | 
|  | // are counters that wrap at |modulus|. The difference is chosen to have the | 
|  | // least absolute value. For example if |modulus| is 8, then the difference will | 
|  | // be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will | 
|  | // be in [-4, 4]. | 
|  | int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) { | 
|  | RTC_DCHECK_LE(1, modulus); | 
|  | RTC_DCHECK_LT(later, modulus); | 
|  | RTC_DCHECK_LT(earlier, modulus); | 
|  | int64_t difference = | 
|  | static_cast<int64_t>(later) - static_cast<int64_t>(earlier); | 
|  | int64_t max_difference = modulus / 2; | 
|  | int64_t min_difference = max_difference - modulus + 1; | 
|  | if (difference > max_difference) { | 
|  | difference -= modulus; | 
|  | } | 
|  | if (difference < min_difference) { | 
|  | difference += modulus; | 
|  | } | 
|  | if (difference > max_difference / 2 || difference < min_difference / 2) { | 
|  | RTC_LOG(LS_WARNING) << "Difference between" << later << " and " << earlier | 
|  | << " expected to be in the range (" | 
|  | << min_difference / 2 << "," << max_difference / 2 | 
|  | << ") but is " << difference | 
|  | << ". Correct unwrapping is uncertain."; | 
|  | } | 
|  | return difference; | 
|  | } | 
|  |  | 
|  | // This is much more reliable for outgoing streams than for incoming streams. | 
|  | template <typename RtpPacketContainer> | 
|  | absl::optional<uint32_t> EstimateRtpClockFrequency( | 
|  | const RtpPacketContainer& packets, | 
|  | int64_t end_time_us) { | 
|  | RTC_CHECK(packets.size() >= 2); | 
|  | SeqNumUnwrapper<uint32_t> unwrapper; | 
|  | int64_t first_rtp_timestamp = | 
|  | unwrapper.Unwrap(packets[0].rtp.header.timestamp); | 
|  | int64_t first_log_timestamp = packets[0].log_time_us(); | 
|  | int64_t last_rtp_timestamp = first_rtp_timestamp; | 
|  | int64_t last_log_timestamp = first_log_timestamp; | 
|  | for (size_t i = 1; i < packets.size(); i++) { | 
|  | if (packets[i].log_time_us() > end_time_us) | 
|  | break; | 
|  | last_rtp_timestamp = unwrapper.Unwrap(packets[i].rtp.header.timestamp); | 
|  | last_log_timestamp = packets[i].log_time_us(); | 
|  | } | 
|  | if (last_log_timestamp - first_log_timestamp < kNumMicrosecsPerSec) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "Failed to estimate RTP clock frequency: Stream too short. (" | 
|  | << packets.size() << " packets, " | 
|  | << last_log_timestamp - first_log_timestamp << " us)"; | 
|  | return absl::nullopt; | 
|  | } | 
|  | double duration = | 
|  | static_cast<double>(last_log_timestamp - first_log_timestamp) / | 
|  | kNumMicrosecsPerSec; | 
|  | double estimated_frequency = | 
|  | (last_rtp_timestamp - first_rtp_timestamp) / duration; | 
|  | for (uint32_t f : {8000, 16000, 32000, 48000, 90000}) { | 
|  | if (std::fabs(estimated_frequency - f) < 0.15 * f) { | 
|  | return f; | 
|  | } | 
|  | } | 
|  | RTC_LOG(LS_WARNING) << "Failed to estimate RTP clock frequency: Estimate " | 
|  | << estimated_frequency | 
|  | << " not close to any stardard RTP frequency."; | 
|  | return absl::nullopt; | 
|  | } | 
|  |  | 
|  | absl::optional<double> NetworkDelayDiff_AbsSendTime( | 
|  | const LoggedRtpPacketIncoming& old_packet, | 
|  | const LoggedRtpPacketIncoming& new_packet) { | 
|  | if (old_packet.rtp.header.extension.hasAbsoluteSendTime && | 
|  | new_packet.rtp.header.extension.hasAbsoluteSendTime) { | 
|  | int64_t send_time_diff = WrappingDifference( | 
|  | new_packet.rtp.header.extension.absoluteSendTime, | 
|  | old_packet.rtp.header.extension.absoluteSendTime, 1ul << 24); | 
|  | int64_t recv_time_diff = | 
|  | new_packet.log_time_us() - old_packet.log_time_us(); | 
|  | double delay_change_us = | 
|  | recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff); | 
|  | return delay_change_us / 1000; | 
|  | } else { | 
|  | return absl::nullopt; | 
|  | } | 
|  | } | 
|  |  | 
|  | absl::optional<double> NetworkDelayDiff_CaptureTime( | 
|  | const LoggedRtpPacketIncoming& old_packet, | 
|  | const LoggedRtpPacketIncoming& new_packet, | 
|  | const double sample_rate) { | 
|  | int64_t send_time_diff = | 
|  | WrappingDifference(new_packet.rtp.header.timestamp, | 
|  | old_packet.rtp.header.timestamp, 1ull << 32); | 
|  | int64_t recv_time_diff = new_packet.log_time_us() - old_packet.log_time_us(); | 
|  |  | 
|  | double delay_change = | 
|  | static_cast<double>(recv_time_diff) / 1000 - | 
|  | static_cast<double>(send_time_diff) / sample_rate * 1000; | 
|  | if (delay_change < -10000 || 10000 < delay_change) { | 
|  | RTC_LOG(LS_WARNING) << "Very large delay change. Timestamps correct?"; | 
|  | RTC_LOG(LS_WARNING) << "Old capture time " | 
|  | << old_packet.rtp.header.timestamp << ", received time " | 
|  | << old_packet.log_time_us(); | 
|  | RTC_LOG(LS_WARNING) << "New capture time " | 
|  | << new_packet.rtp.header.timestamp << ", received time " | 
|  | << new_packet.log_time_us(); | 
|  | RTC_LOG(LS_WARNING) << "Receive time difference " << recv_time_diff << " = " | 
|  | << static_cast<double>(recv_time_diff) / | 
|  | kNumMicrosecsPerSec | 
|  | << "s"; | 
|  | RTC_LOG(LS_WARNING) << "Send time difference " << send_time_diff << " = " | 
|  | << static_cast<double>(send_time_diff) / sample_rate | 
|  | << "s"; | 
|  | } | 
|  | return delay_change; | 
|  | } | 
|  |  | 
|  |  | 
|  | template <typename T> | 
|  | TimeSeries CreateRtcpTypeTimeSeries(const std::vector<T>& rtcp_list, | 
|  | AnalyzerConfig config, | 
|  | std::string rtcp_name, | 
|  | int category_id) { | 
|  | TimeSeries time_series(rtcp_name, LineStyle::kNone, PointStyle::kHighlight); | 
|  | for (const auto& rtcp : rtcp_list) { | 
|  | float x = config.GetCallTimeSec(rtcp.log_time_us()); | 
|  | float y = category_id; | 
|  | time_series.points.emplace_back(x, y); | 
|  | } | 
|  | return time_series; | 
|  | } | 
|  |  | 
|  | const char kUnknownEnumValue[] = "unknown"; | 
|  |  | 
|  | const char kIceCandidateTypeLocal[] = "local"; | 
|  | const char kIceCandidateTypeStun[] = "stun"; | 
|  | const char kIceCandidateTypePrflx[] = "prflx"; | 
|  | const char kIceCandidateTypeRelay[] = "relay"; | 
|  |  | 
|  | const char kProtocolUdp[] = "udp"; | 
|  | const char kProtocolTcp[] = "tcp"; | 
|  | const char kProtocolSsltcp[] = "ssltcp"; | 
|  | const char kProtocolTls[] = "tls"; | 
|  |  | 
|  | const char kAddressFamilyIpv4[] = "ipv4"; | 
|  | const char kAddressFamilyIpv6[] = "ipv6"; | 
|  |  | 
|  | const char kNetworkTypeEthernet[] = "ethernet"; | 
|  | const char kNetworkTypeLoopback[] = "loopback"; | 
|  | const char kNetworkTypeWifi[] = "wifi"; | 
|  | const char kNetworkTypeVpn[] = "vpn"; | 
|  | const char kNetworkTypeCellular[] = "cellular"; | 
|  |  | 
|  | std::string GetIceCandidateTypeAsString(webrtc::IceCandidateType type) { | 
|  | switch (type) { | 
|  | case webrtc::IceCandidateType::kLocal: | 
|  | return kIceCandidateTypeLocal; | 
|  | case webrtc::IceCandidateType::kStun: | 
|  | return kIceCandidateTypeStun; | 
|  | case webrtc::IceCandidateType::kPrflx: | 
|  | return kIceCandidateTypePrflx; | 
|  | case webrtc::IceCandidateType::kRelay: | 
|  | return kIceCandidateTypeRelay; | 
|  | default: | 
|  | return kUnknownEnumValue; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string GetProtocolAsString(webrtc::IceCandidatePairProtocol protocol) { | 
|  | switch (protocol) { | 
|  | case webrtc::IceCandidatePairProtocol::kUdp: | 
|  | return kProtocolUdp; | 
|  | case webrtc::IceCandidatePairProtocol::kTcp: | 
|  | return kProtocolTcp; | 
|  | case webrtc::IceCandidatePairProtocol::kSsltcp: | 
|  | return kProtocolSsltcp; | 
|  | case webrtc::IceCandidatePairProtocol::kTls: | 
|  | return kProtocolTls; | 
|  | default: | 
|  | return kUnknownEnumValue; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string GetAddressFamilyAsString( | 
|  | webrtc::IceCandidatePairAddressFamily family) { | 
|  | switch (family) { | 
|  | case webrtc::IceCandidatePairAddressFamily::kIpv4: | 
|  | return kAddressFamilyIpv4; | 
|  | case webrtc::IceCandidatePairAddressFamily::kIpv6: | 
|  | return kAddressFamilyIpv6; | 
|  | default: | 
|  | return kUnknownEnumValue; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string GetNetworkTypeAsString(webrtc::IceCandidateNetworkType type) { | 
|  | switch (type) { | 
|  | case webrtc::IceCandidateNetworkType::kEthernet: | 
|  | return kNetworkTypeEthernet; | 
|  | case webrtc::IceCandidateNetworkType::kLoopback: | 
|  | return kNetworkTypeLoopback; | 
|  | case webrtc::IceCandidateNetworkType::kWifi: | 
|  | return kNetworkTypeWifi; | 
|  | case webrtc::IceCandidateNetworkType::kVpn: | 
|  | return kNetworkTypeVpn; | 
|  | case webrtc::IceCandidateNetworkType::kCellular: | 
|  | return kNetworkTypeCellular; | 
|  | default: | 
|  | return kUnknownEnumValue; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string GetCandidatePairLogDescriptionAsString( | 
