| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: fixed_array.h |
| // ----------------------------------------------------------------------------- |
| // |
| // A `FixedArray<T>` represents a non-resizable array of `T` where the length of |
| // the array can be determined at run-time. It is a good replacement for |
| // non-standard and deprecated uses of `alloca()` and variable length arrays |
| // within the GCC extension. (See |
| // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). |
| // |
| // `FixedArray` allocates small arrays inline, keeping performance fast by |
| // avoiding heap operations. It also helps reduce the chances of |
| // accidentally overflowing your stack if large input is passed to |
| // your function. |
| |
| #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_ |
| #define ABSL_CONTAINER_FIXED_ARRAY_H_ |
| |
| #include <algorithm> |
| #include <array> |
| #include <cassert> |
| #include <cstddef> |
| #include <initializer_list> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <new> |
| #include <type_traits> |
| |
| #include "absl/algorithm/algorithm.h" |
| #include "absl/base/dynamic_annotations.h" |
| #include "absl/base/internal/throw_delegate.h" |
| #include "absl/base/macros.h" |
| #include "absl/base/optimization.h" |
| #include "absl/base/port.h" |
| #include "absl/memory/memory.h" |
| |
| namespace absl { |
| |
| constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); |
| |
| // ----------------------------------------------------------------------------- |
| // FixedArray |
| // ----------------------------------------------------------------------------- |
| // |
| // A `FixedArray` provides a run-time fixed-size array, allocating small arrays |
| // inline for efficiency and correctness. |
| // |
| // Most users should not specify an `inline_elements` argument and let |
| // `FixedArray<>` automatically determine the number of elements |
| // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the |
| // `FixedArray<>` implementation will inline arrays of |
| // length <= `inline_elements`. |
| // |
| // Note that a `FixedArray` constructed with a `size_type` argument will |
| // default-initialize its values by leaving trivially constructible types |
| // uninitialized (e.g. int, int[4], double), and others default-constructed. |
| // This matches the behavior of c-style arrays and `std::array`, but not |
| // `std::vector`. |
| // |
| // Note that `FixedArray` does not provide a public allocator; if it requires a |
| // heap allocation, it will do so with global `::operator new[]()` and |
| // `::operator delete[]()`, even if T provides class-scope overrides for these |
| // operators. |
| template <typename T, size_t inlined = kFixedArrayUseDefault> |
| class FixedArray { |
| static constexpr size_t kInlineBytesDefault = 256; |
| |
| // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, |
| // but this seems to be mostly pedantic. |
| template <typename Iter> |
| using EnableIfForwardIterator = typename std::enable_if< |
| std::is_convertible< |
| typename std::iterator_traits<Iter>::iterator_category, |
| std::forward_iterator_tag>::value, |
| int>::type; |
| |
| public: |
| // For playing nicely with stl: |
| using value_type = T; |
| using iterator = T*; |
| using const_iterator = const T*; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| using reference = T&; |
| using const_reference = const T&; |
| using pointer = T*; |
| using const_pointer = const T*; |
| using difference_type = ptrdiff_t; |
| using size_type = size_t; |
| |
| static constexpr size_type inline_elements = |
| inlined == kFixedArrayUseDefault |
| ? kInlineBytesDefault / sizeof(value_type) |
| : inlined; |
| |
| FixedArray(const FixedArray& other) : rep_(other.begin(), other.end()) {} |
| FixedArray(FixedArray&& other) noexcept( |
| // clang-format off |
| absl::allocator_is_nothrow<std::allocator<value_type>>::value && |
| // clang-format on |
| std::is_nothrow_move_constructible<value_type>::value) |
| : rep_(std::make_move_iterator(other.begin()), |
| std::make_move_iterator(other.end())) {} |
| |
| // Creates an array object that can store `n` elements. |
| // Note that trivially constructible elements will be uninitialized. |
