blob: 2a6614fc0f7e3c609378da2a32e20676ca8a7a0c [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/remote_bitrate_estimator/test/bwe_test_framework.h"
#include <stdio.h>
#include <sstream>
#include "rtc_base/constructormagic.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace testing {
namespace bwe {
class DelayCapHelper {
public:
// Max delay = 0 stands for +infinite.
DelayCapHelper() : max_delay_us_(0), delay_stats_() {}
void set_max_delay_ms(int64_t max_delay_ms) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Max Delay", "%d ms", static_cast<int>(max_delay_ms));
assert(max_delay_ms >= 0);
max_delay_us_ = max_delay_ms * 1000;
}
bool ShouldSendPacket(int64_t send_time_us, int64_t arrival_time_us) {
int64_t packet_delay_us = send_time_us - arrival_time_us;
delay_stats_.Push((std::min(packet_delay_us, max_delay_us_) + 500) / 1000);
return (max_delay_us_ == 0 || max_delay_us_ >= packet_delay_us);
}
const Stats<double>& delay_stats() const {
return delay_stats_;
}
private:
int64_t max_delay_us_;
Stats<double> delay_stats_;
RTC_DISALLOW_COPY_AND_ASSIGN(DelayCapHelper);
};
const FlowIds CreateFlowIds(const int *flow_ids_array, size_t num_flow_ids) {
FlowIds flow_ids(&flow_ids_array[0], flow_ids_array + num_flow_ids);
return flow_ids;
}
const FlowIds CreateFlowIdRange(int initial_value, int last_value) {
int size = last_value - initial_value + 1;
assert(size > 0);
int* flow_ids_array = new int[size];
for (int i = initial_value; i <= last_value; ++i) {
flow_ids_array[i - initial_value] = i;
}
return CreateFlowIds(flow_ids_array, size);
}
void RateCounter::UpdateRates(int64_t send_time_us, uint32_t payload_size) {
++recently_received_packets_;
recently_received_bytes_ += payload_size;
last_accumulated_us_ = send_time_us;
window_.push_back(std::make_pair(send_time_us, payload_size));
while (!window_.empty()) {
const TimeSizePair& packet = window_.front();
if (packet.first > (last_accumulated_us_ - window_size_us_)) {
break;
}
assert(recently_received_packets_ >= 1);
assert(recently_received_bytes_ >= packet.second);
--recently_received_packets_;
recently_received_bytes_ -= packet.second;
window_.pop_front();
}
}
uint32_t RateCounter::bits_per_second() const {
return (8 * recently_received_bytes_) / BitrateWindowS();
}
uint32_t RateCounter::packets_per_second() const {
return recently_received_packets_ / BitrateWindowS();
}
double RateCounter::BitrateWindowS() const {
return static_cast<double>(window_size_us_) / (1000 * 1000);
}
Packet::Packet()
: flow_id_(0),
creation_time_us_(-1),
send_time_us_(-1),
sender_timestamp_us_(-1),
payload_size_(0) {}
Packet::Packet(int flow_id, int64_t send_time_us, size_t payload_size)
: flow_id_(flow_id),
creation_time_us_(send_time_us),
send_time_us_(send_time_us),
sender_timestamp_us_(send_time_us),
payload_size_(payload_size) {}
Packet::~Packet() {
}
bool Packet::operator<(const Packet& rhs) const {
return send_time_us_ < rhs.send_time_us_;
}
void Packet::set_send_time_us(int64_t send_time_us) {
assert(send_time_us >= 0);
send_time_us_ = send_time_us;
}
MediaPacket::MediaPacket() {
memset(&header_, 0, sizeof(header_));
}
MediaPacket::MediaPacket(int flow_id,
int64_t send_time_us,
size_t payload_size,
uint16_t sequence_number)
: Packet(flow_id, send_time_us, payload_size) {
header_ = RTPHeader();
header_.sequenceNumber = sequence_number;
}