|  | const LoggedIceCandidatePairConfig& config) { | 
|  | // Example: stun:wifi->relay(tcp):cellular@udp:ipv4 | 
|  | // represents a pair of a local server-reflexive candidate on a WiFi network | 
|  | // and a remote relay candidate using TCP as the relay protocol on a cell | 
|  | // network, when the candidate pair communicates over UDP using IPv4. | 
|  | rtc::StringBuilder ss; | 
|  | std::string local_candidate_type = | 
|  | GetIceCandidateTypeAsString(config.local_candidate_type); | 
|  | std::string remote_candidate_type = | 
|  | GetIceCandidateTypeAsString(config.remote_candidate_type); | 
|  | if (config.local_candidate_type == webrtc::IceCandidateType::kRelay) { | 
|  | local_candidate_type += | 
|  | "(" + GetProtocolAsString(config.local_relay_protocol) + ")"; | 
|  | } | 
|  | ss << local_candidate_type << ":" | 
|  | << GetNetworkTypeAsString(config.local_network_type) << ":" | 
|  | << GetAddressFamilyAsString(config.local_address_family) << "->" | 
|  | << remote_candidate_type << ":" | 
|  | << GetAddressFamilyAsString(config.remote_address_family) << "@" | 
|  | << GetProtocolAsString(config.candidate_pair_protocol); | 
|  | return ss.Release(); | 
|  | } | 
|  |  | 
|  | std::string GetDirectionAsString(PacketDirection direction) { | 
|  | if (direction == kIncomingPacket) { | 
|  | return "Incoming"; | 
|  | } else { | 
|  | return "Outgoing"; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string GetDirectionAsShortString(PacketDirection direction) { | 
|  | if (direction == kIncomingPacket) { | 
|  | return "In"; | 
|  | } else { | 
|  | return "Out"; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log, | 
|  | bool normalize_time) | 
|  | : parsed_log_(log) { | 
|  | config_.window_duration_ = 250000; | 
|  | config_.step_ = 10000; | 
|  | config_.normalize_time_ = normalize_time; | 
|  | config_.begin_time_ = parsed_log_.first_timestamp(); | 
|  | config_.end_time_ = parsed_log_.last_timestamp(); | 
|  | if (config_.end_time_ < config_.begin_time_) { | 
|  | RTC_LOG(LS_WARNING) << "No useful events in the log."; | 
|  | config_.begin_time_ = config_.end_time_ = 0; | 
|  | } | 
|  |  | 
|  | RTC_LOG(LS_INFO) << "Log is " | 
|  | << (parsed_log_.last_timestamp() - | 
|  | parsed_log_.first_timestamp()) / | 
|  | 1000000 | 
|  | << " seconds long."; | 
|  | } | 
|  |  | 
|  | EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log, | 
|  | const AnalyzerConfig& config) | 
|  | : parsed_log_(log), config_(config) { | 
|  | RTC_LOG(LS_INFO) << "Log is " | 
|  | << (parsed_log_.last_timestamp() - | 
|  | parsed_log_.first_timestamp()) / | 
|  | 1000000 | 
|  | << " seconds long."; | 
|  | } | 
|  |  | 
|  | class BitrateObserver : public RemoteBitrateObserver { | 
|  | public: | 
|  | BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {} | 
|  |  | 
|  | void Update(NetworkControlUpdate update) { | 
|  | if (update.target_rate) { | 
|  | last_bitrate_bps_ = update.target_rate->target_rate.bps(); | 
|  | bitrate_updated_ = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs, | 
|  | uint32_t bitrate) override {} | 
|  |  | 
|  | uint32_t last_bitrate_bps() const { return last_bitrate_bps_; } | 
|  | bool GetAndResetBitrateUpdated() { | 
|  | bool bitrate_updated = bitrate_updated_; | 
|  | bitrate_updated_ = false; | 
|  | return bitrate_updated; | 
|  | } | 
|  |  | 
|  | private: | 
|  | uint32_t last_bitrate_bps_; | 
|  | bool bitrate_updated_; | 
|  | }; | 
|  |  | 
|  | void EventLogAnalyzer::CreatePacketGraph(PacketDirection direction, | 
|  | Plot* plot) { | 
|  | for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) { | 
|  | // Filter on SSRC. | 
|  | if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TimeSeries time_series(GetStreamName(parsed_log_, direction, stream.ssrc), | 
|  | LineStyle::kBar); | 
|  | auto GetPacketSize = [](const LoggedRtpPacket& packet) { | 
|  | return absl::optional<float>(packet.total_length); | 
|  | }; | 
|  | auto ToCallTime = [this](const LoggedRtpPacket& packet) { | 
|  | return this->config_.GetCallTimeSec(packet.log_time_us()); | 
|  | }; | 
|  | ProcessPoints<LoggedRtpPacket>(ToCallTime, GetPacketSize, | 
|  | stream.packet_view, &time_series); | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin, | 
|  | kTopMargin); | 
|  | plot->SetTitle(GetDirectionAsString(direction) + " RTP packets"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateRtcpTypeGraph(PacketDirection direction, | 
|  | Plot* plot) { | 
|  | plot->AppendTimeSeries(CreateRtcpTypeTimeSeries( | 
|  | parsed_log_.transport_feedbacks(direction), config_, "TWCC", 1)); | 
|  | plot->AppendTimeSeries(CreateRtcpTypeTimeSeries( | 
|  | parsed_log_.receiver_reports(direction), config_, "RR", 2)); | 
|  | plot->AppendTimeSeries(CreateRtcpTypeTimeSeries( | 
|  | parsed_log_.sender_reports(direction), config_, "SR", 3)); | 
|  | plot->AppendTimeSeries(CreateRtcpTypeTimeSeries( | 
|  | parsed_log_.extended_reports(direction), config_, "XR", 4)); | 
|  | plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(parsed_log_.nacks(direction), | 
|  | config_, "NACK", 5)); | 
|  | plot->AppendTimeSeries(CreateRtcpTypeTimeSeries(parsed_log_.rembs(direction), | 
|  | config_, "REMB", 6)); | 
|  | plot->AppendTimeSeries( | 
|  | CreateRtcpTypeTimeSeries(parsed_log_.firs(direction), config_, "FIR", 7)); | 
|  | plot->AppendTimeSeries( | 
|  | CreateRtcpTypeTimeSeries(parsed_log_.plis(direction), config_, "PLI", 8)); | 
|  | plot->AppendTimeSeries( | 
|  | CreateRtcpTypeTimeSeries(parsed_log_.byes(direction), config_, "BYE", 9)); | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "RTCP type", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle(GetDirectionAsString(direction) + " RTCP packets"); | 
|  | plot->SetYAxisTickLabels({{1, "TWCC"}, | 
|  | {2, "RR"}, | 
|  | {3, "SR"}, | 
|  | {4, "XR"}, | 
|  | {5, "NACK"}, | 
|  | {6, "REMB"}, | 
|  | {7, "FIR"}, | 
|  | {8, "PLI"}, | 
|  | {9, "BYE"}}); | 
|  | } | 
|  |  | 
|  | template <typename IterableType> | 
|  | void EventLogAnalyzer::CreateAccumulatedPacketsTimeSeries( | 
|  | Plot* plot, | 
|  | const IterableType& packets, | 
|  | const std::string& label) { | 
|  | TimeSeries time_series(label, LineStyle::kStep); | 
|  | for (size_t i = 0; i < packets.size(); i++) { | 
|  | float x = config_.GetCallTimeSec(packets[i].log_time_us()); | 
|  | time_series.points.emplace_back(x, i + 1); | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateAccumulatedPacketsGraph(PacketDirection direction, | 
|  | Plot* plot) { | 
|  | for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) { | 
|  | if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) | 
|  | continue; | 
|  | std::string label = std::string("RTP ") + | 
|  | GetStreamName(parsed_log_, direction, stream.ssrc); | 
|  | CreateAccumulatedPacketsTimeSeries(plot, stream.packet_view, label); | 
|  | } | 
|  | std::string label = | 
|  | std::string("RTCP ") + "(" + GetDirectionAsShortString(direction) + ")"; | 
|  | if (direction == kIncomingPacket) { | 
|  | CreateAccumulatedPacketsTimeSeries( | 
|  | plot, parsed_log_.incoming_rtcp_packets(), label); | 
|  | } else { | 
|  | CreateAccumulatedPacketsTimeSeries( | 
|  | plot, parsed_log_.outgoing_rtcp_packets(), label); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Received Packets", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle(std::string("Accumulated ") + GetDirectionAsString(direction) + | 
|  | " RTP/RTCP packets"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreatePacketRateGraph(PacketDirection direction, | 
|  | Plot* plot) { | 
|  | auto CountPackets = [](auto packet) { return 1.0; }; | 
|  | for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) { | 
|  | // Filter on SSRC. | 
|  | if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) { | 
|  | continue; | 
|  | } | 
|  | TimeSeries time_series( | 
|  | std::string("RTP ") + | 
|  | GetStreamName(parsed_log_, direction, stream.ssrc), | 
|  | LineStyle::kLine); | 
|  | MovingAverage<LoggedRtpPacket, double>(CountPackets, stream.packet_view, | 
|  | config_, &time_series); | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  | TimeSeries time_series( | 
|  | std::string("RTCP ") + "(" + GetDirectionAsShortString(direction) + ")", | 
|  | LineStyle::kLine); | 
|  | if (direction == kIncomingPacket) { | 
|  | MovingAverage<LoggedRtcpPacketIncoming, double>( | 
|  | CountPackets, parsed_log_.incoming_rtcp_packets(), config_, | 
|  | &time_series); | 
|  | } else { | 
|  | MovingAverage<LoggedRtcpPacketOutgoing, double>( | 
|  | CountPackets, parsed_log_.outgoing_rtcp_packets(), config_, | 
|  | &time_series); | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Packet Rate (packets/s)", kBottomMargin, | 
|  | kTopMargin); | 
|  | plot->SetTitle("Rate of " + GetDirectionAsString(direction) + | 
