blob: 958cc84e7e2596118454798ad50bf538e0ec864c [file] [log] [blame]
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/utility/ivf_file_reader.h"
#include <string>
#include <vector>
#include "api/video_codecs/video_codec.h"
#include "modules/rtp_rtcp/source/byte_io.h"
#include "modules/video_coding/utility/ivf_defines.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace {
constexpr size_t kIvfFrameHeaderSize = 12;
constexpr int kCodecTypeBytesCount = 4;
constexpr uint8_t kFileHeaderStart[kCodecTypeBytesCount] = {'D', 'K', 'I', 'F'};
constexpr uint8_t kVp8Header[kCodecTypeBytesCount] = {'V', 'P', '8', '0'};
constexpr uint8_t kVp9Header[kCodecTypeBytesCount] = {'V', 'P', '9', '0'};
constexpr uint8_t kAv1Header[kCodecTypeBytesCount] = {'A', 'V', '0', '1'};
constexpr uint8_t kH264Header[kCodecTypeBytesCount] = {'H', '2', '6', '4'};
constexpr uint8_t kH265Header[kCodecTypeBytesCount] = {'H', '2', '6', '5'};
// RTP standard required 90kHz clock rate.
constexpr int32_t kRtpClockRateHz = 90000;
} // namespace
std::unique_ptr<IvfFileReader> IvfFileReader::Create(FileWrapper file) {
auto reader =
std::unique_ptr<IvfFileReader>(new IvfFileReader(std::move(file)));
if (!reader->Reset()) {
return nullptr;
}
return reader;
}
IvfFileReader::~IvfFileReader() {
Close();
}
bool IvfFileReader::Reset() {
// Set error to true while initialization.
has_error_ = true;
if (!file_.Rewind()) {
RTC_LOG(LS_ERROR) << "Failed to rewind IVF file";
return false;
}
uint8_t ivf_header[kIvfHeaderSize] = {0};
size_t read = file_.Read(&ivf_header, kIvfHeaderSize);
if (read != kIvfHeaderSize) {
RTC_LOG(LS_ERROR) << "Failed to read IVF header";
return false;
}
if (memcmp(&ivf_header[0], kFileHeaderStart, 4) != 0) {
RTC_LOG(LS_ERROR) << "File is not in IVF format: DKIF header expected";
return false;
}
std::optional<VideoCodecType> codec_type = ParseCodecType(ivf_header, 8);
if (!codec_type) {
return false;
}
codec_type_ = *codec_type;
width_ = ByteReader<uint16_t>::ReadLittleEndian(&ivf_header[12]);
height_ = ByteReader<uint16_t>::ReadLittleEndian(&ivf_header[14]);
if (width_ == 0 || height_ == 0) {
RTC_LOG(LS_ERROR) << "Invalid IVF header: width or height is 0";
return false;
}
time_scale_ = ByteReader<uint32_t>::ReadLittleEndian(&ivf_header[16]);
if (time_scale_ == 0) {
RTC_LOG(LS_ERROR) << "Invalid IVF header: time scale can't be 0";
return false;
}
num_frames_ = static_cast<size_t>(
ByteReader<uint32_t>::ReadLittleEndian(&ivf_header[24]));
if (num_frames_ <= 0) {
RTC_LOG(LS_ERROR) << "Invalid IVF header: number of frames 0 or negative";
return false;
}
num_read_frames_ = 0;
next_frame_header_ = ReadNextFrameHeader();
if (!next_frame_header_) {
RTC_LOG(LS_ERROR) << "Failed to read 1st frame header";
return false;
}
// Initialization succeed: reset error.
has_error_ = false;
const char* codec_name = CodecTypeToPayloadString(codec_type_);
RTC_LOG(LS_INFO) << "Opened IVF file with codec data of type " << codec_name
<< " at resolution " << width_ << " x " << height_
<< ", using " << time_scale_ << "Hz clock resolution.";
return true;
}
std::optional<EncodedImage> IvfFileReader::NextFrame() {
if (has_error_ || !HasMoreFrames()) {
return std::nullopt;
}
rtc::scoped_refptr<EncodedImageBuffer> payload = EncodedImageBuffer::Create();
std::vector<size_t> layer_sizes;
// next_frame_header_ have to be presented by the way how it was loaded. If it
// is missing it means there is a bug in error handling.
