| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_coding/neteq/delay_manager.h" |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <algorithm> |
| #include <numeric> |
| #include <string> |
| |
| #include "modules/audio_coding/neteq/delay_peak_detector.h" |
| #include "modules/include/module_common_types_public.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| namespace { |
| |
| constexpr int kLimitProbability = 53687091; // 1/20 in Q30. |
| constexpr int kLimitProbabilityStreaming = 536871; // 1/2000 in Q30. |
| constexpr int kMaxStreamingPeakPeriodMs = 600000; // 10 minutes in ms. |
| constexpr int kCumulativeSumDrift = 2; // Drift term for cumulative sum |
| // |iat_cumulative_sum_|. |
| // Steady-state forgetting factor for |iat_vector_|, 0.9993 in Q15. |
| constexpr int kIatFactor_ = 32745; |
| constexpr int kMaxIat = 64; // Max inter-arrival time to register. |
| |
| absl::optional<int> GetForcedLimitProbability() { |
| constexpr char kForceTargetDelayPercentileFieldTrial[] = |
| "WebRTC-Audio-NetEqForceTargetDelayPercentile"; |
| const bool use_forced_target_delay_percentile = |
| webrtc::field_trial::IsEnabled(kForceTargetDelayPercentileFieldTrial); |
| if (use_forced_target_delay_percentile) { |
| const std::string field_trial_string = webrtc::field_trial::FindFullName( |
| kForceTargetDelayPercentileFieldTrial); |
| double percentile = -1.0; |
| if (sscanf(field_trial_string.c_str(), "Enabled-%lf", &percentile) == 1 && |
| percentile >= 0.0 && percentile <= 100.0) { |
| return absl::make_optional<int>(static_cast<int>( |
| (1 << 30) * (100.0 - percentile) / 100.0 + 0.5)); // in Q30. |
| } else { |
| RTC_LOG(LS_WARNING) << "Invalid parameter for " |
| << kForceTargetDelayPercentileFieldTrial |
| << ", ignored."; |
| } |
| } |
| return absl::nullopt; |
| } |
| |
| } // namespace |
| |
| namespace webrtc { |
| |
| DelayManager::DelayManager(size_t max_packets_in_buffer, |
| int base_min_target_delay_ms, |
| DelayPeakDetector* peak_detector, |
| const TickTimer* tick_timer) |
| : first_packet_received_(false), |
| max_packets_in_buffer_(max_packets_in_buffer), |
| iat_vector_(kMaxIat + 1, 0), |
| iat_factor_(0), |
| tick_timer_(tick_timer), |
| base_min_target_delay_ms_(base_min_target_delay_ms), |
| base_target_level_(4), // In Q0 domain. |
| target_level_(base_target_level_ << 8), // In Q8 domain. |
| packet_len_ms_(0), |
| streaming_mode_(false), |
| last_seq_no_(0), |
| last_timestamp_(0), |
| minimum_delay_ms_(base_min_target_delay_ms_), |
| maximum_delay_ms_(target_level_), |
| iat_cumulative_sum_(0), |
| max_iat_cumulative_sum_(0), |
| peak_detector_(*peak_detector), |
| last_pack_cng_or_dtmf_(1), |
| frame_length_change_experiment_( |
| field_trial::IsEnabled("WebRTC-Audio-NetEqFramelengthExperiment")), |
| forced_limit_probability_(GetForcedLimitProbability()) { |
| assert(peak_detector); // Should never be NULL. |
| RTC_DCHECK_GE(base_min_target_delay_ms_, 0); |
| RTC_DCHECK_LE(minimum_delay_ms_, maximum_delay_ms_); |
| |
| Reset(); |
| } |
| |
| DelayManager::~DelayManager() {} |
| |
| const DelayManager::IATVector& DelayManager::iat_vector() const { |
| return iat_vector_; |
| } |
| |
| // Set the histogram vector to an exponentially decaying distribution |
| // iat_vector_[i] = 0.5^(i+1), i = 0, 1, 2, ... |
| // iat_vector_ is in Q30. |
| void DelayManager::ResetHistogram() { |
| // Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum |
| // of iat_vector_ is 1. |
| uint16_t temp_prob = 0x4002; // 16384 + 2 = 100000000000010 binary. |
| IATVector::iterator it = iat_vector_.begin(); |
| for (; it < iat_vector_.end(); it++) { |
| temp_prob >>= 1; |
| (*it) = temp_prob << 16; |
| } |
| base_target_level_ = 4; |
| target_level_ = base_target_level_ << 8; |
| } |
| |
| int DelayManager::Update(uint16_t sequence_number, |
| uint32_t timestamp, |
| int sample_rate_hz) { |
| if (sample_rate_hz <= 0) { |
| return -1; |
| } |
| |
| if (!first_packet_received_) { |
| // Prepare for next packet arrival. |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| last_seq_no_ = sequence_number; |