|  | " RTP/RTCP packets"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateTotalPacketRateGraph(PacketDirection direction, | 
|  | Plot* plot) { | 
|  | // Contains a log timestamp to enable counting logged events of different | 
|  | // types using MovingAverage(). | 
|  | class LogTime { | 
|  | public: | 
|  | explicit LogTime(int64_t log_time_us) : log_time_us_(log_time_us) {} | 
|  |  | 
|  | int64_t log_time_us() const { return log_time_us_; } | 
|  |  | 
|  | private: | 
|  | int64_t log_time_us_; | 
|  | }; | 
|  |  | 
|  | std::vector<LogTime> packet_times; | 
|  | auto handle_rtp = [&](const LoggedRtpPacket& packet) { | 
|  | packet_times.emplace_back(packet.log_time_us()); | 
|  | }; | 
|  | RtcEventProcessor process; | 
|  | for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) { | 
|  | process.AddEvents(stream.packet_view, handle_rtp); | 
|  | } | 
|  | if (direction == kIncomingPacket) { | 
|  | auto handle_incoming_rtcp = [&](const LoggedRtcpPacketIncoming& packet) { | 
|  | packet_times.emplace_back(packet.log_time_us()); | 
|  | }; | 
|  | process.AddEvents(parsed_log_.incoming_rtcp_packets(), | 
|  | handle_incoming_rtcp); | 
|  | } else { | 
|  | auto handle_outgoing_rtcp = [&](const LoggedRtcpPacketOutgoing& packet) { | 
|  | packet_times.emplace_back(packet.log_time_us()); | 
|  | }; | 
|  | process.AddEvents(parsed_log_.outgoing_rtcp_packets(), | 
|  | handle_outgoing_rtcp); | 
|  | } | 
|  | process.ProcessEventsInOrder(); | 
|  | TimeSeries time_series(std::string("Total ") + "(" + | 
|  | GetDirectionAsShortString(direction) + ") packets", | 
|  | LineStyle::kLine); | 
|  | MovingAverage<LogTime, uint64_t>([](auto packet) { return 1; }, packet_times, | 
|  | config_, &time_series); | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Packet Rate (packets/s)", kBottomMargin, | 
|  | kTopMargin); | 
|  | plot->SetTitle("Rate of all " + GetDirectionAsString(direction) + | 
|  | " RTP/RTCP packets"); | 
|  | } | 
|  |  | 
|  | // For each SSRC, plot the time between the consecutive playouts. | 
|  | void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) { | 
|  | for (const auto& playout_stream : parsed_log_.audio_playout_events()) { | 
|  | uint32_t ssrc = playout_stream.first; | 
|  | if (!MatchingSsrc(ssrc, desired_ssrc_)) | 
|  | continue; | 
|  | absl::optional<int64_t> last_playout_ms; | 
|  | TimeSeries time_series(SsrcToString(ssrc), LineStyle::kBar); | 
|  | for (const auto& playout_event : playout_stream.second) { | 
|  | float x = config_.GetCallTimeSec(playout_event.log_time_us()); | 
|  | int64_t playout_time_ms = playout_event.log_time_ms(); | 
|  | // If there were no previous playouts, place the point on the x-axis. | 
|  | float y = playout_time_ms - last_playout_ms.value_or(playout_time_ms); | 
|  | time_series.points.push_back(TimeSeriesPoint(x, y)); | 
|  | last_playout_ms.emplace(playout_time_ms); | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin, | 
|  | kTopMargin); | 
|  | plot->SetTitle("Audio playout"); | 
|  | } | 
|  |  | 
|  | // For audio SSRCs, plot the audio level. | 
|  | void EventLogAnalyzer::CreateAudioLevelGraph(PacketDirection direction, | 
|  | Plot* plot) { | 
|  | for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) { | 
|  | if (!IsAudioSsrc(parsed_log_, direction, stream.ssrc)) | 
|  | continue; | 
|  | TimeSeries time_series(GetStreamName(parsed_log_, direction, stream.ssrc), | 
|  | LineStyle::kLine); | 
|  | for (auto& packet : stream.packet_view) { | 
|  | if (packet.header.extension.hasAudioLevel) { | 
|  | float x = config_.GetCallTimeSec(packet.log_time_us()); | 
|  | // The audio level is stored in -dBov (so e.g. -10 dBov is stored as 10) | 
|  | // Here we convert it to dBov. | 
|  | float y = static_cast<float>(-packet.header.extension.audioLevel); | 
|  | time_series.points.emplace_back(TimeSeriesPoint(x, y)); | 
|  | } | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetYAxis(-127, 0, "Audio level (dBov)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle(GetDirectionAsString(direction) + " audio level"); | 
|  | } | 
|  |  | 
|  | // For each SSRC, plot the sequence number difference between consecutive | 
|  | // incoming packets. | 
|  | void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) { | 
|  | for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) { | 
|  | // Filter on SSRC. | 
|  | if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TimeSeries time_series( | 
|  | GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc), | 
|  | LineStyle::kBar); | 
|  | auto GetSequenceNumberDiff = [](const LoggedRtpPacketIncoming& old_packet, | 
|  | const LoggedRtpPacketIncoming& new_packet) { | 
|  | int64_t diff = | 
|  | WrappingDifference(new_packet.rtp.header.sequenceNumber, | 
|  | old_packet.rtp.header.sequenceNumber, 1ul << 16); | 
|  | return diff; | 
|  | }; | 
|  | auto ToCallTime = [this](const LoggedRtpPacketIncoming& packet) { | 
|  | return this->config_.GetCallTimeSec(packet.log_time_us()); | 
|  | }; | 
|  | ProcessPairs<LoggedRtpPacketIncoming, float>( | 
|  | ToCallTime, GetSequenceNumberDiff, stream.incoming_packets, | 
|  | &time_series); | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin, | 
|  | kTopMargin); | 
|  | plot->SetTitle("Incoming sequence number delta"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateIncomingPacketLossGraph(Plot* plot) { | 
|  | for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) { | 
|  | const std::vector<LoggedRtpPacketIncoming>& packets = | 
|  | stream.incoming_packets; | 
|  | // Filter on SSRC. | 
|  | if (!MatchingSsrc(stream.ssrc, desired_ssrc_) || packets.empty()) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TimeSeries time_series( | 
|  | GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc), | 
|  | LineStyle::kLine, PointStyle::kHighlight); | 
|  | // TODO(terelius): Should the window and step size be read from the class | 
|  | // instead? | 
|  | const int64_t kWindowUs = 1000000; | 
|  | const int64_t kStep = 1000000; | 
|  | SeqNumUnwrapper<uint16_t> unwrapper_; | 
|  | SeqNumUnwrapper<uint16_t> prior_unwrapper_; | 
|  | size_t window_index_begin = 0; | 
|  | size_t window_index_end = 0; | 
|  | uint64_t highest_seq_number = | 
|  | unwrapper_.Unwrap(packets[0].rtp.header.sequenceNumber) - 1; | 
|  | uint64_t highest_prior_seq_number = | 
|  | prior_unwrapper_.Unwrap(packets[0].rtp.header.sequenceNumber) - 1; | 
|  |  | 
|  | for (int64_t t = config_.begin_time_; t < config_.end_time_ + kStep; | 
|  | t += kStep) { | 
|  | while (window_index_end < packets.size() && | 
|  | packets[window_index_end].rtp.log_time_us() < t) { | 
|  | uint64_t sequence_number = unwrapper_.Unwrap( | 
|  | packets[window_index_end].rtp.header.sequenceNumber); | 
|  | highest_seq_number = std::max(highest_seq_number, sequence_number); | 
|  | ++window_index_end; | 
|  | } | 
|  | while (window_index_begin < packets.size() && | 
|  | packets[window_index_begin].rtp.log_time_us() < t - kWindowUs) { | 
|  | uint64_t sequence_number = prior_unwrapper_.Unwrap( | 
|  | packets[window_index_begin].rtp.header.sequenceNumber); | 
|  | highest_prior_seq_number = | 
|  | std::max(highest_prior_seq_number, sequence_number); | 
|  | ++window_index_begin; | 
|  | } | 
|  | float x = config_.GetCallTimeSec(t); | 
|  | uint64_t expected_packets = highest_seq_number - highest_prior_seq_number; | 
|  | if (expected_packets > 0) { | 
|  | int64_t received_packets = window_index_end - window_index_begin; | 
|  | int64_t lost_packets = expected_packets - received_packets; | 
|  | float y = static_cast<float>(lost_packets) / expected_packets * 100; | 
|  | time_series.points.emplace_back(x, y); | 
|  | } | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Loss rate (in %)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("Incoming packet loss (derived from incoming packets)"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateIncomingDelayGraph(Plot* plot) { | 
|  | for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) { | 
|  | // Filter on SSRC. | 
|  | if (!MatchingSsrc(stream.ssrc, desired_ssrc_) || | 
|  | IsRtxSsrc(parsed_log_, kIncomingPacket, stream.ssrc)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const std::vector<LoggedRtpPacketIncoming>& packets = | 
|  | stream.incoming_packets; | 
|  | if (packets.size() < 100) { | 
|  | RTC_LOG(LS_WARNING) << "Can't estimate the RTP clock frequency with " | 
|  | << packets.size() << " packets in the stream."; | 
|  | continue; | 
|  | } | 
|  | int64_t segment_end_us = parsed_log_.first_log_segment().stop_time_us(); | 
|  | absl::optional<uint32_t> estimated_frequency = | 
|  | EstimateRtpClockFrequency(packets, segment_end_us); | 
|  | if (!estimated_frequency) | 
|  | continue; | 
|  | const double frequency_hz = *estimated_frequency; | 
|  | if (IsVideoSsrc(parsed_log_, kIncomingPacket, stream.ssrc) && | 