| explicit FixedArray(size_type n) : rep_(n) {} |
| |
| // Creates an array initialized with `n` copies of `val`. |
| FixedArray(size_type n, const value_type& val) : rep_(n, val) {} |
| |
| // Creates an array initialized with the elements from the input |
| // range. The array's size will always be `std::distance(first, last)`. |
| // REQUIRES: Iter must be a forward_iterator or better. |
| template <typename Iter, EnableIfForwardIterator<Iter> = 0> |
| FixedArray(Iter first, Iter last) : rep_(first, last) {} |
| |
| // Creates the array from an initializer_list. |
| FixedArray(std::initializer_list<T> init_list) |
| : FixedArray(init_list.begin(), init_list.end()) {} |
| |
| ~FixedArray() {} |
| |
| // Assignments are deleted because they break the invariant that the size of a |
| // `FixedArray` never changes. |
| void operator=(FixedArray&&) = delete; |
| void operator=(const FixedArray&) = delete; |
| |
| // FixedArray::size() |
| // |
| // Returns the length of the fixed array. |
| size_type size() const { return rep_.size(); } |
| |
| // FixedArray::max_size() |
| // |
| // Returns the largest possible value of `std::distance(begin(), end())` for a |
| // `FixedArray<T>`. This is equivalent to the most possible addressable bytes |
| // over the number of bytes taken by T. |
| constexpr size_type max_size() const { |
| return std::numeric_limits<difference_type>::max() / sizeof(value_type); |
| } |
| |
| // FixedArray::empty() |
| // |
| // Returns whether or not the fixed array is empty. |
| bool empty() const { return size() == 0; } |
| |
| // FixedArray::memsize() |
| // |
| // Returns the memory size of the fixed array in bytes. |
| size_t memsize() const { return size() * sizeof(value_type); } |
| |
| // FixedArray::data() |
| // |
| // Returns a const T* pointer to elements of the `FixedArray`. This pointer |
| // can be used to access (but not modify) the contained elements. |
| const_pointer data() const { return AsValue(rep_.begin()); } |
| |
| // Overload of FixedArray::data() to return a T* pointer to elements of the |
| // fixed array. This pointer can be used to access and modify the contained |
| // elements. |
| pointer data() { return AsValue(rep_.begin()); } |
| |
| // FixedArray::operator[] |
| // |
| // Returns a reference the ith element of the fixed array. |
| // REQUIRES: 0 <= i < size() |
| reference operator[](size_type i) { |
| assert(i < size()); |
| return data()[i]; |
| } |
| |
| // Overload of FixedArray::operator()[] to return a const reference to the |
| // ith element of the fixed array. |
| // REQUIRES: 0 <= i < size() |
| const_reference operator[](size_type i) const { |
| assert(i < size()); |
| return data()[i]; |
| } |
| |
| // FixedArray::at |
| // |
| // Bounds-checked access. Returns a reference to the ith element of the |
| // fiexed array, or throws std::out_of_range |
| reference at(size_type i) { |
| if (ABSL_PREDICT_FALSE(i >= size())) { |
| base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); |
| } |
| return data()[i]; |
| } |
| |
| // Overload of FixedArray::at() to return a const reference to the ith element |
| // of the fixed array. |
| const_reference at(size_type i) const { |
| if (ABSL_PREDICT_FALSE(i >= size())) { |
| base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); |
| } |
| return data()[i]; |
| } |
| |
| // FixedArray::front() |
| // |
| // Returns a reference to the first element of the fixed array. |
| reference front() { return *begin(); } |
| |
| // Overload of FixedArray::front() to return a reference to the first element |
| // of a fixed array of const values. |
| const_reference front() const { return *begin(); } |
| |
| // FixedArray::back() |
| // |
| // Returns a reference to the last element of the fixed array. |
| reference back() { return *(end() - 1); } |
| |
| // Overload of FixedArray::back() to return a reference to the last element |
| // of a fixed array of const values. |
| const_reference back() const { return *(end() - 1); } |
| |
| // FixedArray::begin() |
| // |
| // Returns an iterator to the beginning of the fixed array. |
| iterator begin() { return data(); } |
| |
| // Overload of FixedArray::begin() to return a const iterator to the |
| // beginning of the fixed array. |