MediaPacket::MediaPacket(int flow_id,
int64_t send_time_us,
size_t payload_size,
const RTPHeader& header)
: Packet(flow_id, send_time_us, payload_size), header_(header) {
}
MediaPacket::MediaPacket(int64_t send_time_us, uint16_t sequence_number)
: Packet(0, send_time_us, 0) {
header_ = RTPHeader();
header_.sequenceNumber = sequence_number;
}
void MediaPacket::SetAbsSendTimeMs(int64_t abs_send_time_ms) {
header_.extension.hasAbsoluteSendTime = true;
header_.extension.absoluteSendTime = ((static_cast<int64_t>(abs_send_time_ms *
(1 << 18)) + 500) / 1000) & 0x00fffffful;
}
BbrBweFeedback::BbrBweFeedback(
int flow_id,
int64_t send_time_us,
int64_t latest_send_time_ms,
const std::vector<uint16_t>& packet_feedback_vector)
: FeedbackPacket(flow_id, send_time_us, latest_send_time_ms),
packet_feedback_vector_(packet_feedback_vector) {}
RembFeedback::RembFeedback(int flow_id,
int64_t send_time_us,
int64_t last_send_time_ms,
uint32_t estimated_bps,
RTCPReportBlock report_block)
: FeedbackPacket(flow_id, send_time_us, last_send_time_ms),
estimated_bps_(estimated_bps),
report_block_(report_block) {
}
SendSideBweFeedback::SendSideBweFeedback(
int flow_id,
int64_t send_time_us,
int64_t last_send_time_ms,
const std::vector<PacketFeedback>& packet_feedback_vector)
: FeedbackPacket(flow_id, send_time_us, last_send_time_ms),
packet_feedback_vector_(packet_feedback_vector) {}
bool IsTimeSorted(const Packets& packets) {
PacketsConstIt last_it = packets.begin();
for (PacketsConstIt it = last_it; it != packets.end(); ++it) {
if (it != last_it && **it < **last_it) {
return false;
}
last_it = it;
}
return true;
}
PacketProcessor::PacketProcessor(PacketProcessorListener* listener,
int flow_id,
ProcessorType type)
: listener_(listener), flow_ids_(&flow_id, &flow_id + 1) {
if (listener_) {
listener_->AddPacketProcessor(this, type);
}
}
PacketProcessor::PacketProcessor(PacketProcessorListener* listener,
const FlowIds& flow_ids,
ProcessorType type)
: listener_(listener), flow_ids_(flow_ids) {
if (listener_) {
listener_->AddPacketProcessor(this, type);
}
}
PacketProcessor::~PacketProcessor() {
if (listener_) {
listener_->RemovePacketProcessor(this);
}
}
uint32_t PacketProcessor::packets_per_second() const {
return rate_counter_.packets_per_second();
}
uint32_t PacketProcessor::bits_per_second() const {
return rate_counter_.bits_per_second();
}
RateCounterFilter::RateCounterFilter(PacketProcessorListener* listener,
int flow_id,
const char* name,
const std::string& algorithm_name)
: PacketProcessor(listener, flow_id, kRegular),
packets_per_second_stats_(),
kbps_stats_(),
start_plotting_time_ms_(0),
flow_id_(flow_id),
name_(name),
algorithm_name_(algorithm_name) {
// Only used when compiling with BWE test logging enabled.
RTC_UNUSED(flow_id_);
}
RateCounterFilter::RateCounterFilter(PacketProcessorListener* listener,
const FlowIds& flow_ids,
const char* name,
const std::string& algorithm_name)
: PacketProcessor(listener, flow_ids, kRegular),
packets_per_second_stats_(),
kbps_stats_(),
start_plotting_time_ms_(0),
name_(name),
algorithm_name_(algorithm_name) {
// TODO(terelius): Appending the flow IDs to the algorithm name is a hack to
// keep the current plot functionality without having to print the full
// context for each PLOT line. It is unclear whether multiple flow IDs are
// needed at all in the long term.