|  | frequency_hz != 90000) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "Video stream should use a 90 kHz clock but appears to use " | 
|  | << frequency_hz / 1000 << ". Discarding."; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto ToCallTime = [this](const LoggedRtpPacketIncoming& packet) { | 
|  | return this->config_.GetCallTimeSec(packet.log_time_us()); | 
|  | }; | 
|  | auto ToNetworkDelay = [frequency_hz]( | 
|  | const LoggedRtpPacketIncoming& old_packet, | 
|  | const LoggedRtpPacketIncoming& new_packet) { | 
|  | return NetworkDelayDiff_CaptureTime(old_packet, new_packet, frequency_hz); | 
|  | }; | 
|  |  | 
|  | TimeSeries capture_time_data( | 
|  | GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc) + | 
|  | " capture-time", | 
|  | LineStyle::kLine); | 
|  | AccumulatePairs<LoggedRtpPacketIncoming, double>( | 
|  | ToCallTime, ToNetworkDelay, packets, &capture_time_data); | 
|  | plot->AppendTimeSeries(std::move(capture_time_data)); | 
|  |  | 
|  | TimeSeries send_time_data( | 
|  | GetStreamName(parsed_log_, kIncomingPacket, stream.ssrc) + | 
|  | " abs-send-time", | 
|  | LineStyle::kLine); | 
|  | AccumulatePairs<LoggedRtpPacketIncoming, double>( | 
|  | ToCallTime, NetworkDelayDiff_AbsSendTime, packets, &send_time_data); | 
|  | plot->AppendTimeSeriesIfNotEmpty(std::move(send_time_data)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Delay (ms)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("Incoming network delay (relative to first packet)"); | 
|  | } | 
|  |  | 
|  | // Plot the fraction of packets lost (as perceived by the loss-based BWE). | 
|  | void EventLogAnalyzer::CreateFractionLossGraph(Plot* plot) { | 
|  | TimeSeries time_series("Fraction lost", LineStyle::kLine, | 
|  | PointStyle::kHighlight); | 
|  | for (auto& bwe_update : parsed_log_.bwe_loss_updates()) { | 
|  | float x = config_.GetCallTimeSec(bwe_update.log_time_us()); | 
|  | float y = static_cast<float>(bwe_update.fraction_lost) / 255 * 100; | 
|  | time_series.points.emplace_back(x, y); | 
|  | } | 
|  |  | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 10, "Loss rate (in %)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("Outgoing packet loss (as reported by BWE)"); | 
|  | } | 
|  |  | 
|  | // Plot the total bandwidth used by all RTP streams. | 
|  | void EventLogAnalyzer::CreateTotalIncomingBitrateGraph(Plot* plot) { | 
|  | // TODO(terelius): This could be provided by the parser. | 
|  | std::multimap<int64_t, size_t> packets_in_order; | 
|  | for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) { | 
|  | for (const LoggedRtpPacketIncoming& packet : stream.incoming_packets) | 
|  | packets_in_order.insert( | 
|  | std::make_pair(packet.rtp.log_time_us(), packet.rtp.total_length)); | 
|  | } | 
|  |  | 
|  | auto window_begin = packets_in_order.begin(); | 
|  | auto window_end = packets_in_order.begin(); | 
|  | size_t bytes_in_window = 0; | 
|  |  | 
|  | if (!packets_in_order.empty()) { | 
|  | // Calculate a moving average of the bitrate and store in a TimeSeries. | 
|  | TimeSeries bitrate_series("Bitrate", LineStyle::kLine); | 
|  | for (int64_t time = config_.begin_time_; | 
|  | time < config_.end_time_ + config_.step_; time += config_.step_) { | 
|  | while (window_end != packets_in_order.end() && window_end->first < time) { | 
|  | bytes_in_window += window_end->second; | 
|  | ++window_end; | 
|  | } | 
|  | while (window_begin != packets_in_order.end() && | 
|  | window_begin->first < time - config_.window_duration_) { | 
|  | RTC_DCHECK_LE(window_begin->second, bytes_in_window); | 
|  | bytes_in_window -= window_begin->second; | 
|  | ++window_begin; | 
|  | } | 
|  | float window_duration_in_seconds = | 
|  | static_cast<float>(config_.window_duration_) / kNumMicrosecsPerSec; | 
|  | float x = config_.GetCallTimeSec(time); | 
|  | float y = bytes_in_window * 8 / window_duration_in_seconds / 1000; | 
|  | bitrate_series.points.emplace_back(x, y); | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(bitrate_series)); | 
|  | } | 
|  |  | 
|  | // Overlay the outgoing REMB over incoming bitrate. | 
|  | TimeSeries remb_series("Remb", LineStyle::kStep); | 
|  | for (const auto& rtcp : parsed_log_.rembs(kOutgoingPacket)) { | 
|  | float x = config_.GetCallTimeSec(rtcp.log_time_us()); | 
|  | float y = static_cast<float>(rtcp.remb.bitrate_bps()) / 1000; | 
|  | remb_series.points.emplace_back(x, y); | 
|  | } | 
|  | plot->AppendTimeSeriesIfNotEmpty(std::move(remb_series)); | 
|  |  | 
|  | if (!parsed_log_.generic_packets_received().empty()) { | 
|  | TimeSeries time_series("Incoming generic bitrate", LineStyle::kLine); | 
|  | auto GetPacketSizeKilobits = [](const LoggedGenericPacketReceived& packet) { | 
|  | return packet.packet_length * 8.0 / 1000.0; | 
|  | }; | 
|  | MovingAverage<LoggedGenericPacketReceived, double>( | 
|  | GetPacketSizeKilobits, parsed_log_.generic_packets_received(), config_, | 
|  | &time_series); | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("Incoming RTP bitrate"); | 
|  | } | 
|  |  | 
|  | // Plot the total bandwidth used by all RTP streams. | 
|  | void EventLogAnalyzer::CreateTotalOutgoingBitrateGraph(Plot* plot, | 
|  | bool show_detector_state, | 
|  | bool show_alr_state) { | 
|  | // TODO(terelius): This could be provided by the parser. | 
|  | std::multimap<int64_t, size_t> packets_in_order; | 
|  | for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) { | 
|  | for (const LoggedRtpPacketOutgoing& packet : stream.outgoing_packets) | 
|  | packets_in_order.insert( | 
|  | std::make_pair(packet.rtp.log_time_us(), packet.rtp.total_length)); | 
|  | } | 
|  |  | 
|  | auto window_begin = packets_in_order.begin(); | 
|  | auto window_end = packets_in_order.begin(); | 
|  | size_t bytes_in_window = 0; | 
|  |  | 
|  | if (!packets_in_order.empty()) { | 
|  | // Calculate a moving average of the bitrate and store in a TimeSeries. | 
|  | TimeSeries bitrate_series("Bitrate", LineStyle::kLine); | 
|  | for (int64_t time = config_.begin_time_; | 
|  | time < config_.end_time_ + config_.step_; time += config_.step_) { | 
|  | while (window_end != packets_in_order.end() && window_end->first < time) { | 
|  | bytes_in_window += window_end->second; | 
|  | ++window_end; | 
|  | } | 
|  | while (window_begin != packets_in_order.end() && | 
|  | window_begin->first < time - config_.window_duration_) { | 
|  | RTC_DCHECK_LE(window_begin->second, bytes_in_window); | 
|  | bytes_in_window -= window_begin->second; | 
|  | ++window_begin; | 
|  | } | 
|  | float window_duration_in_seconds = | 
|  | static_cast<float>(config_.window_duration_) / kNumMicrosecsPerSec; | 
|  | float x = config_.GetCallTimeSec(time); | 
|  | float y = bytes_in_window * 8 / window_duration_in_seconds / 1000; | 
|  | bitrate_series.points.emplace_back(x, y); | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(bitrate_series)); | 
|  | } | 
|  |  | 
|  | // Overlay the send-side bandwidth estimate over the outgoing bitrate. | 
|  | TimeSeries loss_series("Loss-based estimate", LineStyle::kStep); | 
|  | for (auto& loss_update : parsed_log_.bwe_loss_updates()) { | 
|  | float x = config_.GetCallTimeSec(loss_update.log_time_us()); | 
|  | float y = static_cast<float>(loss_update.bitrate_bps) / 1000; | 
|  | loss_series.points.emplace_back(x, y); | 
|  | } | 
|  |  | 
|  | TimeSeries delay_series("Delay-based estimate", LineStyle::kStep); | 
|  | IntervalSeries overusing_series("Overusing", "#ff8e82", | 
|  | IntervalSeries::kHorizontal); | 
|  | IntervalSeries underusing_series("Underusing", "#5092fc", | 
|  | IntervalSeries::kHorizontal); | 
|  | IntervalSeries normal_series("Normal", "#c4ffc4", | 
|  | IntervalSeries::kHorizontal); | 
|  | IntervalSeries* last_series = &normal_series; | 
|  | double last_detector_switch = 0.0; | 
|  |  | 
|  | BandwidthUsage last_detector_state = BandwidthUsage::kBwNormal; | 
|  |  | 
|  | for (auto& delay_update : parsed_log_.bwe_delay_updates()) { | 
|  | float x = config_.GetCallTimeSec(delay_update.log_time_us()); | 
|  | float y = static_cast<float>(delay_update.bitrate_bps) / 1000; | 
|  |  | 
|  | if (last_detector_state != delay_update.detector_state) { | 
|  | last_series->intervals.emplace_back(last_detector_switch, x); | 
|  | last_detector_state = delay_update.detector_state; | 
|  | last_detector_switch = x; | 
|  |  | 
|  | switch (delay_update.detector_state) { | 
|  | case BandwidthUsage::kBwNormal: | 
|  | last_series = &normal_series; | 
|  | break; | 
|  | case BandwidthUsage::kBwUnderusing: | 
|  | last_series = &underusing_series; | 
|  | break; | 
|  | case BandwidthUsage::kBwOverusing: | 
|  | last_series = &overusing_series; | 
|  | break; | 
|  | case BandwidthUsage::kLast: | 
|  | RTC_NOTREACHED(); | 
|  | } | 
|  | } | 
|  |  | 
|  | delay_series.points.emplace_back(x, y); | 
|  | } | 
|  |  | 