RTC_DCHECK(next_frame_header_);
int64_t current_timestamp = next_frame_header_->timestamp;
// The first frame from the file should be marked as Key frame.
bool is_first_frame = num_read_frames_ == 0;
while (next_frame_header_ &&
current_timestamp == next_frame_header_->timestamp) {
// Resize payload to fit next spatial layer.
size_t current_layer_size = next_frame_header_->frame_size;
size_t current_layer_start_pos = payload->size();
payload->Realloc(payload->size() + current_layer_size);
layer_sizes.push_back(current_layer_size);
// Read next layer into payload
size_t read = file_.Read(&payload->data()[current_layer_start_pos],
current_layer_size);
if (read != current_layer_size) {
RTC_LOG(LS_ERROR) << "Frame #" << num_read_frames_
<< ": failed to read frame payload";
has_error_ = true;
return std::nullopt;
}
num_read_frames_++;
current_timestamp = next_frame_header_->timestamp;
next_frame_header_ = ReadNextFrameHeader();
}
if (!next_frame_header_) {
// If EOF was reached, we need to check that all frames were met.
if (!has_error_ && num_read_frames_ != num_frames_) {
RTC_LOG(LS_ERROR) << "Unexpected EOF";
has_error_ = true;
return std::nullopt;
}
}
EncodedImage image;
image.capture_time_ms_ = current_timestamp;
image.SetRtpTimestamp(
static_cast<uint32_t>(current_timestamp * kRtpClockRateHz / time_scale_));
image.SetEncodedData(payload);
image.SetSpatialIndex(static_cast<int>(layer_sizes.size()) - 1);
for (size_t i = 0; i < layer_sizes.size(); ++i) {
image.SetSpatialLayerFrameSize(static_cast<int>(i), layer_sizes[i]);
}
if (is_first_frame) {
image._frameType = VideoFrameType::kVideoFrameKey;
}
return image;
}
bool IvfFileReader::Close() {
if (!file_.is_open())
return false;
file_.Close();
return true;
}
std::optional<VideoCodecType> IvfFileReader::ParseCodecType(uint8_t* buffer,
size_t start_pos) {
if (memcmp(&buffer[start_pos], kVp8Header, kCodecTypeBytesCount) == 0) {
return VideoCodecType::kVideoCodecVP8;
}
if (memcmp(&buffer[start_pos], kVp9Header, kCodecTypeBytesCount) == 0) {
return VideoCodecType::kVideoCodecVP9;
}
if (memcmp(&buffer[start_pos], kAv1Header, kCodecTypeBytesCount) == 0) {
return VideoCodecType::kVideoCodecAV1;
}
if (memcmp(&buffer[start_pos], kH264Header, kCodecTypeBytesCount) == 0) {
return VideoCodecType::kVideoCodecH264;
}
if (memcmp(&buffer[start_pos], kH265Header, kCodecTypeBytesCount) == 0) {
return VideoCodecType::kVideoCodecH265;
}
has_error_ = true;
RTC_LOG(LS_ERROR) << "Unknown codec type: "
<< std::string(
reinterpret_cast<char const*>(&buffer[start_pos]),
kCodecTypeBytesCount);
return std::nullopt;
}
std::optional<IvfFileReader::FrameHeader> IvfFileReader::ReadNextFrameHeader() {
uint8_t ivf_frame_header[kIvfFrameHeaderSize] = {0};
size_t read = file_.Read(&ivf_frame_header, kIvfFrameHeaderSize);
if (read != kIvfFrameHeaderSize) {
if (read != 0 || !file_.ReadEof()) {
has_error_ = true;
RTC_LOG(LS_ERROR) << "Frame #" << num_read_frames_
<< ": failed to read IVF frame header";
}
return std::nullopt;
}
FrameHeader header;
header.frame_size = static_cast<size_t>(
ByteReader<uint32_t>::ReadLittleEndian(&ivf_frame_header[0]));
header.timestamp =
ByteReader<uint64_t>::ReadLittleEndian(&ivf_frame_header[4]);
if (header.frame_size == 0) {
has_error_ = true;
RTC_LOG(LS_ERROR) << "Frame #" << num_read_frames_
<< ": invalid frame size";
return std::nullopt;
}
if (header.timestamp < 0) {
has_error_ = true;
RTC_LOG(LS_ERROR) << "Frame #" << num_read_frames_
<< ": negative timestamp";
return std::nullopt;
}
return header;
}
} // namespace webrtc