std::stringstream ss;
ss << algorithm_name_;
for (int flow_id : flow_ids) {
ss << ',' << flow_id;
}
algorithm_name_ = ss.str();
}
RateCounterFilter::RateCounterFilter(PacketProcessorListener* listener,
const FlowIds& flow_ids,
const char* name,
int64_t start_plotting_time_ms,
const std::string& algorithm_name)
: RateCounterFilter(listener, flow_ids, name, algorithm_name) {
start_plotting_time_ms_ = start_plotting_time_ms;
}
RateCounterFilter::~RateCounterFilter() {
LogStats();
}
void RateCounterFilter::LogStats() {
BWE_TEST_LOGGING_CONTEXT("RateCounterFilter");
packets_per_second_stats_.Log("pps");
kbps_stats_.Log("kbps");
}
Stats<double> RateCounterFilter::GetBitrateStats() const {
return kbps_stats_;
}
void RateCounterFilter::Plot(int64_t timestamp_ms) {
// TODO(stefan): Reorganize logging configuration to reduce amount
// of preprocessor conditionals in the code.
uint32_t plot_kbps = 0;
if (timestamp_ms >= start_plotting_time_ms_) {
plot_kbps = rate_counter_.bits_per_second() / 1000.0;
}
BWE_TEST_LOGGING_CONTEXT(name_.c_str());
if (algorithm_name_.empty()) {
BWE_TEST_LOGGING_PLOT_WITH_SSRC(0, "Throughput_kbps#1", timestamp_ms,
plot_kbps, flow_id_);
} else {
BWE_TEST_LOGGING_PLOT_WITH_NAME_AND_SSRC(0, "Throughput_kbps#1",
timestamp_ms, plot_kbps, flow_id_,
algorithm_name_);
}
RTC_UNUSED(plot_kbps);
}
void RateCounterFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (const Packet* packet : *in_out) {
rate_counter_.UpdateRates(packet->send_time_us(),
static_cast<int>(packet->payload_size()));
}
packets_per_second_stats_.Push(rate_counter_.packets_per_second());
kbps_stats_.Push(rate_counter_.bits_per_second() / 1000.0);
}
LossFilter::LossFilter(PacketProcessorListener* listener, int flow_id)
: PacketProcessor(listener, flow_id, kRegular),
random_(0x12345678),
loss_fraction_(0.0f) {
}
LossFilter::LossFilter(PacketProcessorListener* listener,
const FlowIds& flow_ids)
: PacketProcessor(listener, flow_ids, kRegular),
random_(0x12345678),
loss_fraction_(0.0f) {
}
void LossFilter::SetLoss(float loss_percent) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Loss", "%f%%", loss_percent);
assert(loss_percent >= 0.0f);
assert(loss_percent <= 100.0f);
loss_fraction_ = loss_percent * 0.01f;
}
void LossFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ) {
if (random_.Rand<float>() < loss_fraction_) {
delete *it;
it = in_out->erase(it);
} else {
++it;
}
}
}
const int64_t kDefaultOneWayDelayUs = 0;
DelayFilter::DelayFilter(PacketProcessorListener* listener, int flow_id)
: PacketProcessor(listener, flow_id, kRegular),
one_way_delay_us_(kDefaultOneWayDelayUs),
last_send_time_us_(0) {
}
DelayFilter::DelayFilter(PacketProcessorListener* listener,
const FlowIds& flow_ids)
: PacketProcessor(listener, flow_ids, kRegular),
one_way_delay_us_(kDefaultOneWayDelayUs),
last_send_time_us_(0) {
}
void DelayFilter::SetOneWayDelayMs(int64_t one_way_delay_ms) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Delay", "%d ms", static_cast<int>(one_way_delay_ms));
assert(one_way_delay_ms >= 0);
one_way_delay_us_ = one_way_delay_ms * 1000;
}
void DelayFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (Packet* packet : *in_out) {
int64_t new_send_time_us = packet->send_time_us() + one_way_delay_us_;
last_send_time_us_ = std::max(last_send_time_us_, new_send_time_us);
packet->set_send_time_us(last_send_time_us_);
}
}
JitterFilter::JitterFilter(PacketProcessorListener* listener, int flow_id)
: PacketProcessor(listener, flow_id, kRegular),
random_(0x89674523),
stddev_jitter_us_(0),
last_send_time_us_(0),
reordering_(false) {
}
JitterFilter::JitterFilter(PacketProcessorListener* listener,
const FlowIds& flow_ids)
: PacketProcessor(listener, flow_ids, kRegular),
random_(0x89674523),
stddev_jitter_us_(0),
last_send_time_us_(0),
reordering_(false) {
}
const int kN = 3; // Truncated N sigma gaussian.
void JitterFilter::SetMaxJitter(int64_t max_jitter_ms) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Max Jitter", "%d ms", static_cast<int>(max_jitter_ms));
assert(max_jitter_ms >= 0);
// Truncated gaussian, Max jitter = kN*sigma.
stddev_jitter_us_ = (max_jitter_ms * 1000 + kN / 2) / kN;
}
namespace {
inline int64_t TruncatedNSigmaGaussian(Random* const random,
int64_t mean,
int64_t std_dev) {
const int64_t gaussian_random = random->Gaussian(mean, std_dev);
return rtc::SafeClamp(gaussian_random, -kN * std_dev, kN * std_dev);
}
}
void JitterFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (Packet* packet : *in_out) {
int64_t jitter_us =
std::abs(TruncatedNSigmaGaussian(&random_, 0, stddev_jitter_us_));
int64_t new_send_time_us = packet->send_time_us() + jitter_us;
if (!reordering_) {
new_send_time_us = std::max(last_send_time_us_, new_send_time_us);
}
// Receiver timestamp cannot be lower than sender timestamp.
assert(new_send_time_us >= packet->sender_timestamp_us());
packet->set_send_time_us(new_send_time_us);
last_send_time_us_ = new_send_time_us;
}
}
// Computes the expected value for a right sided (abs) truncated gaussian.
// Does not take into account possible reoerdering updates.
int64_t JitterFilter::MeanUs() {
const double kPi = 3.1415926535897932;
double max_jitter_us = static_cast<double>(kN * stddev_jitter_us_);
double right_sided_mean_us =
static_cast<double>(stddev_jitter_us_) / sqrt(kPi / 2.0);
double truncated_mean_us =
right_sided_mean_us *
(1.0 - exp(-pow(static_cast<double>(kN), 2.0) / 2.0)) +
max_jitter_us * erfc(static_cast<double>(kN));
return static_cast<int64_t>(truncated_mean_us + 0.5);
}
ReorderFilter::ReorderFilter(PacketProcessorListener* listener, int flow_id)
: PacketProcessor(listener, flow_id, kRegular),
random_(0x27452389),
reorder_fraction_(0.0f) {
}
ReorderFilter::ReorderFilter(PacketProcessorListener* listener,
const FlowIds& flow_ids)
: PacketProcessor(listener, flow_ids, kRegular),
random_(0x27452389),
reorder_fraction_(0.0f) {
}
void ReorderFilter::SetReorder(float reorder_percent) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Reordering", "%f%%", reorder_percent);
assert(reorder_percent >= 0.0f);
assert(reorder_percent <= 100.0f);
reorder_fraction_ = reorder_percent * 0.01f;
}
void ReorderFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
if (in_out->size() >= 2) {
PacketsIt last_it = in_out->begin();
PacketsIt it = last_it;
while (++it != in_out->end()) {
if (random_.Rand<float>() < reorder_fraction_) {
int64_t t1 = (*last_it)->send_time_us();
int64_t t2 = (*it)->send_time_us();
std::swap(*last_it, *it);
(*last_it)->set_send_time_us(t1);
(*it)->set_send_time_us(t2);
}
last_it = it;
}
}
}
const uint32_t kDefaultKbps = 1200;
ChokeFilter::ChokeFilter(PacketProcessorListener* listener, int flow_id)
: PacketProcessor(listener, flow_id, kRegular),
capacity_kbps_(kDefaultKbps),
last_send_time_us_(0),
delay_cap_helper_(new DelayCapHelper()) {
}
ChokeFilter::ChokeFilter(PacketProcessorListener* listener,
const FlowIds& flow_ids)
: PacketProcessor(listener, flow_ids, kRegular),
capacity_kbps_(kDefaultKbps),
last_send_time_us_(0),
delay_cap_helper_(new DelayCapHelper()) {
}
ChokeFilter::~ChokeFilter() {}
void ChokeFilter::set_capacity_kbps(uint32_t kbps) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("BitrateChoke", "%d kbps", kbps);
capacity_kbps_ = kbps;
}
uint32_t ChokeFilter::capacity_kbps() {
return capacity_kbps_;
}
void ChokeFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ) {
int64_t earliest_send_time_us =
std::max(last_send_time_us_, (*it)->send_time_us());
int64_t new_send_time_us =
earliest_send_time_us +
((*it)->payload_size() * 8 * 1000 + capacity_kbps_ / 2) /
capacity_kbps_;
BWE_TEST_LOGGING_PLOT(0, "MaxThroughput_", new_send_time_us / 1000,
capacity_kbps_);
if (delay_cap_helper_->ShouldSendPacket(new_send_time_us,
(*it)->send_time_us())) {
(*it)->set_send_time_us(new_send_time_us);
last_send_time_us_ = new_send_time_us;
++it;
} else {
delete *it;
it = in_out->erase(it);
}
}
}
void ChokeFilter::set_max_delay_ms(int64_t max_delay_ms) {
delay_cap_helper_->set_max_delay_ms(max_delay_ms);
}
Stats<double> ChokeFilter::GetDelayStats() const {
return delay_cap_helper_->delay_stats();
}
TraceBasedDeliveryFilter::TraceBasedDeliveryFilter(
PacketProcessorListener* listener,
int flow_id)
: PacketProcessor(listener, flow_id, kRegular),
current_offset_us_(0),
delivery_times_us_(),
next_delivery_it_(),
local_time_us_(-1),
rate_counter_(new RateCounter),
name_(""),
delay_cap_helper_(new DelayCapHelper()),
packets_per_second_stats_(),
kbps_stats_() {
}
TraceBasedDeliveryFilter::TraceBasedDeliveryFilter(
PacketProcessorListener* listener,
const FlowIds& flow_ids)
: PacketProcessor(listener, flow_ids, kRegular),
current_offset_us_(0),
delivery_times_us_(),
next_delivery_it_(),
local_time_us_(-1),
rate_counter_(new RateCounter),
name_(""),
delay_cap_helper_(new DelayCapHelper()),
packets_per_second_stats_(),
kbps_stats_() {
}
TraceBasedDeliveryFilter::TraceBasedDeliveryFilter(
PacketProcessorListener* listener,
int flow_id,
const char* name)
: PacketProcessor(listener, flow_id, kRegular),
current_offset_us_(0),
delivery_times_us_(),
next_delivery_it_(),
local_time_us_(-1),
rate_counter_(new RateCounter),
name_(name),
delay_cap_helper_(new DelayCapHelper()),
packets_per_second_stats_(),
kbps_stats_() {
}
TraceBasedDeliveryFilter::~TraceBasedDeliveryFilter() {
}
bool TraceBasedDeliveryFilter::Init(const std::string& filename) {
FILE* trace_file = fopen(filename.c_str(), "r");
if (!trace_file) {
return false;
}
int64_t first_timestamp = -1;
while (!feof(trace_file)) {
const size_t kMaxLineLength = 100;
char line[kMaxLineLength];
if (fgets(line, kMaxLineLength, trace_file)) {
std::string line_string(line);
std::istringstream buffer(line_string);
int64_t timestamp;
buffer >> timestamp;
timestamp /= 1000; // Convert to microseconds.
if (first_timestamp == -1)
first_timestamp = timestamp;
assert(delivery_times_us_.empty() ||
timestamp - first_timestamp - delivery_times_us_.back() >= 0);
delivery_times_us_.push_back(timestamp - first_timestamp);
}
}
assert(!delivery_times_us_.empty());
next_delivery_it_ = delivery_times_us_.begin();
fclose(trace_file);
return true;
}
void TraceBasedDeliveryFilter::Plot(int64_t timestamp_ms) {
BWE_TEST_LOGGING_CONTEXT(name_.c_str());
// This plots the max possible throughput of the trace-based delivery filter,
// which will be reached if a packet sent on every packet slot of the trace.
BWE_TEST_LOGGING_PLOT(0, "MaxThroughput_#1", timestamp_ms,
rate_counter_->bits_per_second() / 1000.0);
}
void TraceBasedDeliveryFilter::RunFor(int64_t time_ms, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end();) {
while (local_time_us_ < (*it)->send_time_us()) {
ProceedToNextSlot();
}
// Drop any packets that have been queued for too long.
while (!delay_cap_helper_->ShouldSendPacket(local_time_us_,
(*it)->send_time_us())) {
delete *it;
it = in_out->erase(it);
if (it == in_out->end()) {
return;
}
}
if (local_time_us_ >= (*it)->send_time_us()) {
(*it)->set_send_time_us(local_time_us_);
ProceedToNextSlot();
}
++it;
}
packets_per_second_stats_.Push(rate_counter_->packets_per_second());
kbps_stats_.Push(rate_counter_->bits_per_second() / 1000.0);
}
void TraceBasedDeliveryFilter::set_max_delay_ms(int64_t max_delay_ms) {
delay_cap_helper_->set_max_delay_ms(max_delay_ms);
}
Stats<double> TraceBasedDeliveryFilter::GetDelayStats() const {
return delay_cap_helper_->delay_stats();
}
Stats<double> TraceBasedDeliveryFilter::GetBitrateStats() const {
return kbps_stats_;
}
void TraceBasedDeliveryFilter::ProceedToNextSlot() {
if (*next_delivery_it_ <= local_time_us_) {
++next_delivery_it_;
if (next_delivery_it_ == delivery_times_us_.end()) {
// When the trace wraps we allow two packets to be sent back-to-back.
for (int64_t& delivery_time_us : delivery_times_us_) {
delivery_time_us += local_time_us_ - current_offset_us_;
}
current_offset_us_ += local_time_us_ - current_offset_us_;
next_delivery_it_ = delivery_times_us_.begin();
}
}
local_time_us_ = *next_delivery_it_;
const int kPayloadSize = 1200;
rate_counter_->UpdateRates(local_time_us_, kPayloadSize);
}
VideoSource::VideoSource(int flow_id,
float fps,
uint32_t kbps,
uint32_t ssrc,
int64_t first_frame_offset_ms)
: kMaxPayloadSizeBytes(1200),
kTimestampBase(0xff80ff00ul),
frame_period_ms_(1000.0 / fps),
bits_per_second_(1000 * kbps),
frame_size_bytes_(bits_per_second_ / 8 / fps),
random_(0x12345678),
flow_id_(flow_id),
next_frame_ms_(first_frame_offset_ms),
next_frame_rand_ms_(0),
now_ms_(0),
prototype_header_() {
memset(&prototype_header_, 0, sizeof(prototype_header_));
prototype_header_.ssrc = ssrc;
prototype_header_.sequenceNumber = 0xf000u;
}
uint32_t VideoSource::NextFrameSize() {
return frame_size_bytes_;
}
int64_t VideoSource::GetTimeUntilNextFrameMs() const {
return next_frame_ms_ + next_frame_rand_ms_ - now_ms_;
}
uint32_t VideoSource::NextPacketSize(uint32_t frame_size,
uint32_t remaining_payload) {
return std::min(kMaxPayloadSizeBytes, remaining_payload);
}
void VideoSource::RunFor(int64_t time_ms, Packets* in_out) {
assert(in_out);
now_ms_ += time_ms;
Packets new_packets;
while (now_ms_ >= next_frame_ms_) {
const int64_t kRandAmplitude = 2;
// A variance picked uniformly from {-1, 0, 1} ms is added to the frame
// timestamp.
next_frame_rand_ms_ = kRandAmplitude * (random_.Rand<float>() - 0.5);
// Ensure frame will not have a negative timestamp.
int64_t next_frame_ms =
std::max<int64_t>(next_frame_ms_ + next_frame_rand_ms_, 0);
prototype_header_.timestamp =
kTimestampBase + static_cast<uint32_t>(next_frame_ms * 90.0);
prototype_header_.extension.transmissionTimeOffset = 0;
// Generate new packets for this frame, all with the same timestamp,
// but the payload size is capped, so if the whole frame doesn't fit in
// one packet, we will see a number of equally sized packets followed by
// one smaller at the tail.
int64_t send_time_us = next_frame_ms * 1000.0;
uint32_t frame_size = NextFrameSize();
uint32_t payload_size = frame_size;
while (payload_size > 0) {
++prototype_header_.sequenceNumber;
uint32_t size = NextPacketSize(frame_size, payload_size);
MediaPacket* new_packet =
new MediaPacket(flow_id_, send_time_us, size, prototype_header_);
new_packets.push_back(new_packet);
new_packet->SetAbsSendTimeMs(next_frame_ms);
new_packet->set_sender_timestamp_us(send_time_us);
payload_size -= size;
}
next_frame_ms_ += frame_period_ms_;
}
in_out->merge(new_packets, DereferencingComparator<Packet>);
}
AdaptiveVideoSource::AdaptiveVideoSource(int flow_id,
float fps,
uint32_t kbps,
uint32_t ssrc,
int64_t first_frame_offset_ms)
: VideoSource(flow_id, fps, kbps, ssrc, first_frame_offset_ms) {
}
void AdaptiveVideoSource::SetBitrateBps(int bitrate_bps) {
bits_per_second_ = bitrate_bps;
frame_size_bytes_ = (bits_per_second_ / 8 * frame_period_ms_ + 500) / 1000;
}
PeriodicKeyFrameSource::PeriodicKeyFrameSource(int flow_id,
float fps,
uint32_t kbps,
uint32_t ssrc,
int64_t first_frame_offset_ms,
int key_frame_interval)
: AdaptiveVideoSource(flow_id, fps, kbps, ssrc, first_frame_offset_ms),
key_frame_interval_(key_frame_interval),
frame_counter_(0),
compensation_bytes_(0),
compensation_per_frame_(0) {
}
uint32_t PeriodicKeyFrameSource::NextFrameSize() {
uint32_t payload_size = frame_size_bytes_;
if (frame_counter_ == 0) {
payload_size = kMaxPayloadSizeBytes * 12;
compensation_bytes_ = 4 * frame_size_bytes_;
compensation_per_frame_ = compensation_bytes_ / 30;
} else if (key_frame_interval_ > 0 &&
(frame_counter_ % key_frame_interval_ == 0)) {
payload_size *= 5;
compensation_bytes_ = payload_size - frame_size_bytes_;
compensation_per_frame_ = compensation_bytes_ / 30;
} else if (compensation_bytes_ > 0) {
if (compensation_per_frame_ > static_cast<int>(payload_size)) {
// Skip this frame.
compensation_bytes_ -= payload_size;
payload_size = 0;
} else {
payload_size -= compensation_per_frame_;
compensation_bytes_ -= compensation_per_frame_;
}
}
if (compensation_bytes_ < 0)
compensation_bytes_ = 0;
++frame_counter_;
return payload_size;
}
uint32_t PeriodicKeyFrameSource::NextPacketSize(uint32_t frame_size,
uint32_t remaining_payload) {
uint32_t fragments =
(frame_size + (kMaxPayloadSizeBytes - 1)) / kMaxPayloadSizeBytes;
uint32_t avg_size = (frame_size + fragments - 1) / fragments;
return std::min(avg_size, remaining_payload);
}
} // namespace bwe
} // namespace testing
} // namespace webrtc