|  | RTC_CHECK(last_series); | 
|  | last_series->intervals.emplace_back(last_detector_switch, config_.end_time_); | 
|  |  | 
|  | TimeSeries created_series("Probe cluster created.", LineStyle::kNone, | 
|  | PointStyle::kHighlight); | 
|  | for (auto& cluster : parsed_log_.bwe_probe_cluster_created_events()) { | 
|  | float x = config_.GetCallTimeSec(cluster.log_time_us()); | 
|  | float y = static_cast<float>(cluster.bitrate_bps) / 1000; | 
|  | created_series.points.emplace_back(x, y); | 
|  | } | 
|  |  | 
|  | TimeSeries result_series("Probing results.", LineStyle::kNone, | 
|  | PointStyle::kHighlight); | 
|  | for (auto& result : parsed_log_.bwe_probe_success_events()) { | 
|  | float x = config_.GetCallTimeSec(result.log_time_us()); | 
|  | float y = static_cast<float>(result.bitrate_bps) / 1000; | 
|  | result_series.points.emplace_back(x, y); | 
|  | } | 
|  |  | 
|  | TimeSeries probe_failures_series("Probe failed", LineStyle::kNone, | 
|  | PointStyle::kHighlight); | 
|  | for (auto& failure : parsed_log_.bwe_probe_failure_events()) { | 
|  | float x = config_.GetCallTimeSec(failure.log_time_us()); | 
|  | probe_failures_series.points.emplace_back(x, 0); | 
|  | } | 
|  |  | 
|  | IntervalSeries alr_state("ALR", "#555555", IntervalSeries::kHorizontal); | 
|  | bool previously_in_alr = false; | 
|  | int64_t alr_start = 0; | 
|  | for (auto& alr : parsed_log_.alr_state_events()) { | 
|  | float y = config_.GetCallTimeSec(alr.log_time_us()); | 
|  | if (!previously_in_alr && alr.in_alr) { | 
|  | alr_start = alr.log_time_us(); | 
|  | previously_in_alr = true; | 
|  | } else if (previously_in_alr && !alr.in_alr) { | 
|  | float x = config_.GetCallTimeSec(alr_start); | 
|  | alr_state.intervals.emplace_back(x, y); | 
|  | previously_in_alr = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (previously_in_alr) { | 
|  | float x = config_.GetCallTimeSec(alr_start); | 
|  | float y = config_.GetCallTimeSec(config_.end_time_); | 
|  | alr_state.intervals.emplace_back(x, y); | 
|  | } | 
|  |  | 
|  | if (show_detector_state) { | 
|  | plot->AppendIntervalSeries(std::move(overusing_series)); | 
|  | plot->AppendIntervalSeries(std::move(underusing_series)); | 
|  | plot->AppendIntervalSeries(std::move(normal_series)); | 
|  | } | 
|  |  | 
|  | if (show_alr_state) { | 
|  | plot->AppendIntervalSeries(std::move(alr_state)); | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(loss_series)); | 
|  | plot->AppendTimeSeriesIfNotEmpty(std::move(probe_failures_series)); | 
|  | plot->AppendTimeSeries(std::move(delay_series)); | 
|  | plot->AppendTimeSeries(std::move(created_series)); | 
|  | plot->AppendTimeSeries(std::move(result_series)); | 
|  |  | 
|  | // Overlay the incoming REMB over the outgoing bitrate. | 
|  | TimeSeries remb_series("Remb", LineStyle::kStep); | 
|  | for (const auto& rtcp : parsed_log_.rembs(kIncomingPacket)) { | 
|  | float x = config_.GetCallTimeSec(rtcp.log_time_us()); | 
|  | float y = static_cast<float>(rtcp.remb.bitrate_bps()) / 1000; | 
|  | remb_series.points.emplace_back(x, y); | 
|  | } | 
|  | plot->AppendTimeSeriesIfNotEmpty(std::move(remb_series)); | 
|  |  | 
|  | if (!parsed_log_.generic_packets_sent().empty()) { | 
|  | { | 
|  | TimeSeries time_series("Outgoing generic total bitrate", | 
|  | LineStyle::kLine); | 
|  | auto GetPacketSizeKilobits = [](const LoggedGenericPacketSent& packet) { | 
|  | return packet.packet_length() * 8.0 / 1000.0; | 
|  | }; | 
|  | MovingAverage<LoggedGenericPacketSent, double>( | 
|  | GetPacketSizeKilobits, parsed_log_.generic_packets_sent(), config_, | 
|  | &time_series); | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  |  | 
|  | { | 
|  | TimeSeries time_series("Outgoing generic payload bitrate", | 
|  | LineStyle::kLine); | 
|  | auto GetPacketSizeKilobits = [](const LoggedGenericPacketSent& packet) { | 
|  | return packet.payload_length * 8.0 / 1000.0; | 
|  | }; | 
|  | MovingAverage<LoggedGenericPacketSent, double>( | 
|  | GetPacketSizeKilobits, parsed_log_.generic_packets_sent(), config_, | 
|  | &time_series); | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("Outgoing RTP bitrate"); | 
|  | } | 
|  |  | 
|  | // For each SSRC, plot the bandwidth used by that stream. | 
|  | void EventLogAnalyzer::CreateStreamBitrateGraph(PacketDirection direction, | 
|  | Plot* plot) { | 
|  | for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) { | 
|  | // Filter on SSRC. | 
|  | if (!MatchingSsrc(stream.ssrc, desired_ssrc_)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TimeSeries time_series(GetStreamName(parsed_log_, direction, stream.ssrc), | 
|  | LineStyle::kLine); | 
|  | auto GetPacketSizeKilobits = [](const LoggedRtpPacket& packet) { | 
|  | return packet.total_length * 8.0 / 1000.0; | 
|  | }; | 
|  | MovingAverage<LoggedRtpPacket, double>( | 
|  | GetPacketSizeKilobits, stream.packet_view, config_, &time_series); | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle(GetDirectionAsString(direction) + " bitrate per stream"); | 
|  | } | 
|  |  | 
|  | // Plot the bitrate allocation for each temporal and spatial layer. | 
|  | // Computed from RTCP XR target bitrate block, so the graph is only populated if | 
|  | // those are sent. | 
|  | void EventLogAnalyzer::CreateBitrateAllocationGraph(PacketDirection direction, | 
|  | Plot* plot) { | 
|  | std::map<LayerDescription, TimeSeries> time_series; | 
|  | const auto& xr_list = parsed_log_.extended_reports(direction); | 
|  | for (const auto& rtcp : xr_list) { | 
|  | const absl::optional<rtcp::TargetBitrate>& target_bitrate = | 
|  | rtcp.xr.target_bitrate(); | 
|  | if (!target_bitrate.has_value()) | 
|  | continue; | 
|  | for (const auto& bitrate_item : target_bitrate->GetTargetBitrates()) { | 
|  | LayerDescription layer(rtcp.xr.sender_ssrc(), bitrate_item.spatial_layer, | 
|  | bitrate_item.temporal_layer); | 
|  | auto time_series_it = time_series.find(layer); | 
|  | if (time_series_it == time_series.end()) { | 
|  | std::string layer_name = GetLayerName(layer); | 
|  | bool inserted; | 
|  | std::tie(time_series_it, inserted) = time_series.insert( | 
|  | std::make_pair(layer, TimeSeries(layer_name, LineStyle::kStep))); | 
|  | RTC_DCHECK(inserted); | 
|  | } | 
|  | float x = config_.GetCallTimeSec(rtcp.log_time_us()); | 
|  | float y = bitrate_item.target_bitrate_kbps; | 
|  | time_series_it->second.points.emplace_back(x, y); | 
|  | } | 
|  | } | 
|  | for (auto& layer : time_series) { | 
|  | plot->AppendTimeSeries(std::move(layer.second)); | 
|  | } | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); | 
|  | if (direction == kIncomingPacket) | 
|  | plot->SetTitle("Target bitrate per incoming layer"); | 
|  | else | 
|  | plot->SetTitle("Target bitrate per outgoing layer"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateGoogCcSimulationGraph(Plot* plot) { | 
|  | TimeSeries target_rates("Simulated target rate", LineStyle::kStep, | 
|  | PointStyle::kHighlight); | 
|  | TimeSeries delay_based("Logged delay-based estimate", LineStyle::kStep, | 
|  | PointStyle::kHighlight); | 
|  | TimeSeries loss_based("Logged loss-based estimate", LineStyle::kStep, | 
|  | PointStyle::kHighlight); | 
|  | TimeSeries probe_results("Logged probe success", LineStyle::kNone, | 
|  | PointStyle::kHighlight); | 
|  |  | 
|  | LogBasedNetworkControllerSimulation simulation( | 
|  | std::make_unique<GoogCcNetworkControllerFactory>(), | 
|  | [&](const NetworkControlUpdate& update, Timestamp at_time) { | 
|  | if (update.target_rate) { | 
|  | target_rates.points.emplace_back( | 
|  | config_.GetCallTimeSec(at_time.us()), | 
|  | update.target_rate->target_rate.kbps<float>()); | 
|  | } | 
|  | }); | 
|  |  | 
|  | simulation.ProcessEventsInLog(parsed_log_); | 
|  | for (const auto& logged : parsed_log_.bwe_delay_updates()) | 
|  | delay_based.points.emplace_back( | 
|  | config_.GetCallTimeSec(logged.log_time_us()), | 
|  | logged.bitrate_bps / 1000); | 
|  | for (const auto& logged : parsed_log_.bwe_probe_success_events()) | 
|  | probe_results.points.emplace_back( | 
|  | config_.GetCallTimeSec(logged.log_time_us()), | 
|  | logged.bitrate_bps / 1000); | 
|  | for (const auto& logged : parsed_log_.bwe_loss_updates()) | 
|  | loss_based.points.emplace_back(config_.GetCallTimeSec(logged.log_time_us()), | 
|  | logged.bitrate_bps / 1000); | 
|  |  | 
|  | plot->AppendTimeSeries(std::move(delay_based)); | 
|  | plot->AppendTimeSeries(std::move(loss_based)); | 
|  | plot->AppendTimeSeries(std::move(probe_results)); | 
|  | plot->AppendTimeSeries(std::move(target_rates)); | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("Simulated BWE behavior"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateSendSideBweSimulationGraph(Plot* plot) { | 
|  | using RtpPacketType = LoggedRtpPacketOutgoing; | 
|  | using TransportFeedbackType = LoggedRtcpPacketTransportFeedback; | 