| const_iterator begin() const { return data(); } |
| |
| // FixedArray::cbegin() |
| // |
| // Returns a const iterator to the beginning of the fixed array. |
| const_iterator cbegin() const { return begin(); } |
| |
| // FixedArray::end() |
| // |
| // Returns an iterator to the end of the fixed array. |
| iterator end() { return data() + size(); } |
| |
| // Overload of FixedArray::end() to return a const iterator to the end of the |
| // fixed array. |
| const_iterator end() const { return data() + size(); } |
| |
| // FixedArray::cend() |
| // |
| // Returns a const iterator to the end of the fixed array. |
| const_iterator cend() const { return end(); } |
| |
| // FixedArray::rbegin() |
| // |
| // Returns a reverse iterator from the end of the fixed array. |
| reverse_iterator rbegin() { return reverse_iterator(end()); } |
| |
| // Overload of FixedArray::rbegin() to return a const reverse iterator from |
| // the end of the fixed array. |
| const_reverse_iterator rbegin() const { |
| return const_reverse_iterator(end()); |
| } |
| |
| // FixedArray::crbegin() |
| // |
| // Returns a const reverse iterator from the end of the fixed array. |
| const_reverse_iterator crbegin() const { return rbegin(); } |
| |
| // FixedArray::rend() |
| // |
| // Returns a reverse iterator from the beginning of the fixed array. |
| reverse_iterator rend() { return reverse_iterator(begin()); } |
| |
| // Overload of FixedArray::rend() for returning a const reverse iterator |
| // from the beginning of the fixed array. |
| const_reverse_iterator rend() const { |
| return const_reverse_iterator(begin()); |
| } |
| |
| // FixedArray::crend() |
| // |
| // Returns a reverse iterator from the beginning of the fixed array. |
| const_reverse_iterator crend() const { return rend(); } |
| |
| // FixedArray::fill() |
| // |
| // Assigns the given `value` to all elements in the fixed array. |
| void fill(const T& value) { std::fill(begin(), end(), value); } |
| |
| // Relational operators. Equality operators are elementwise using |
| // `operator==`, while order operators order FixedArrays lexicographically. |
| friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { |
| return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
| } |
| |
| friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { |
| return !(lhs == rhs); |
| } |
| |
| friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { |
| return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), |
| rhs.end()); |
| } |
| |
| friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { |
| return rhs < lhs; |
| } |
| |
| friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { |
| return !(rhs < lhs); |
| } |
| |
| friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { |
| return !(lhs < rhs); |
| } |
| |
| private: |
| // HolderTraits |
| // |
| // Wrapper to hold elements of type T for the case where T is an array type. |
| // If 'T' is an array type, HolderTraits::type is a struct with a 'T v;'. |
| // Otherwise, HolderTraits::type is simply 'T'. |
| // |
| // Maintainer's Note: The simpler solution would be to simply wrap T in a |
| // struct whether it's an array or not: 'struct Holder { T v; };', but |
| // that causes some paranoid diagnostics to misfire about uses of data(), |
| // believing that 'data()' (aka '&rep_.begin().v') is a pointer to a single |
| // element, rather than the packed array that it really is. |
| // e.g.: |
| // |
| // FixedArray<char> buf(1); |
| // sprintf(buf.data(), "foo"); |
| // |
| // error: call to int __builtin___sprintf_chk(etc...) |
| // will always overflow destination buffer [-Werror] |
| // |
| class HolderTraits { |
| template <typename U> |
| struct SelectImpl { |
| using type = U; |
| static pointer AsValue(type* p) { return p; } |
| }; |
| |
| // Partial specialization for elements of array type. |
| template <typename U, size_t N> |
| struct SelectImpl<U[N]> { |
| struct Holder { U v[N]; }; |
| using type = Holder; |
| static pointer AsValue(type* p) { return &p->v; } |
| }; |
| using Impl = SelectImpl<value_type>; |
| |
| public: |
| using type = typename Impl::type; |
| |
| static pointer AsValue(type *p) { return Impl::AsValue(p); } |
| |
| // TODO(billydonahue): fix the type aliasing violation |
| // this assertion hints at. |
| static_assert(sizeof(type) == sizeof(value_type), |
| "Holder must be same size as value_type"); |
| }; |
| |
| using Holder = typename HolderTraits::type; |
| static pointer AsValue(Holder *p) { return HolderTraits::AsValue(p); } |
| |
| // InlineSpace |
| // |
| // Allocate some space, not an array of elements of type T, so that we can |
| // skip calling the T constructors and destructors for space we never use. |
| // How many elements should we store inline? |
| // a. If not specified, use a default of kInlineBytesDefault bytes (This is |
| // currently 256 bytes, which seems small enough to not cause stack overflow |
| // or unnecessary stack pollution, while still allowing stack allocation for |
| // reasonably long character arrays). |
| // b. Never use 0 length arrays (not ISO C++) |
| // |
| template <size_type N, typename = void> |
| class InlineSpace { |
| public: |
| Holder* data() { return reinterpret_cast<Holder*>(space_.data()); } |
| void AnnotateConstruct(size_t n) const { Annotate(n, true); } |
| void AnnotateDestruct(size_t n) const { Annotate(n, false); } |
| |
| private: |
| #ifndef ADDRESS_SANITIZER |
| void Annotate(size_t, bool) const { } |
| #else |
| void Annotate(size_t n, bool creating) const { |
| if (!n) return; |
| const void* bot = &left_redzone_; |
| const void* beg = space_.data(); |
| const void* end = space_.data() + n; |
| const void* top = &right_redzone_ + 1; |
| // args: (beg, end, old_mid, new_mid) |
| if (creating) { |
| ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, top, end); |
| ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, beg, bot); |
| } else { |
| ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, end, top); |
| ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, bot, beg); |
| } |
| } |
| #endif // ADDRESS_SANITIZER |
| |
| using Buffer = |
| typename std::aligned_storage<sizeof(Holder), alignof(Holder)>::type; |
| |
| ABSL_ADDRESS_SANITIZER_REDZONE(left_redzone_); |
| std::array<Buffer, N> space_; |
| ABSL_ADDRESS_SANITIZER_REDZONE(right_redzone_); |
| }; |
| |
| // specialization when N = 0. |
| template <typename U> |
| class InlineSpace<0, U> { |
| public: |
| Holder* data() { return nullptr; } |
| void AnnotateConstruct(size_t) const {} |
| void AnnotateDestruct(size_t) const {} |
| }; |
| |
| // Rep |
| // |
| // A const Rep object holds FixedArray's size and data pointer. |
| // |
| class Rep : public InlineSpace<inline_elements> { |
| public: |
| Rep(size_type n, const value_type& val) : n_(n), p_(MakeHolder(n)) { |
| std::uninitialized_fill_n(p_, n, val); |
| } |
| |
| explicit Rep(size_type n) : n_(n), p_(MakeHolder(n)) { |
| // Loop optimizes to nothing for trivially constructible T. |
| for (Holder* p = p_; p != p_ + n; ++p) |
| // Note: no parens: default init only. |
| // Also note '::' to avoid Holder class placement new operator. |
| ::new (static_cast<void*>(p)) Holder; |
| } |
| |
| template <typename Iter> |
| Rep(Iter first, Iter last) |
| : n_(std::distance(first, last)), p_(MakeHolder(n_)) { |
| std::uninitialized_copy(first, last, AsValue(p_)); |
| } |
| |
| ~Rep() { |
| // Destruction must be in reverse order. |
| // Loop optimizes to nothing for trivially destructible T. |
| for (Holder* p = end(); p != begin();) (--p)->~Holder(); |
| if (IsAllocated(size())) { |
| std::allocator<Holder>().deallocate(p_, n_); |
| } else { |
| this->AnnotateDestruct(size()); |
| } |
| } |
| Holder* begin() const { return p_; } |
| Holder* end() const { return p_ + n_; } |
| size_type size() const { return n_; } |
| |
| private: |
| Holder* MakeHolder(size_type n) { |
| if (IsAllocated(n)) { |
| return std::allocator<Holder>().allocate(n); |
| } else { |
| this->AnnotateConstruct(n); |
| return this->data(); |
| } |
| } |
| |
| bool IsAllocated(size_type n) const { return n > inline_elements; } |
| |
| const size_type n_; |
| Holder* const p_; |
| }; |
| |
| |
| // Data members |
| Rep rep_; |
| }; |
| |
| template <typename T, size_t N> |
| constexpr size_t FixedArray<T, N>::inline_elements; |
| |
| template <typename T, size_t N> |
| constexpr size_t FixedArray<T, N>::kInlineBytesDefault; |
| |
| } // namespace absl |
| #endif // ABSL_CONTAINER_FIXED_ARRAY_H_ |