| last_timestamp_ = timestamp; |
| first_packet_received_ = true; |
| return 0; |
| } |
| |
| // Try calculating packet length from current and previous timestamps. |
| int packet_len_ms; |
| if (!IsNewerTimestamp(timestamp, last_timestamp_) || |
| !IsNewerSequenceNumber(sequence_number, last_seq_no_)) { |
| // Wrong timestamp or sequence order; use stored value. |
| packet_len_ms = packet_len_ms_; |
| } else { |
| // Calculate timestamps per packet and derive packet length in ms. |
| int64_t packet_len_samp = |
| static_cast<uint32_t>(timestamp - last_timestamp_) / |
| static_cast<uint16_t>(sequence_number - last_seq_no_); |
| packet_len_ms = |
| rtc::saturated_cast<int>(1000 * packet_len_samp / sample_rate_hz); |
| } |
| |
| if (packet_len_ms > 0) { |
| // Cannot update statistics unless |packet_len_ms| is valid. |
| // Calculate inter-arrival time (IAT) in integer "packet times" |
| // (rounding down). This is the value used as index to the histogram |
| // vector |iat_vector_|. |
| int iat_packets = packet_iat_stopwatch_->ElapsedMs() / packet_len_ms; |
| |
| if (streaming_mode_) { |
| UpdateCumulativeSums(packet_len_ms, sequence_number); |
| } |
| |
| // Check for discontinuous packet sequence and re-ordering. |
| if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) { |
| // Compensate for gap in the sequence numbers. Reduce IAT with the |
| // expected extra time due to lost packets, but ensure that the IAT is |
| // not negative. |
| iat_packets -= static_cast<uint16_t>(sequence_number - last_seq_no_ - 1); |
| iat_packets = std::max(iat_packets, 0); |
| } else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) { |
| iat_packets += static_cast<uint16_t>(last_seq_no_ + 1 - sequence_number); |
| } |
| |
| // Saturate IAT at maximum value. |
| const int max_iat = kMaxIat; |
| iat_packets = std::min(iat_packets, max_iat); |
| UpdateHistogram(iat_packets); |
| // Calculate new |target_level_| based on updated statistics. |
| target_level_ = CalculateTargetLevel(iat_packets); |
| if (streaming_mode_) { |
| target_level_ = std::max(target_level_, max_iat_cumulative_sum_); |
| } |
| |
| LimitTargetLevel(); |
| } // End if (packet_len_ms > 0). |
| |
| // Prepare for next packet arrival. |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| last_seq_no_ = sequence_number; |
| last_timestamp_ = timestamp; |
| return 0; |
| } |
| |
| void DelayManager::UpdateCumulativeSums(int packet_len_ms, |
| uint16_t sequence_number) { |
| // Calculate IAT in Q8, including fractions of a packet (i.e., more |
| // accurate than |iat_packets|. |
| int iat_packets_q8 = |
| (packet_iat_stopwatch_->ElapsedMs() << 8) / packet_len_ms; |
| // Calculate cumulative sum IAT with sequence number compensation. The sum |
| // is zero if there is no clock-drift. |
| iat_cumulative_sum_ += |
| (iat_packets_q8 - |
| (static_cast<int>(sequence_number - last_seq_no_) << 8)); |
| // Subtract drift term. |
| iat_cumulative_sum_ -= kCumulativeSumDrift; |
| // Ensure not negative. |
| iat_cumulative_sum_ = std::max(iat_cumulative_sum_, 0); |
| if (iat_cumulative_sum_ > max_iat_cumulative_sum_) { |
| // Found a new maximum. |
| max_iat_cumulative_sum_ = iat_cumulative_sum_; |
| max_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| } |
| if (max_iat_stopwatch_->ElapsedMs() > kMaxStreamingPeakPeriodMs) { |
| // Too long since the last maximum was observed; decrease max value. |
| max_iat_cumulative_sum_ -= kCumulativeSumDrift; |
| } |
| } |
| |
| // Each element in the vector is first multiplied by the forgetting factor |
| // |iat_factor_|. Then the vector element indicated by |iat_packets| is then |
| // increased (additive) by 1 - |iat_factor_|. This way, the probability of |
| // |iat_packets| is slightly increased, while the sum of the histogram remains |
| // constant (=1). |
| // Due to inaccuracies in the fixed-point arithmetic, the histogram may no |
| // longer sum up to 1 (in Q30) after the update. To correct this, a correction |
| // term is added or subtracted from the first element (or elements) of the |
| // vector. |
| // The forgetting factor |iat_factor_| is also updated. When the DelayManager |
| // is reset, the factor is set to 0 to facilitate rapid convergence in the |
| // beginning. With each update of the histogram, the factor is increased towards |
| // the steady-state value |kIatFactor_|. |
| void DelayManager::UpdateHistogram(size_t iat_packets) { |
| assert(iat_packets < iat_vector_.size()); |
| int vector_sum = 0; // Sum up the vector elements as they are processed. |
| // Multiply each element in |iat_vector_| with |iat_factor_|. |
| for (IATVector::iterator it = iat_vector_.begin(); it != iat_vector_.end(); |
| ++it) { |
| *it = (static_cast<int64_t>(*it) * iat_factor_) >> 15; |
| vector_sum += *it; |
| } |
| |
| // Increase the probability for the currently observed inter-arrival time |
| // by 1 - |iat_factor_|. The factor is in Q15, |iat_vector_| in Q30. |
| // Thus, left-shift 15 steps to obtain result in Q30. |
| iat_vector_[iat_packets] += (32768 - iat_factor_) << 15; |
| vector_sum += (32768 - iat_factor_) << 15; // Add to vector sum. |
| |
| // |iat_vector_| should sum up to 1 (in Q30), but it may not due to |
| // fixed-point rounding errors. |
| vector_sum -= 1 << 30; // Should be zero. Compensate if not. |
| if (vector_sum != 0) { |
| // Modify a few values early in |iat_vector_|. |
| int flip_sign = vector_sum > 0 ? -1 : 1; |
| IATVector::iterator it = iat_vector_.begin(); |
| while (it != iat_vector_.end() && abs(vector_sum) > 0) { |
| // Add/subtract 1/16 of the element, but not more than |vector_sum|. |
| int correction = flip_sign * std::min(abs(vector_sum), (*it) >> 4); |
| *it += correction; |
| vector_sum += correction; |
| ++it; |
| } |
| } |
| assert(vector_sum == 0); // Verify that the above is correct. |
| |
| // Update |iat_factor_| (changes only during the first seconds after a reset). |
| // The factor converges to |kIatFactor_|. |
| iat_factor_ += (kIatFactor_ - iat_factor_ + 3) >> 2; |
| } |
| |
| // Enforces upper and lower limits for |target_level_|. The upper limit is |
| // chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some |
| // headroom for natural fluctuations around the target, and ii) equivalent of |
| // |maximum_delay_ms_| in packets. Note that in practice, if no |
| // |maximum_delay_ms_| is specified, this does not have any impact, since the |
| // target level is far below the buffer capacity in all reasonable cases. |
| // The lower limit is equivalent of |minimum_delay_ms_| in packets. We update |
| // |least_required_level_| while the above limits are applied. |
| // TODO(hlundin): Move this check to the buffer logistics class. |
| void DelayManager::LimitTargetLevel() { |
| if (packet_len_ms_ > 0 && minimum_delay_ms_ > 0) { |
| int minimum_delay_packet_q8 = (minimum_delay_ms_ << 8) / packet_len_ms_; |
| target_level_ = std::max(target_level_, minimum_delay_packet_q8); |
| } |
| |
| if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) { |
| int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_; |
| target_level_ = std::min(target_level_, maximum_delay_packet_q8); |
| } |
| |
| // Shift to Q8, then 75%.; |
| int max_buffer_packets_q8 = |
| static_cast<int>((3 * (max_packets_in_buffer_ << 8)) / 4); |
| target_level_ = std::min(target_level_, max_buffer_packets_q8); |
| |
| // Sanity check, at least 1 packet (in Q8). |
| target_level_ = std::max(target_level_, 1 << 8); |
| } |
| |
| int DelayManager::CalculateTargetLevel(int iat_packets) { |
| int limit_probability = forced_limit_probability_.value_or(kLimitProbability); |
| if (streaming_mode_) { |
| limit_probability = kLimitProbabilityStreaming; |
| } |
| |
| // Calculate target buffer level from inter-arrival time histogram. |
| // Find the |iat_index| for which the probability of observing an |
| // inter-arrival time larger than or equal to |iat_index| is less than or |
| // equal to |limit_probability|. The sought probability is estimated using |
| // the histogram as the reverse cumulant PDF, i.e., the sum of elements from |
| // the end up until |iat_index|. Now, since the sum of all elements is 1 |
| // (in Q30) by definition, and since the solution is often a low value for |
| // |iat_index|, it is more efficient to start with |sum| = 1 and subtract |
| // elements from the start of the histogram. |
| size_t index = 0; // Start from the beginning of |iat_vector_|. |
| int sum = 1 << 30; // Assign to 1 in Q30. |
| sum -= iat_vector_[index]; // Ensure that target level is >= 1. |
| |
| do { |
| // Subtract the probabilities one by one until the sum is no longer greater |
| // than limit_probability. |
| ++index; |
| sum -= iat_vector_[index]; |
| } while ((sum > limit_probability) && (index < iat_vector_.size() - 1)); |
| |
| // This is the base value for the target buffer level. |
| int target_level = static_cast<int>(index); |
| base_target_level_ = static_cast<int>(index); |
| |
| // Update detector for delay peaks. |
| bool delay_peak_found = peak_detector_.Update(iat_packets, target_level); |
| if (delay_peak_found) { |
| target_level = std::max(target_level, peak_detector_.MaxPeakHeight()); |
| } |
| |
| // Sanity check. |target_level| must be strictly positive. |
| target_level = std::max(target_level, 1); |
| // Scale to Q8 and assign to member variable. |
| target_level_ = target_level << 8; |
| return target_level_; |
| } |
| |
| int DelayManager::SetPacketAudioLength(int length_ms) { |
| if (length_ms <= 0) { |
| RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms; |
| return -1; |
| } |
| if (frame_length_change_experiment_ && packet_len_ms_ != length_ms) { |
| iat_vector_ = ScaleHistogram(iat_vector_, packet_len_ms_, length_ms); |
| } |
| |
| packet_len_ms_ = length_ms; |
| peak_detector_.SetPacketAudioLength(packet_len_ms_); |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| last_pack_cng_or_dtmf_ = 1; // TODO(hlundin): Legacy. Remove? |
| return 0; |
| } |
| |
| void DelayManager::Reset() { |
| packet_len_ms_ = 0; // Packet size unknown. |
| streaming_mode_ = false; |
| peak_detector_.Reset(); |
| ResetHistogram(); // Resets target levels too. |
| iat_factor_ = 0; // Adapt the histogram faster for the first few packets. |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| max_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| iat_cumulative_sum_ = 0; |
| max_iat_cumulative_sum_ = 0; |
| last_pack_cng_or_dtmf_ = 1; |
| } |
| |
| double DelayManager::EstimatedClockDriftPpm() const { |
| double sum = 0.0; |
| // Calculate the expected value based on the probabilities in |iat_vector_|. |
| for (size_t i = 0; i < iat_vector_.size(); ++i) { |
| sum += static_cast<double>(iat_vector_[i]) * i; |
| } |
| // The probabilities in |iat_vector_| are in Q30. Divide by 1 << 30 to convert |
| // to Q0; subtract the nominal inter-arrival time (1) to make a zero |
| // clockdrift represent as 0; mulitply by 1000000 to produce parts-per-million |
| // (ppm). |
| return (sum / (1 << 30) - 1) * 1e6; |
| } |
| |
| bool DelayManager::PeakFound() const { |
| return peak_detector_.peak_found(); |
| } |
| |
| void DelayManager::ResetPacketIatCount() { |
| packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch(); |
| } |
| |
| // Note that |low_limit| and |higher_limit| are not assigned to |
| // |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this |
| // class. They are computed from |target_level_| and used for decision making. |
| void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const { |
| if (!lower_limit || !higher_limit) { |
| RTC_LOG_F(LS_ERROR) << "NULL pointers supplied as input"; |
| assert(false); |
| return; |
| } |
| |
| int window_20ms = 0x7FFF; // Default large value for legacy bit-exactness. |
| if (packet_len_ms_ > 0) { |
| window_20ms = (20 << 8) / packet_len_ms_; |
| } |
| |
| // |target_level_| is in Q8 already. |
| *lower_limit = (target_level_ * 3) / 4; |
| // |higher_limit| is equal to |target_level_|, but should at |
| // least be 20 ms higher than |lower_limit_|. |
| *higher_limit = std::max(target_level_, *lower_limit + window_20ms); |
| } |
| |
| int DelayManager::TargetLevel() const { |
| return target_level_; |
| } |
| |
| void DelayManager::LastDecodedWasCngOrDtmf(bool it_was) { |
| if (it_was) { |
| last_pack_cng_or_dtmf_ = 1; |
| } else if (last_pack_cng_or_dtmf_ != 0) { |
| last_pack_cng_or_dtmf_ = -1; |
| } |
| } |
| |
| void DelayManager::RegisterEmptyPacket() { |
| ++last_seq_no_; |
| } |
| |
| DelayManager::IATVector DelayManager::ScaleHistogram(const IATVector& histogram, |
| int old_packet_length, |
| int new_packet_length) { |
| if (old_packet_length == 0) { |
| // If we don't know the previous frame length, don't make any changes to the |
| // histogram. |
| return histogram; |
| } |
| RTC_DCHECK_GT(new_packet_length, 0); |
| RTC_DCHECK_EQ(old_packet_length % 10, 0); |
| RTC_DCHECK_EQ(new_packet_length % 10, 0); |
| IATVector new_histogram(histogram.size(), 0); |
| int64_t acc = 0; |
| int time_counter = 0; |
| size_t new_histogram_idx = 0; |
| for (size_t i = 0; i < histogram.size(); i++) { |
| acc += histogram[i]; |
| time_counter += old_packet_length; |
| // The bins should be scaled, to ensure the histogram still sums to one. |
| const int64_t scaled_acc = acc * new_packet_length / time_counter; |
| int64_t actually_used_acc = 0; |
| while (time_counter >= new_packet_length) { |
| const int64_t old_histogram_val = new_histogram[new_histogram_idx]; |
| new_histogram[new_histogram_idx] = |
| rtc::saturated_cast<int>(old_histogram_val + scaled_acc); |
| actually_used_acc += new_histogram[new_histogram_idx] - old_histogram_val; |
| new_histogram_idx = |
| std::min(new_histogram_idx + 1, new_histogram.size() - 1); |
| time_counter -= new_packet_length; |
| } |
| // Only subtract the part that was succesfully written to the new histogram. |
| acc -= actually_used_acc; |
| } |
| // If there is anything left in acc (due to rounding errors), add it to the |
| // last bin. If we cannot add everything to the last bin we need to add as |
| // much as possible to the bins after the last bin (this is only possible |
| // when compressing a histogram). |
| while (acc > 0 && new_histogram_idx < new_histogram.size()) { |
| const int64_t old_histogram_val = new_histogram[new_histogram_idx]; |
| new_histogram[new_histogram_idx] = |
| rtc::saturated_cast<int>(old_histogram_val + acc); |
| acc -= new_histogram[new_histogram_idx] - old_histogram_val; |
| new_histogram_idx++; |
| } |
| RTC_DCHECK_EQ(histogram.size(), new_histogram.size()); |
| if (acc == 0) { |
| // If acc is non-zero, we were not able to add everything to the new |
| // histogram, so this check will not hold. |
| RTC_DCHECK_EQ(accumulate(histogram.begin(), histogram.end(), 0ll), |
| accumulate(new_histogram.begin(), new_histogram.end(), 0ll)); |
| } |
| return new_histogram; |
| } |
| |
| bool DelayManager::SetMinimumDelay(int delay_ms) { |
| // Minimum delay shouldn't be more than maximum delay, if any maximum is set. |
| // Also, if possible check |delay| to less than 75% of |
| // |max_packets_in_buffer_|. |
| if ((maximum_delay_ms_ > 0 && delay_ms > maximum_delay_ms_) || |
| (packet_len_ms_ > 0 && |
| delay_ms > |
| static_cast<int>(3 * max_packets_in_buffer_ * packet_len_ms_ / 4))) { |
| return false; |
| } |
| minimum_delay_ms_ = std::max(delay_ms, base_min_target_delay_ms_); |
| return true; |
| } |
| |
| bool DelayManager::SetMaximumDelay(int delay_ms) { |
| if (delay_ms == 0) { |
| // Zero input unsets the maximum delay. |
| maximum_delay_ms_ = 0; |
| return true; |
| } else if (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_) { |
| // Maximum delay shouldn't be less than minimum delay or less than a packet. |
| return false; |
| } |
| maximum_delay_ms_ = delay_ms; |
| return true; |
| } |
| |
| int DelayManager::base_target_level() const { |
| return base_target_level_; |
| } |
| void DelayManager::set_streaming_mode(bool value) { |
| streaming_mode_ = value; |
| } |
| int DelayManager::last_pack_cng_or_dtmf() const { |
| return last_pack_cng_or_dtmf_; |
| } |
| |
| void DelayManager::set_last_pack_cng_or_dtmf(int value) { |
| last_pack_cng_or_dtmf_ = value; |
| } |
| } // namespace webrtc |