|  |  | 
|  | // TODO(terelius): This could be provided by the parser. | 
|  | std::multimap<int64_t, const RtpPacketType*> outgoing_rtp; | 
|  | for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) { | 
|  | for (const RtpPacketType& rtp_packet : stream.outgoing_packets) | 
|  | outgoing_rtp.insert( | 
|  | std::make_pair(rtp_packet.rtp.log_time_us(), &rtp_packet)); | 
|  | } | 
|  |  | 
|  | const std::vector<TransportFeedbackType>& incoming_rtcp = | 
|  | parsed_log_.transport_feedbacks(kIncomingPacket); | 
|  |  | 
|  | SimulatedClock clock(0); | 
|  | BitrateObserver observer; | 
|  | RtcEventLogNull null_event_log; | 
|  | PacketRouter packet_router; | 
|  | PacedSender pacer(&clock, &packet_router, &null_event_log); | 
|  | TransportFeedbackAdapter transport_feedback; | 
|  | auto factory = GoogCcNetworkControllerFactory(); | 
|  | TimeDelta process_interval = factory.GetProcessInterval(); | 
|  | // TODO(holmer): Log the call config and use that here instead. | 
|  | static const uint32_t kDefaultStartBitrateBps = 300000; | 
|  | NetworkControllerConfig cc_config; | 
|  | cc_config.constraints.at_time = Timestamp::Micros(clock.TimeInMicroseconds()); | 
|  | cc_config.constraints.starting_rate = | 
|  | DataRate::BitsPerSec(kDefaultStartBitrateBps); | 
|  | cc_config.event_log = &null_event_log; | 
|  | auto goog_cc = factory.Create(cc_config); | 
|  |  | 
|  | TimeSeries time_series("Delay-based estimate", LineStyle::kStep, | 
|  | PointStyle::kHighlight); | 
|  | TimeSeries acked_time_series("Raw acked bitrate", LineStyle::kLine, | 
|  | PointStyle::kHighlight); | 
|  | TimeSeries robust_time_series("Robust throughput estimate", LineStyle::kLine, | 
|  | PointStyle::kHighlight); | 
|  | TimeSeries acked_estimate_time_series("Ackednowledged bitrate estimate", | 
|  | LineStyle::kLine, | 
|  | PointStyle::kHighlight); | 
|  |  | 
|  | auto rtp_iterator = outgoing_rtp.begin(); | 
|  | auto rtcp_iterator = incoming_rtcp.begin(); | 
|  |  | 
|  | auto NextRtpTime = [&]() { | 
|  | if (rtp_iterator != outgoing_rtp.end()) | 
|  | return static_cast<int64_t>(rtp_iterator->first); | 
|  | return std::numeric_limits<int64_t>::max(); | 
|  | }; | 
|  |  | 
|  | auto NextRtcpTime = [&]() { | 
|  | if (rtcp_iterator != incoming_rtcp.end()) | 
|  | return static_cast<int64_t>(rtcp_iterator->log_time_us()); | 
|  | return std::numeric_limits<int64_t>::max(); | 
|  | }; | 
|  | int64_t next_process_time_us_ = std::min({NextRtpTime(), NextRtcpTime()}); | 
|  |  | 
|  | auto NextProcessTime = [&]() { | 
|  | if (rtcp_iterator != incoming_rtcp.end() || | 
|  | rtp_iterator != outgoing_rtp.end()) { | 
|  | return next_process_time_us_; | 
|  | } | 
|  | return std::numeric_limits<int64_t>::max(); | 
|  | }; | 
|  |  | 
|  | RateStatistics acked_bitrate(750, 8000); | 
|  | test::ExplicitKeyValueConfig throughput_config( | 
|  | "WebRTC-Bwe-RobustThroughputEstimatorSettings/" | 
|  | "enabled:true,reduce_bias:true,assume_shared_link:false,initial_packets:" | 
|  | "10,min_packets:25,window_duration:750ms,unacked_weight:0.5/"); | 
|  | std::unique_ptr<AcknowledgedBitrateEstimatorInterface> | 
|  | robust_throughput_estimator( | 
|  | AcknowledgedBitrateEstimatorInterface::Create(&throughput_config)); | 
|  | FieldTrialBasedConfig field_trial_config; | 
|  | std::unique_ptr<AcknowledgedBitrateEstimatorInterface> | 
|  | acknowledged_bitrate_estimator( | 
|  | AcknowledgedBitrateEstimatorInterface::Create(&field_trial_config)); | 
|  | int64_t time_us = | 
|  | std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()}); | 
|  | int64_t last_update_us = 0; | 
|  | while (time_us != std::numeric_limits<int64_t>::max()) { | 
|  | clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds()); | 
|  | if (clock.TimeInMicroseconds() >= NextRtpTime()) { | 
|  | RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime()); | 
|  | const RtpPacketType& rtp_packet = *rtp_iterator->second; | 
|  | if (rtp_packet.rtp.header.extension.hasTransportSequenceNumber) { | 
|  | RtpPacketSendInfo packet_info; | 
|  | packet_info.ssrc = rtp_packet.rtp.header.ssrc; | 
|  | packet_info.transport_sequence_number = | 
|  | rtp_packet.rtp.header.extension.transportSequenceNumber; | 
|  | packet_info.rtp_sequence_number = rtp_packet.rtp.header.sequenceNumber; | 
|  | packet_info.length = rtp_packet.rtp.total_length; | 
|  | if (IsRtxSsrc(parsed_log_, PacketDirection::kOutgoingPacket, | 
|  | rtp_packet.rtp.header.ssrc)) { | 
|  | // Don't set the optional media type as we don't know if it is | 
|  | // a retransmission, FEC or padding. | 
|  | } else if (IsVideoSsrc(parsed_log_, PacketDirection::kOutgoingPacket, | 
|  | rtp_packet.rtp.header.ssrc)) { | 
|  | packet_info.packet_type = RtpPacketMediaType::kVideo; | 
|  | } else if (IsAudioSsrc(parsed_log_, PacketDirection::kOutgoingPacket, | 
|  | rtp_packet.rtp.header.ssrc)) { | 
|  | packet_info.packet_type = RtpPacketMediaType::kAudio; | 
|  | } | 
|  | transport_feedback.AddPacket( | 
|  | packet_info, | 
|  | 0u,  // Per packet overhead bytes. | 
|  | Timestamp::Micros(rtp_packet.rtp.log_time_us())); | 
|  | } | 
|  | rtc::SentPacket sent_packet; | 
|  | sent_packet.send_time_ms = rtp_packet.rtp.log_time_ms(); | 
|  | sent_packet.info.included_in_allocation = true; | 
|  | sent_packet.info.packet_size_bytes = rtp_packet.rtp.total_length; | 
|  | if (rtp_packet.rtp.header.extension.hasTransportSequenceNumber) { | 
|  | sent_packet.packet_id = | 
|  | rtp_packet.rtp.header.extension.transportSequenceNumber; | 
|  | sent_packet.info.included_in_feedback = true; | 
|  | } | 
|  | auto sent_msg = transport_feedback.ProcessSentPacket(sent_packet); | 
|  | if (sent_msg) | 
|  | observer.Update(goog_cc->OnSentPacket(*sent_msg)); | 
|  | ++rtp_iterator; | 
|  | } | 
|  | if (clock.TimeInMicroseconds() >= NextRtcpTime()) { | 
|  | RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime()); | 
|  |  | 
|  | auto feedback_msg = transport_feedback.ProcessTransportFeedback( | 
|  | rtcp_iterator->transport_feedback, | 
|  | Timestamp::Millis(clock.TimeInMilliseconds())); | 
|  | absl::optional<uint32_t> bitrate_bps; | 
|  | if (feedback_msg) { | 
|  | observer.Update(goog_cc->OnTransportPacketsFeedback(*feedback_msg)); | 
|  | std::vector<PacketResult> feedback = | 
|  | feedback_msg->SortedByReceiveTime(); | 
|  | if (!feedback.empty()) { | 
|  | acknowledged_bitrate_estimator->IncomingPacketFeedbackVector( | 
|  | feedback); | 
|  | robust_throughput_estimator->IncomingPacketFeedbackVector(feedback); | 
|  | for (const PacketResult& packet : feedback) { | 
|  | acked_bitrate.Update(packet.sent_packet.size.bytes(), | 
|  | packet.receive_time.ms()); | 
|  | } | 
|  | bitrate_bps = acked_bitrate.Rate(feedback.back().receive_time.ms()); | 
|  | } | 
|  | } | 
|  |  | 
|  | float x = config_.GetCallTimeSec(clock.TimeInMicroseconds()); | 
|  | float y = bitrate_bps.value_or(0) / 1000; | 
|  | acked_time_series.points.emplace_back(x, y); | 
|  | y = robust_throughput_estimator->bitrate() | 
|  | .value_or(DataRate::Zero()) | 
|  | .kbps(); | 
|  | robust_time_series.points.emplace_back(x, y); | 
|  | y = acknowledged_bitrate_estimator->bitrate() | 
|  | .value_or(DataRate::Zero()) | 
|  | .kbps(); | 
|  | acked_estimate_time_series.points.emplace_back(x, y); | 
|  | ++rtcp_iterator; | 
|  | } | 
|  | if (clock.TimeInMicroseconds() >= NextProcessTime()) { | 
|  | RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime()); | 
|  | ProcessInterval msg; | 
|  | msg.at_time = Timestamp::Micros(clock.TimeInMicroseconds()); | 
|  | observer.Update(goog_cc->OnProcessInterval(msg)); | 
|  | next_process_time_us_ += process_interval.us(); | 
|  | } | 
|  | if (observer.GetAndResetBitrateUpdated() || | 
|  | time_us - last_update_us >= 1e6) { | 
|  | uint32_t y = observer.last_bitrate_bps() / 1000; | 
|  | float x = config_.GetCallTimeSec(clock.TimeInMicroseconds()); | 
|  | time_series.points.emplace_back(x, y); | 
|  | last_update_us = time_us; | 
|  | } | 
|  | time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()}); | 
|  | } | 
|  | // Add the data set to the plot. | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | plot->AppendTimeSeries(std::move(robust_time_series)); | 
|  | plot->AppendTimeSeries(std::move(acked_time_series)); | 
|  | plot->AppendTimeSeriesIfNotEmpty(std::move(acked_estimate_time_series)); | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("Simulated send-side BWE behavior"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateReceiveSideBweSimulationGraph(Plot* plot) { | 
|  | using RtpPacketType = LoggedRtpPacketIncoming; | 
|  | class RembInterceptor { | 
|  | public: | 
|  | void SendRemb(uint32_t bitrate_bps, std::vector<uint32_t> ssrcs) { | 
|  | last_bitrate_bps_ = bitrate_bps; | 
|  | bitrate_updated_ = true; | 
|  | } | 
|  | uint32_t last_bitrate_bps() const { return last_bitrate_bps_; } | 
|  | bool GetAndResetBitrateUpdated() { | 
|  | bool bitrate_updated = bitrate_updated_; | 
|  | bitrate_updated_ = false; | 
|  | return bitrate_updated; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // We don't know the start bitrate, but assume that it is the default 300 | 
|  | // kbps. | 
|  | uint32_t last_bitrate_bps_ = 300000; | 
|  | bool bitrate_updated_ = false; | 
|  | }; | 
|  |  | 
|  | std::multimap<int64_t, const RtpPacketType*> incoming_rtp; | 
|  |  | 
|  | for (const auto& stream : parsed_log_.incoming_rtp_packets_by_ssrc()) { | 
|  | if (IsVideoSsrc(parsed_log_, kIncomingPacket, stream.ssrc)) { | 
|  | for (const auto& rtp_packet : stream.incoming_packets) | 
|  | incoming_rtp.insert( | 
|  | std::make_pair(rtp_packet.rtp.log_time_us(), &rtp_packet)); | 
|  | } | 
|  | } | 
|  |  | 
|  | SimulatedClock clock(0); | 
|  | RembInterceptor remb_interceptor; | 
|  | ReceiveSideCongestionController rscc( | 
|  | &clock, [](auto...) {}, | 
|  | absl::bind_front(&RembInterceptor::SendRemb, &remb_interceptor), nullptr); | 
|  | // TODO(holmer): Log the call config and use that here instead. | 
|  | // static const uint32_t kDefaultStartBitrateBps = 300000; | 
|  | // rscc.SetBweBitrates(0, kDefaultStartBitrateBps, -1); | 
|  |  | 
|  | TimeSeries time_series("Receive side estimate", LineStyle::kLine, | 
|  | PointStyle::kHighlight); | 
|  | TimeSeries acked_time_series("Received bitrate", LineStyle::kLine); | 
|  |  | 
|  | RateStatistics acked_bitrate(250, 8000); | 
|  | int64_t last_update_us = 0; | 
|  | for (const auto& kv : incoming_rtp) { | 
|  | const RtpPacketType& packet = *kv.second; | 
|  | int64_t arrival_time_ms = packet.rtp.log_time_us() / 1000; | 
|  | size_t payload = packet.rtp.total_length; /*Should subtract header?*/ | 
|  | clock.AdvanceTimeMicroseconds(packet.rtp.log_time_us() - | 
|  | clock.TimeInMicroseconds()); | 
|  | rscc.OnReceivedPacket(arrival_time_ms, payload, packet.rtp.header); | 
|  | acked_bitrate.Update(payload, arrival_time_ms); | 
|  | absl::optional<uint32_t> bitrate_bps = acked_bitrate.Rate(arrival_time_ms); | 
|  | if (bitrate_bps) { | 
|  | uint32_t y = *bitrate_bps / 1000; | 
|  | float x = config_.GetCallTimeSec(clock.TimeInMicroseconds()); | 
|  | acked_time_series.points.emplace_back(x, y); | 
|  | } | 
|  | if (remb_interceptor.GetAndResetBitrateUpdated() || | 
|  | clock.TimeInMicroseconds() - last_update_us >= 1e6) { | 
|  | uint32_t y = remb_interceptor.last_bitrate_bps() / 1000; | 
|  | float x = config_.GetCallTimeSec(clock.TimeInMicroseconds()); | 
|  | time_series.points.emplace_back(x, y); | 
|  | last_update_us = clock.TimeInMicroseconds(); | 
|  | } | 
|  | } | 
|  | // Add the data set to the plot. | 
|  | plot->AppendTimeSeries(std::move(time_series)); | 
|  | plot->AppendTimeSeries(std::move(acked_time_series)); | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("Simulated receive-side BWE behavior"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateNetworkDelayFeedbackGraph(Plot* plot) { | 
|  | TimeSeries time_series("Network delay", LineStyle::kLine, | 
|  | PointStyle::kHighlight); | 
|  | int64_t min_send_receive_diff_ms = std::numeric_limits<int64_t>::max(); | 
|  | int64_t min_rtt_ms = std::numeric_limits<int64_t>::max(); | 
|  |  | 
|  | int64_t prev_y = 0; | 
|  | std::vector<MatchedSendArrivalTimes> matched_rtp_rtcp = | 
|  | GetNetworkTrace(parsed_log_); | 
|  | absl::c_stable_sort(matched_rtp_rtcp, [](const MatchedSendArrivalTimes& a, | 
|  | const MatchedSendArrivalTimes& b) { | 
|  | return a.feedback_arrival_time_ms < b.feedback_arrival_time_ms || | 
|  | (a.feedback_arrival_time_ms == b.feedback_arrival_time_ms && | 
|  | a.arrival_time_ms < b.arrival_time_ms); | 
|  | }); | 
|  | for (const auto& packet : matched_rtp_rtcp) { | 
|  | if (packet.arrival_time_ms == MatchedSendArrivalTimes::kNotReceived) | 
|  | continue; | 
|  | float x = config_.GetCallTimeSec(1000 * packet.feedback_arrival_time_ms); | 
|  | int64_t y = packet.arrival_time_ms - packet.send_time_ms; | 
|  | prev_y = y; | 
|  | int64_t rtt_ms = packet.feedback_arrival_time_ms - packet.send_time_ms; | 
|  | min_rtt_ms = std::min(rtt_ms, min_rtt_ms); | 
|  | min_send_receive_diff_ms = std::min(y, min_send_receive_diff_ms); | 
|  | time_series.points.emplace_back(x, y); | 
|  | } | 
|  |  | 
|  | // We assume that the base network delay (w/o queues) is equal to half | 
|  | // the minimum RTT. Therefore rescale the delays by subtracting the minimum | 
|  | // observed 1-ways delay and add half the minimum RTT. | 
|  | const int64_t estimated_clock_offset_ms = | 
|  | min_send_receive_diff_ms - min_rtt_ms / 2; | 
|  | for (TimeSeriesPoint& point : time_series.points) | 
|  | point.y -= estimated_clock_offset_ms; | 
|  |  | 
|  | // Add the data set to the plot. | 
|  | plot->AppendTimeSeriesIfNotEmpty(std::move(time_series)); | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("Outgoing network delay (based on per-packet feedback)"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreatePacerDelayGraph(Plot* plot) { | 
|  | for (const auto& stream : parsed_log_.outgoing_rtp_packets_by_ssrc()) { | 
|  | const std::vector<LoggedRtpPacketOutgoing>& packets = | 
|  | stream.outgoing_packets; | 
|  |  | 
|  | if (IsRtxSsrc(parsed_log_, kOutgoingPacket, stream.ssrc)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (packets.size() < 2) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "Can't estimate a the RTP clock frequency or the " | 
|  | "pacer delay with less than 2 packets in the stream"; | 
|  | continue; | 
|  | } | 
|  | int64_t segment_end_us = parsed_log_.first_log_segment().stop_time_us(); | 
|  | absl::optional<uint32_t> estimated_frequency = | 
|  | EstimateRtpClockFrequency(packets, segment_end_us); | 
|  | if (!estimated_frequency) | 
|  | continue; | 
|  | if (IsVideoSsrc(parsed_log_, kOutgoingPacket, stream.ssrc) && | 
|  | *estimated_frequency != 90000) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "Video stream should use a 90 kHz clock but appears to use " | 
|  | << *estimated_frequency / 1000 << ". Discarding."; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TimeSeries pacer_delay_series( | 
|  | GetStreamName(parsed_log_, kOutgoingPacket, stream.ssrc) + "(" + | 
|  | std::to_string(*estimated_frequency / 1000) + " kHz)", | 
|  | LineStyle::kLine, PointStyle::kHighlight); | 
|  | SeqNumUnwrapper<uint32_t> timestamp_unwrapper; | 
|  | uint64_t first_capture_timestamp = | 
|  | timestamp_unwrapper.Unwrap(packets.front().rtp.header.timestamp); | 
|  | uint64_t first_send_timestamp = packets.front().rtp.log_time_us(); | 
|  | for (const auto& packet : packets) { | 
|  | double capture_time_ms = (static_cast<double>(timestamp_unwrapper.Unwrap( | 
|  | packet.rtp.header.timestamp)) - | 
|  | first_capture_timestamp) / | 
|  | *estimated_frequency * 1000; | 
|  | double send_time_ms = | 
|  | static_cast<double>(packet.rtp.log_time_us() - first_send_timestamp) / | 
|  | 1000; | 
|  | float x = config_.GetCallTimeSec(packet.rtp.log_time_us()); | 
|  | float y = send_time_ms - capture_time_ms; | 
|  | pacer_delay_series.points.emplace_back(x, y); | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(pacer_delay_series)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 10, "Pacer delay (ms)", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle( | 
|  | "Delay from capture to send time. (First packet normalized to 0.)"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateTimestampGraph(PacketDirection direction, | 
|  | Plot* plot) { | 
|  | for (const auto& stream : parsed_log_.rtp_packets_by_ssrc(direction)) { | 
|  | TimeSeries rtp_timestamps( | 
|  | GetStreamName(parsed_log_, direction, stream.ssrc) + " capture-time", | 
|  | LineStyle::kLine, PointStyle::kHighlight); | 
|  | for (const auto& packet : stream.packet_view) { | 
|  | float x = config_.GetCallTimeSec(packet.log_time_us()); | 
|  | float y = packet.header.timestamp; | 
|  | rtp_timestamps.points.emplace_back(x, y); | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(rtp_timestamps)); | 
|  |  | 
|  | TimeSeries rtcp_timestamps( | 
|  | GetStreamName(parsed_log_, direction, stream.ssrc) + | 
|  | " rtcp capture-time", | 
|  | LineStyle::kLine, PointStyle::kHighlight); | 
|  | // TODO(terelius): Why only sender reports? | 
|  | const auto& sender_reports = parsed_log_.sender_reports(direction); | 
|  | for (const auto& rtcp : sender_reports) { | 
|  | if (rtcp.sr.sender_ssrc() != stream.ssrc) | 
|  | continue; | 
|  | float x = config_.GetCallTimeSec(rtcp.log_time_us()); | 
|  | float y = rtcp.sr.rtp_timestamp(); | 
|  | rtcp_timestamps.points.emplace_back(x, y); | 
|  | } | 
|  | plot->AppendTimeSeriesIfNotEmpty(std::move(rtcp_timestamps)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "RTP timestamp", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle(GetDirectionAsString(direction) + " timestamps"); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateSenderAndReceiverReportPlot( | 
|  | PacketDirection direction, | 
|  | rtc::FunctionView<float(const rtcp::ReportBlock&)> fy, | 
|  | std::string title, | 
|  | std::string yaxis_label, | 
|  | Plot* plot) { | 
|  | std::map<uint32_t, TimeSeries> sr_reports_by_ssrc; | 
|  | const auto& sender_reports = parsed_log_.sender_reports(direction); | 
|  | for (const auto& rtcp : sender_reports) { | 
|  | float x = config_.GetCallTimeSec(rtcp.log_time_us()); | 
|  | uint32_t ssrc = rtcp.sr.sender_ssrc(); | 
|  | for (const auto& block : rtcp.sr.report_blocks()) { | 
|  | float y = fy(block); | 
|  | auto sr_report_it = sr_reports_by_ssrc.find(ssrc); | 
|  | bool inserted; | 
|  | if (sr_report_it == sr_reports_by_ssrc.end()) { | 
|  | std::tie(sr_report_it, inserted) = sr_reports_by_ssrc.emplace( | 
|  | ssrc, TimeSeries(GetStreamName(parsed_log_, direction, ssrc) + | 
|  | " Sender Reports", | 
|  | LineStyle::kLine, PointStyle::kHighlight)); | 
|  | } | 
|  | sr_report_it->second.points.emplace_back(x, y); | 
|  | } | 
|  | } | 
|  | for (auto& kv : sr_reports_by_ssrc) { | 
|  | plot->AppendTimeSeries(std::move(kv.second)); | 
|  | } | 
|  |  | 
|  | std::map<uint32_t, TimeSeries> rr_reports_by_ssrc; | 
|  | const auto& receiver_reports = parsed_log_.receiver_reports(direction); | 
|  | for (const auto& rtcp : receiver_reports) { | 
|  | float x = config_.GetCallTimeSec(rtcp.log_time_us()); | 
|  | uint32_t ssrc = rtcp.rr.sender_ssrc(); | 
|  | for (const auto& block : rtcp.rr.report_blocks()) { | 
|  | float y = fy(block); | 
|  | auto rr_report_it = rr_reports_by_ssrc.find(ssrc); | 
|  | bool inserted; | 
|  | if (rr_report_it == rr_reports_by_ssrc.end()) { | 
|  | std::tie(rr_report_it, inserted) = rr_reports_by_ssrc.emplace( | 
|  | ssrc, TimeSeries(GetStreamName(parsed_log_, direction, ssrc) + | 
|  | " Receiver Reports", | 
|  | LineStyle::kLine, PointStyle::kHighlight)); | 
|  | } | 
|  | rr_report_it->second.points.emplace_back(x, y); | 
|  | } | 
|  | } | 
|  | for (auto& kv : rr_reports_by_ssrc) { | 
|  | plot->AppendTimeSeries(std::move(kv.second)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, yaxis_label, kBottomMargin, kTopMargin); | 
|  | plot->SetTitle(title); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateIceCandidatePairConfigGraph(Plot* plot) { | 
|  | std::map<uint32_t, TimeSeries> configs_by_cp_id; | 
|  | for (const auto& config : parsed_log_.ice_candidate_pair_configs()) { | 
|  | if (configs_by_cp_id.find(config.candidate_pair_id) == | 
|  | configs_by_cp_id.end()) { | 
|  | const std::string candidate_pair_desc = | 
|  | GetCandidatePairLogDescriptionAsString(config); | 
|  | configs_by_cp_id[config.candidate_pair_id] = | 
|  | TimeSeries("[" + std::to_string(config.candidate_pair_id) + "]" + | 
|  | candidate_pair_desc, | 
|  | LineStyle::kNone, PointStyle::kHighlight); | 
|  | candidate_pair_desc_by_id_[config.candidate_pair_id] = | 
|  | candidate_pair_desc; | 
|  | } | 
|  | float x = config_.GetCallTimeSec(config.log_time_us()); | 
|  | float y = static_cast<float>(config.type); | 
|  | configs_by_cp_id[config.candidate_pair_id].points.emplace_back(x, y); | 
|  | } | 
|  |  | 
|  | // TODO(qingsi): There can be a large number of candidate pairs generated by | 
|  | // certain calls and the frontend cannot render the chart in this case due to | 
|  | // the failure of generating a palette with the same number of colors. | 
|  | for (auto& kv : configs_by_cp_id) { | 
|  | plot->AppendTimeSeries(std::move(kv.second)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 3, "Config Type", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("[IceEventLog] ICE candidate pair configs"); | 
|  | plot->SetYAxisTickLabels( | 
|  | {{static_cast<float>(IceCandidatePairConfigType::kAdded), "ADDED"}, | 
|  | {static_cast<float>(IceCandidatePairConfigType::kUpdated), "UPDATED"}, | 
|  | {static_cast<float>(IceCandidatePairConfigType::kDestroyed), | 
|  | "DESTROYED"}, | 
|  | {static_cast<float>(IceCandidatePairConfigType::kSelected), | 
|  | "SELECTED"}}); | 
|  | } | 
|  |  | 
|  | std::string EventLogAnalyzer::GetCandidatePairLogDescriptionFromId( | 
|  | uint32_t candidate_pair_id) { | 
|  | if (candidate_pair_desc_by_id_.find(candidate_pair_id) != | 
|  | candidate_pair_desc_by_id_.end()) { | 
|  | return candidate_pair_desc_by_id_[candidate_pair_id]; | 
|  | } | 
|  | for (const auto& config : parsed_log_.ice_candidate_pair_configs()) { | 
|  | // TODO(qingsi): Add the handling of the "Updated" config event after the | 
|  | // visualization of property change for candidate pairs is introduced. | 
|  | if (candidate_pair_desc_by_id_.find(config.candidate_pair_id) == | 
|  | candidate_pair_desc_by_id_.end()) { | 
|  | const std::string candidate_pair_desc = | 
|  | GetCandidatePairLogDescriptionAsString(config); | 
|  | candidate_pair_desc_by_id_[config.candidate_pair_id] = | 
|  | candidate_pair_desc; | 
|  | } | 
|  | } | 
|  | return candidate_pair_desc_by_id_[candidate_pair_id]; | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateIceConnectivityCheckGraph(Plot* plot) { | 
|  | constexpr int kEventTypeOffset = | 
|  | static_cast<int>(IceCandidatePairConfigType::kNumValues); | 
|  | std::map<uint32_t, TimeSeries> checks_by_cp_id; | 
|  | for (const auto& event : parsed_log_.ice_candidate_pair_events()) { | 
|  | if (checks_by_cp_id.find(event.candidate_pair_id) == | 
|  | checks_by_cp_id.end()) { | 
|  | checks_by_cp_id[event.candidate_pair_id] = TimeSeries( | 
|  | "[" + std::to_string(event.candidate_pair_id) + "]" + | 
|  | GetCandidatePairLogDescriptionFromId(event.candidate_pair_id), | 
|  | LineStyle::kNone, PointStyle::kHighlight); | 
|  | } | 
|  | float x = config_.GetCallTimeSec(event.log_time_us()); | 
|  | float y = static_cast<float>(event.type) + kEventTypeOffset; | 
|  | checks_by_cp_id[event.candidate_pair_id].points.emplace_back(x, y); | 
|  | } | 
|  |  | 
|  | // TODO(qingsi): The same issue as in CreateIceCandidatePairConfigGraph. | 
|  | for (auto& kv : checks_by_cp_id) { | 
|  | plot->AppendTimeSeries(std::move(kv.second)); | 
|  | } | 
|  |  | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 4, "Connectivity State", kBottomMargin, | 
|  | kTopMargin); | 
|  | plot->SetTitle("[IceEventLog] ICE connectivity checks"); | 
|  |  | 
|  | plot->SetYAxisTickLabels( | 
|  | {{static_cast<float>(IceCandidatePairEventType::kCheckSent) + | 
|  | kEventTypeOffset, | 
|  | "CHECK SENT"}, | 
|  | {static_cast<float>(IceCandidatePairEventType::kCheckReceived) + | 
|  | kEventTypeOffset, | 
|  | "CHECK RECEIVED"}, | 
|  | {static_cast<float>(IceCandidatePairEventType::kCheckResponseSent) + | 
|  | kEventTypeOffset, | 
|  | "RESPONSE SENT"}, | 
|  | {static_cast<float>(IceCandidatePairEventType::kCheckResponseReceived) + | 
|  | kEventTypeOffset, | 
|  | "RESPONSE RECEIVED"}}); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateDtlsTransportStateGraph(Plot* plot) { | 
|  | TimeSeries states("DTLS Transport State", LineStyle::kNone, | 
|  | PointStyle::kHighlight); | 
|  | for (const auto& event : parsed_log_.dtls_transport_states()) { | 
|  | float x = config_.GetCallTimeSec(event.log_time_us()); | 
|  | float y = static_cast<float>(event.dtls_transport_state); | 
|  | states.points.emplace_back(x, y); | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(states)); | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, static_cast<float>(DtlsTransportState::kNumValues), | 
|  | "Transport State", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("DTLS Transport State"); | 
|  | plot->SetYAxisTickLabels( | 
|  | {{static_cast<float>(DtlsTransportState::kNew), "NEW"}, | 
|  | {static_cast<float>(DtlsTransportState::kConnecting), "CONNECTING"}, | 
|  | {static_cast<float>(DtlsTransportState::kConnected), "CONNECTED"}, | 
|  | {static_cast<float>(DtlsTransportState::kClosed), "CLOSED"}, | 
|  | {static_cast<float>(DtlsTransportState::kFailed), "FAILED"}}); | 
|  | } | 
|  |  | 
|  | void EventLogAnalyzer::CreateDtlsWritableStateGraph(Plot* plot) { | 
|  | TimeSeries writable("DTLS Writable", LineStyle::kNone, | 
|  | PointStyle::kHighlight); | 
|  | for (const auto& event : parsed_log_.dtls_writable_states()) { | 
|  | float x = config_.GetCallTimeSec(event.log_time_us()); | 
|  | float y = static_cast<float>(event.writable); | 
|  | writable.points.emplace_back(x, y); | 
|  | } | 
|  | plot->AppendTimeSeries(std::move(writable)); | 
|  | plot->SetXAxis(config_.CallBeginTimeSec(), config_.CallEndTimeSec(), | 
|  | "Time (s)", kLeftMargin, kRightMargin); | 
|  | plot->SetSuggestedYAxis(0, 1, "Writable", kBottomMargin, kTopMargin); | 
|  | plot->SetTitle("DTLS Writable State"); | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |