| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // For reference check out: |
| // https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling |
| // |
| // Note that we only have partial C++11 support yet. |
| |
| #include "absl/debugging/internal/demangle.h" |
| |
| #include <cstdint> |
| #include <cstdio> |
| #include <limits> |
| |
| namespace absl { |
| namespace debugging_internal { |
| |
| typedef struct { |
| const char *abbrev; |
| const char *real_name; |
| // Number of arguments in <expression> context, or 0 if disallowed. |
| int arity; |
| } AbbrevPair; |
| |
| // List of operators from Itanium C++ ABI. |
| static const AbbrevPair kOperatorList[] = { |
| // New has special syntax (not currently supported). |
| {"nw", "new", 0}, |
| {"na", "new[]", 0}, |
| |
| // Works except that the 'gs' prefix is not supported. |
| {"dl", "delete", 1}, |
| {"da", "delete[]", 1}, |
| |
| {"ps", "+", 1}, // "positive" |
| {"ng", "-", 1}, // "negative" |
| {"ad", "&", 1}, // "address-of" |
| {"de", "*", 1}, // "dereference" |
| {"co", "~", 1}, |
| |
| {"pl", "+", 2}, |
| {"mi", "-", 2}, |
| {"ml", "*", 2}, |
| {"dv", "/", 2}, |
| {"rm", "%", 2}, |
| {"an", "&", 2}, |
| {"or", "|", 2}, |
| {"eo", "^", 2}, |
| {"aS", "=", 2}, |
| {"pL", "+=", 2}, |
| {"mI", "-=", 2}, |
| {"mL", "*=", 2}, |
| {"dV", "/=", 2}, |
| {"rM", "%=", 2}, |
| {"aN", "&=", 2}, |
| {"oR", "|=", 2}, |
| {"eO", "^=", 2}, |
| {"ls", "<<", 2}, |
| {"rs", ">>", 2}, |
| {"lS", "<<=", 2}, |
| {"rS", ">>=", 2}, |
| {"eq", "==", 2}, |
| {"ne", "!=", 2}, |
| {"lt", "<", 2}, |
| {"gt", ">", 2}, |
| {"le", "<=", 2}, |
| {"ge", ">=", 2}, |
| {"nt", "!", 1}, |
| {"aa", "&&", 2}, |
| {"oo", "||", 2}, |
| {"pp", "++", 1}, |
| {"mm", "--", 1}, |
| {"cm", ",", 2}, |
| {"pm", "->*", 2}, |
| {"pt", "->", 0}, // Special syntax |
| {"cl", "()", 0}, // Special syntax |
| {"ix", "[]", 2}, |
| {"qu", "?", 3}, |
| {"st", "sizeof", 0}, // Special syntax |
| {"sz", "sizeof", 1}, // Not a real operator name, but used in expressions. |
| {nullptr, nullptr, 0}, |
| }; |
| |
| // List of builtin types from Itanium C++ ABI. |
| static const AbbrevPair kBuiltinTypeList[] = { |
| {"v", "void", 0}, |
| {"w", "wchar_t", 0}, |
| {"b", "bool", 0}, |
| {"c", "char", 0}, |
| {"a", "signed char", 0}, |
| {"h", "unsigned char", 0}, |
| {"s", "short", 0}, |
| {"t", "unsigned short", 0}, |
| {"i", "int", 0}, |
| {"j", "unsigned int", 0}, |
| {"l", "long", 0}, |
| {"m", "unsigned long", 0}, |
| {"x", "long long", 0}, |
| {"y", "unsigned long long", 0}, |
| {"n", "__int128", 0}, |
| {"o", "unsigned __int128", 0}, |
| {"f", "float", 0}, |
| {"d", "double", 0}, |
| {"e", "long double", 0}, |
| {"g", "__float128", 0}, |
| {"z", "ellipsis", 0}, |
| {nullptr, nullptr, 0}, |
| }; |
| |
| // List of substitutions Itanium C++ ABI. |
| static const AbbrevPair kSubstitutionList[] = { |
| {"St", "", 0}, |
| {"Sa", "allocator", 0}, |
| {"Sb", "basic_string", 0}, |
| // std::basic_string<char, std::char_traits<char>,std::allocator<char> > |
| {"Ss", "string", 0}, |
| // std::basic_istream<char, std::char_traits<char> > |
| {"Si", "istream", 0}, |
| // std::basic_ostream<char, std::char_traits<char> > |
| {"So", "ostream", 0}, |
| // std::basic_iostream<char, std::char_traits<char> > |
| {"Sd", "iostream", 0}, |
| {nullptr, nullptr, 0}, |
| }; |
| |
| // State needed for demangling. This struct is copied in almost every stack |
| // frame, so every byte counts. |
| typedef struct { |
| int mangled_idx; // Cursor of mangled name. |
| int out_cur_idx; // Cursor of output std::string. |
| int prev_name_idx; // For constructors/destructors. |
| signed int prev_name_length : 16; // For constructors/destructors. |
| signed int nest_level : 15; // For nested names. |
| unsigned int append : 1; // Append flag. |
| // Note: for some reason MSVC can't pack "bool append : 1" into the same int |
| // with the above two fields, so we use an int instead. Amusingly it can pack |
| // "signed bool" as expected, but relying on that to continue to be a legal |
| // type seems ill-advised (as it's illegal in at least clang). |
| } ParseState; |
| |
| static_assert(sizeof(ParseState) == 4 * sizeof(int), |
| "unexpected size of ParseState"); |
| |
| // One-off state for demangling that's not subject to backtracking -- either |
| // constant data, data that's intentionally immune to backtracking (steps), or |
| // data that would never be changed by backtracking anyway (recursion_depth). |
| // |
| // Only one copy of this exists for each call to Demangle, so the size of this |
| // struct is nearly inconsequential. |
| typedef struct { |
| const char *mangled_begin; // Beginning of input std::string. |
| char *out; // Beginning of output std::string. |
| int out_end_idx; // One past last allowed output character. |
| int recursion_depth; // For stack exhaustion prevention. |
| int steps; // Cap how much work we'll do, regardless of depth. |
| ParseState parse_state; // Backtrackable state copied for most frames. |
| } State; |
| |
| namespace { |
| // Prevent deep recursion / stack exhaustion. |
| // Also prevent unbounded handling of complex inputs. |
| class ComplexityGuard { |
| public: |
| explicit ComplexityGuard(State *state) : state_(state) { |
| ++state->recursion_depth; |
| ++state->steps; |
| } |
| ~ComplexityGuard() { --state_->recursion_depth; } |
| |
| // 256 levels of recursion seems like a reasonable upper limit on depth. |
| // 128 is not enough to demagle synthetic tests from demangle_unittest.txt: |
| // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..." |
| static constexpr int kRecursionDepthLimit = 256; |
| |
| // We're trying to pick a charitable upper-limit on how many parse steps are |
| // necessary to handle something that a human could actually make use of. |
| // This is mostly in place as a bound on how much work we'll do if we are |
| // asked to demangle an mangled name from an untrusted source, so it should be |
| // much larger than the largest expected symbol, but much smaller than the |
| // amount of work we can do in, e.g., a second. |
| // |
| // Some real-world symbols from an arbitrary binary started failing between |
| // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set |
| // the limit. |
| // |
| // Spending one second on 2^17 parse steps would require each step to take |
| // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in |
| // under a second. |
| static constexpr int kParseStepsLimit = 1 << 17; |
| |
| bool IsTooComplex() const { |
| return state_->recursion_depth > kRecursionDepthLimit || |
| state_->steps > kParseStepsLimit; |
| } |
| |
| private: |
| State *state_; |
| }; |
| } // namespace |
| |
| // We don't use strlen() in libc since it's not guaranteed to be async |
| // signal safe. |
| static size_t StrLen(const char *str) { |
| size_t len = 0; |
| while (*str != '\0') { |
| ++str; |
| ++len; |
| } |
| return len; |
| } |
| |
| // Returns true if "str" has at least "n" characters remaining. |
| static bool AtLeastNumCharsRemaining(const char *str, int n) { |
| for (int i = 0; i < n; ++i) { |
| if (str[i] == '\0') { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Returns true if "str" has "prefix" as a prefix. |
| static bool StrPrefix(const char *str, const char *prefix) { |
| size_t i = 0; |
| while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) { |
| ++i; |
| } |
| return prefix[i] == '\0'; // Consumed everything in "prefix". |
| } |
| |
| static void InitState(State *state, const char *mangled, char *out, |
| int out_size) { |
| state->mangled_begin = mangled; |
| state->out = out; |
| state->out_end_idx = out_size; |
| state->recursion_depth = 0; |
| state->steps = 0; |
| |
| state->parse_state.mangled_idx = 0; |
| state->parse_state.out_cur_idx = 0; |
| state->parse_state.prev_name_idx = 0; |
| state->parse_state.prev_name_length = -1; |
| state->parse_state.nest_level = -1; |
| state->parse_state.append = true; |
| } |
| |
| static inline const char *RemainingInput(State *state) { |
| return &state->mangled_begin[state->parse_state.mangled_idx]; |
| } |
| |
| // Returns true and advances "mangled_idx" if we find "one_char_token" |
| // at "mangled_idx" position. It is assumed that "one_char_token" does |
| // not contain '\0'. |
| static bool ParseOneCharToken(State *state, const char one_char_token) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (RemainingInput(state)[0] == one_char_token) { |
| ++state->parse_state.mangled_idx; |
| return true; |
| } |
| return false; |
| } |
| |
| // Returns true and advances "mangled_cur" if we find "two_char_token" |
| // at "mangled_cur" position. It is assumed that "two_char_token" does |
| // not contain '\0'. |
| static bool ParseTwoCharToken(State *state, const char *two_char_token) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (RemainingInput(state)[0] == two_char_token[0] && |
| RemainingInput(state)[1] == two_char_token[1]) { |
| state->parse_state.mangled_idx += 2; |
| return true; |
| } |
| return false; |
| } |
| |
| // Returns true and advances "mangled_cur" if we find any character in |
| // "char_class" at "mangled_cur" position. |
| static bool ParseCharClass(State *state, const char *char_class) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (RemainingInput(state)[0] == '\0') { |
| return false; |
| } |
| const char *p = char_class; |
| for (; *p != '\0'; ++p) { |
| if (RemainingInput(state)[0] == *p) { |
| ++state->parse_state.mangled_idx; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool ParseDigit(State *state, int *digit) { |
| char c = RemainingInput(state)[0]; |
| if (ParseCharClass(state, "0123456789")) { |
| if (digit != nullptr) { |
| *digit = c - '0'; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| // This function is used for handling an optional non-terminal. |
| static bool Optional(bool /*status*/) { return true; } |
| |
| // This function is used for handling <non-terminal>+ syntax. |
| typedef bool (*ParseFunc)(State *); |
| static bool OneOrMore(ParseFunc parse_func, State *state) { |
| if (parse_func(state)) { |
| while (parse_func(state)) { |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| // This function is used for handling <non-terminal>* syntax. The function |
| // always returns true and must be followed by a termination token or a |
| // terminating sequence not handled by parse_func (e.g. |
| // ParseOneCharToken(state, 'E')). |
| static bool ZeroOrMore(ParseFunc parse_func, State *state) { |
| while (parse_func(state)) { |
| } |
| return true; |
| } |
| |
| // Append "str" at "out_cur_idx". If there is an overflow, out_cur_idx is |
| // set to out_end_idx+1. The output std::string is ensured to |
| // always terminate with '\0' as long as there is no overflow. |
| static void Append(State *state, const char *const str, const int length) { |
| for (int i = 0; i < length; ++i) { |
| if (state->parse_state.out_cur_idx + 1 < |
| state->out_end_idx) { // +1 for '\0' |
| state->out[state->parse_state.out_cur_idx++] = str[i]; |
| } else { |
| // signal overflow |
| state->parse_state.out_cur_idx = state->out_end_idx + 1; |
| break; |
| } |
| } |
| if (state->parse_state.out_cur_idx < state->out_end_idx) { |
| state->out[state->parse_state.out_cur_idx] = |
| '\0'; // Terminate it with '\0' |
| } |
| } |
| |
| // We don't use equivalents in libc to avoid locale issues. |
| static bool IsLower(char c) { return c >= 'a' && c <= 'z'; } |
| |
| static bool IsAlpha(char c) { |
| return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); |
| } |
| |
| static bool IsDigit(char c) { return c >= '0' && c <= '9'; } |
| |
| // Returns true if "str" is a function clone suffix. These suffixes are used |
| // by GCC 4.5.x and later versions (and our locally-modified version of GCC |
| // 4.4.x) to indicate functions which have been cloned during optimization. |
| // We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix. |
| static bool IsFunctionCloneSuffix(const char *str) { |
| size_t i = 0; |
| while (str[i] != '\0') { |
| // Consume a single .<alpha>+.<digit>+ sequence. |
| if (str[i] != '.' || !IsAlpha(str[i + 1])) { |
| return false; |
| } |
| i += 2; |
| while (IsAlpha(str[i])) { |
| ++i; |
| } |
| if (str[i] != '.' || !IsDigit(str[i + 1])) { |
| return false; |
| } |
| i += 2; |
| while (IsDigit(str[i])) { |
| ++i; |
| } |
| } |
| return true; // Consumed everything in "str". |
| } |
| |
| static bool EndsWith(State *state, const char chr) { |
| return state->parse_state.out_cur_idx > 0 && |
| chr == state->out[state->parse_state.out_cur_idx - 1]; |
| } |
| |
| // Append "str" with some tweaks, iff "append" state is true. |
| static void MaybeAppendWithLength(State *state, const char *const str, |
| const int length) { |
| if (state->parse_state.append && length > 0) { |
| // Append a space if the output buffer ends with '<' and "str" |
| // starts with '<' to avoid <<<. |
| if (str[0] == '<' && EndsWith(state, '<')) { |
| Append(state, " ", 1); |
| } |
| // Remember the last identifier name for ctors/dtors. |
| if (IsAlpha(str[0]) || str[0] == '_') { |
| state->parse_state.prev_name_idx = state->parse_state.out_cur_idx; |
| state->parse_state.prev_name_length = length; |
| } |
| Append(state, str, length); |
| } |
| } |
| |
| // Appends a positive decimal number to the output if appending is enabled. |
| static bool MaybeAppendDecimal(State *state, unsigned int val) { |
| // Max {32-64}-bit unsigned int is 20 digits. |
| constexpr size_t kMaxLength = 20; |
| char buf[kMaxLength]; |
| |
| // We can't use itoa or sprintf as neither is specified to be |
| // async-signal-safe. |
| if (state->parse_state.append) { |
| // We can't have a one-before-the-beginning pointer, so instead start with |
| // one-past-the-end and manipulate one character before the pointer. |
| char *p = &buf[kMaxLength]; |
| do { // val=0 is the only input that should write a leading zero digit. |
| *--p = (val % 10) + '0'; |
| val /= 10; |
| } while (p > buf && val != 0); |
| |
| // 'p' landed on the last character we set. How convenient. |
| Append(state, p, kMaxLength - (p - buf)); |
| } |
| |
| return true; |
| } |
| |
| // A convenient wrapper around MaybeAppendWithLength(). |
| // Returns true so that it can be placed in "if" conditions. |
| static bool MaybeAppend(State *state, const char *const str) { |
| if (state->parse_state.append) { |
| int length = StrLen(str); |
| MaybeAppendWithLength(state, str, length); |
| } |
| return true; |
| } |
| |
| // This function is used for handling nested names. |
| static bool EnterNestedName(State *state) { |
| state->parse_state.nest_level = 0; |
| return true; |
| } |
| |
| // This function is used for handling nested names. |
| static bool LeaveNestedName(State *state, int16_t prev_value) { |
| state->parse_state.nest_level = prev_value; |
| return true; |
| } |
| |
| // Disable the append mode not to print function parameters, etc. |
| static bool DisableAppend(State *state) { |
| state->parse_state.append = false; |
| return true; |
| } |
| |
| // Restore the append mode to the previous state. |
| static bool RestoreAppend(State *state, bool prev_value) { |
| state->parse_state.append = prev_value; |
| return true; |
| } |
| |
| // Increase the nest level for nested names. |
| static void MaybeIncreaseNestLevel(State *state) { |
| if (state->parse_state.nest_level > -1) { |
| ++state->parse_state.nest_level; |
| } |
| } |
| |
| // Appends :: for nested names if necessary. |
| static void MaybeAppendSeparator(State *state) { |
| if (state->parse_state.nest_level >= 1) { |
| MaybeAppend(state, "::"); |
| } |
| } |
| |
| // Cancel the last separator if necessary. |
| static void MaybeCancelLastSeparator(State *state) { |
| if (state->parse_state.nest_level >= 1 && state->parse_state.append && |
| state->parse_state.out_cur_idx >= 2) { |
| state->parse_state.out_cur_idx -= 2; |
| state->out[state->parse_state.out_cur_idx] = '\0'; |
| } |
| } |
| |
| // Returns true if the identifier of the given length pointed to by |
| // "mangled_cur" is anonymous namespace. |
| static bool IdentifierIsAnonymousNamespace(State *state, int length) { |
| // Returns true if "anon_prefix" is a proper prefix of "mangled_cur". |
| static const char anon_prefix[] = "_GLOBAL__N_"; |
| return (length > static_cast<int>(sizeof(anon_prefix) - 1) && |
| StrPrefix(RemainingInput(state), anon_prefix)); |
| } |
| |
| // Forward declarations of our parsing functions. |
| static bool ParseMangledName(State *state); |
| static bool ParseEncoding(State *state); |
| static bool ParseName(State *state); |
| static bool ParseUnscopedName(State *state); |
| static bool ParseNestedName(State *state); |
| static bool ParsePrefix(State *state); |
| static bool ParseUnqualifiedName(State *state); |
| static bool ParseSourceName(State *state); |
| static bool ParseLocalSourceName(State *state); |
| static bool ParseUnnamedTypeName(State *state); |
| static bool ParseNumber(State *state, int *number_out); |
| static bool ParseFloatNumber(State *state); |
| static bool ParseSeqId(State *state); |
| static bool ParseIdentifier(State *state, int length); |
| static bool ParseOperatorName(State *state, int *arity); |
| static bool ParseSpecialName(State *state); |
| static bool ParseCallOffset(State *state); |
| static bool ParseNVOffset(State *state); |
| static bool ParseVOffset(State *state); |
| static bool ParseCtorDtorName(State *state); |
| static bool ParseDecltype(State *state); |
| static bool ParseType(State *state); |
| static bool ParseCVQualifiers(State *state); |
| static bool ParseBuiltinType(State *state); |
| static bool ParseFunctionType(State *state); |
| static bool ParseBareFunctionType(State *state); |
| static bool ParseClassEnumType(State *state); |
| static bool ParseArrayType(State *state); |
| static bool ParsePointerToMemberType(State *state); |
| static bool ParseTemplateParam(State *state); |
| static bool ParseTemplateTemplateParam(State *state); |
| static bool ParseTemplateArgs(State *state); |
| static bool ParseTemplateArg(State *state); |
| static bool ParseBaseUnresolvedName(State *state); |
| static bool ParseUnresolvedName(State *state); |
| static bool ParseExpression(State *state); |
| static bool ParseExprPrimary(State *state); |
| static bool ParseExprCastValue(State *state); |
| static bool ParseLocalName(State *state); |
| static bool ParseLocalNameSuffix(State *state); |
| static bool ParseDiscriminator(State *state); |
| static bool ParseSubstitution(State *state, bool accept_std); |
| |
| // Implementation note: the following code is a straightforward |
| // translation of the Itanium C++ ABI defined in BNF with a couple of |
| // exceptions. |
| // |
| // - Support GNU extensions not defined in the Itanium C++ ABI |
| // - <prefix> and <template-prefix> are combined to avoid infinite loop |
| // - Reorder patterns to shorten the code |
| // - Reorder patterns to give greedier functions precedence |
| // We'll mark "Less greedy than" for these cases in the code |
| // |
| // Each parsing function changes the parse state and returns true on |
| // success, or returns false and doesn't change the parse state (note: |
| // the parse-steps counter increases regardless of success or failure). |
| // To ensure that the parse state isn't changed in the latter case, we |
| // save the original state before we call multiple parsing functions |
| // consecutively with &&, and restore it if unsuccessful. See |
| // ParseEncoding() as an example of this convention. We follow the |
| // convention throughout the code. |
| // |
| // Originally we tried to do demangling without following the full ABI |
| // syntax but it turned out we needed to follow the full syntax to |
| // parse complicated cases like nested template arguments. Note that |
| // implementing a full-fledged demangler isn't trivial (libiberty's |
| // cp-demangle.c has +4300 lines). |
| // |
| // Note that (foo) in <(foo) ...> is a modifier to be ignored. |
| // |
| // Reference: |
| // - Itanium C++ ABI |
| // <https://mentorembedded.github.io/cxx-abi/abi.html#mangling> |
| |
| // <mangled-name> ::= _Z <encoding> |
| static bool ParseMangledName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| return ParseTwoCharToken(state, "_Z") && ParseEncoding(state); |
| } |
| |
| // <encoding> ::= <(function) name> <bare-function-type> |
| // ::= <(data) name> |
| // ::= <special-name> |
| static bool ParseEncoding(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| // Implementing the first two productions together as <name> |
| // [<bare-function-type>] avoids exponential blowup of backtracking. |
| // |
| // Since Optional(...) can't fail, there's no need to copy the state for |
| // backtracking. |
| if (ParseName(state) && Optional(ParseBareFunctionType(state))) { |
| return true; |
| } |
| |
| if (ParseSpecialName(state)) { |
| return true; |
| } |
| return false; |
| } |
| |
| // <name> ::= <nested-name> |
| // ::= <unscoped-template-name> <template-args> |
| // ::= <unscoped-name> |
| // ::= <local-name> |
| static bool ParseName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (ParseNestedName(state) || ParseLocalName(state)) { |
| return true; |
| } |
| |
| // We reorganize the productions to avoid re-parsing unscoped names. |
| // - Inline <unscoped-template-name> productions: |
| // <name> ::= <substitution> <template-args> |
| // ::= <unscoped-name> <template-args> |
| // ::= <unscoped-name> |
| // - Merge the two productions that start with unscoped-name: |
| // <name> ::= <unscoped-name> [<template-args>] |
| |
| ParseState copy = state->parse_state; |
| // "std<...>" isn't a valid name. |
| if (ParseSubstitution(state, /*accept_std=*/false) && |
| ParseTemplateArgs(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Note there's no need to restore state after this since only the first |
| // subparser can fail. |
| return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state)); |
| } |
| |
| // <unscoped-name> ::= <unqualified-name> |
| // ::= St <unqualified-name> |
| static bool ParseUnscopedName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (ParseUnqualifiedName(state)) { |
| return true; |
| } |
| |
| ParseState copy = state->parse_state; |
| if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") && |
| ParseUnqualifiedName(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <ref-qualifer> ::= R // lvalue method reference qualifier |
| // ::= O // rvalue method reference qualifier |
| static inline bool ParseRefQualifier(State *state) { |
| return ParseCharClass(state, "OR"); |
| } |
| |
| // <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> |
| // <unqualified-name> E |
| // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> |
| // <template-args> E |
| static bool ParseNestedName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'N') && EnterNestedName(state) && |
| Optional(ParseCVQualifiers(state)) && |
| Optional(ParseRefQualifier(state)) && ParsePrefix(state) && |
| LeaveNestedName(state, copy.nest_level) && |
| ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // This part is tricky. If we literally translate them to code, we'll |
| // end up infinite loop. Hence we merge them to avoid the case. |
| // |
| // <prefix> ::= <prefix> <unqualified-name> |
| // ::= <template-prefix> <template-args> |
| // ::= <template-param> |
| // ::= <substitution> |
| // ::= # empty |
| // <template-prefix> ::= <prefix> <(template) unqualified-name> |
| // ::= <template-param> |
| // ::= <substitution> |
| static bool ParsePrefix(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| bool has_something = false; |
| while (true) { |
| MaybeAppendSeparator(state); |
| if (ParseTemplateParam(state) || |
| ParseSubstitution(state, /*accept_std=*/true) || |
| ParseUnscopedName(state) || |
| (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) { |
| has_something = true; |
| MaybeIncreaseNestLevel(state); |
| continue; |
| } |
| MaybeCancelLastSeparator(state); |
| if (has_something && ParseTemplateArgs(state)) { |
| return ParsePrefix(state); |
| } else { |
| break; |
| } |
| } |
| return true; |
| } |
| |
| // <unqualified-name> ::= <operator-name> |
| // ::= <ctor-dtor-name> |
| // ::= <source-name> |
| // ::= <local-source-name> // GCC extension; see below. |
| // ::= <unnamed-type-name> |
| static bool ParseUnqualifiedName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| return (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) || |
| ParseSourceName(state) || ParseLocalSourceName(state) || |
| ParseUnnamedTypeName(state)); |
| } |
| |
| // <source-name> ::= <positive length number> <identifier> |
| static bool ParseSourceName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| int length = -1; |
| if (ParseNumber(state, &length) && ParseIdentifier(state, length)) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <local-source-name> ::= L <source-name> [<discriminator>] |
| // |
| // References: |
| // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775 |
| // http://gcc.gnu.org/viewcvs?view=rev&revision=124467 |
| static bool ParseLocalSourceName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'L') && ParseSourceName(state) && |
| Optional(ParseDiscriminator(state))) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <unnamed-type-name> ::= Ut [<(nonnegative) number>] _ |
| // ::= <closure-type-name> |
| // <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _ |
| // <lambda-sig> ::= <(parameter) type>+ |
| static bool ParseUnnamedTypeName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }. |
| // Optionally parse the encoded value into 'which' and add 2 to get the index. |
| int which = -1; |
| |
| // Unnamed type local to function or class. |
| if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) && |
| which <= std::numeric_limits<int>::max() - 2 && // Don't overflow. |
| ParseOneCharToken(state, '_')) { |
| MaybeAppend(state, "{unnamed type#"); |
| MaybeAppendDecimal(state, 2 + which); |
| MaybeAppend(state, "}"); |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Closure type. |
| which = -1; |
| if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) && |
| OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) && |
| ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) && |
| which <= std::numeric_limits<int>::max() - 2 && // Don't overflow. |
| ParseOneCharToken(state, '_')) { |
| MaybeAppend(state, "{lambda()#"); |
| MaybeAppendDecimal(state, 2 + which); |
| MaybeAppend(state, "}"); |
| return true; |
| } |
| state->parse_state = copy; |
| |
| return false; |
| } |
| |
| // <number> ::= [n] <non-negative decimal integer> |
| // If "number_out" is non-null, then *number_out is set to the value of the |
| // parsed number on success. |
| static bool ParseNumber(State *state, int *number_out) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| bool negative = false; |
| if (ParseOneCharToken(state, 'n')) { |
| negative = true; |
| } |
| const char *p = RemainingInput(state); |
| uint64_t number = 0; |
| for (; *p != '\0'; ++p) { |
| if (IsDigit(*p)) { |
| number = number * 10 + (*p - '0'); |
| } else { |
| break; |
| } |
| } |
| // Apply the sign with uint64_t arithmetic so overflows aren't UB. Gives |
| // "incorrect" results for out-of-range inputs, but negative values only |
| // appear for literals, which aren't printed. |
| if (negative) { |
| number = ~number + 1; |
| } |
| if (p != RemainingInput(state)) { // Conversion succeeded. |
| state->parse_state.mangled_idx += p - RemainingInput(state); |
| if (number_out != nullptr) { |
| // Note: possibly truncate "number". |
| *number_out = number; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| // Floating-point literals are encoded using a fixed-length lowercase |
| // hexadecimal std::string. |
| static bool ParseFloatNumber(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| const char *p = RemainingInput(state); |
| for (; *p != '\0'; ++p) { |
| if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) { |
| break; |
| } |
| } |
| if (p != RemainingInput(state)) { // Conversion succeeded. |
| state->parse_state.mangled_idx += p - RemainingInput(state); |
| return true; |
| } |
| return false; |
| } |
| |
| // The <seq-id> is a sequence number in base 36, |
| // using digits and upper case letters |
| static bool ParseSeqId(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| const char *p = RemainingInput(state); |
| for (; *p != '\0'; ++p) { |
| if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) { |
| break; |
| } |
| } |
| if (p != RemainingInput(state)) { // Conversion succeeded. |
| state->parse_state.mangled_idx += p - RemainingInput(state); |
| return true; |
| } |
| return false; |
| } |
| |
| // <identifier> ::= <unqualified source code identifier> (of given length) |
| static bool ParseIdentifier(State *state, int length) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (length < 0 || !AtLeastNumCharsRemaining(RemainingInput(state), length)) { |
| return false; |
| } |
| if (IdentifierIsAnonymousNamespace(state, length)) { |
| MaybeAppend(state, "(anonymous namespace)"); |
| } else { |
| MaybeAppendWithLength(state, RemainingInput(state), length); |
| } |
| state->parse_state.mangled_idx += length; |
| return true; |
| } |
| |
| // <operator-name> ::= nw, and other two letters cases |
| // ::= cv <type> # (cast) |
| // ::= v <digit> <source-name> # vendor extended operator |
| static bool ParseOperatorName(State *state, int *arity) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) { |
| return false; |
| } |
| // First check with "cv" (cast) case. |
| ParseState copy = state->parse_state; |
| if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") && |
| EnterNestedName(state) && ParseType(state) && |
| LeaveNestedName(state, copy.nest_level)) { |
| if (arity != nullptr) { |
| *arity = 1; |
| } |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Then vendor extended operators. |
| if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) && |
| ParseSourceName(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Other operator names should start with a lower alphabet followed |
| // by a lower/upper alphabet. |
| if (!(IsLower(RemainingInput(state)[0]) && |
| IsAlpha(RemainingInput(state)[1]))) { |
| return false; |
| } |
| // We may want to perform a binary search if we really need speed. |
| const AbbrevPair *p; |
| for (p = kOperatorList; p->abbrev != nullptr; ++p) { |
| if (RemainingInput(state)[0] == p->abbrev[0] && |
| RemainingInput(state)[1] == p->abbrev[1]) { |
| if (arity != nullptr) { |
| *arity = p->arity; |
| } |
| MaybeAppend(state, "operator"); |
| if (IsLower(*p->real_name)) { // new, delete, etc. |
| MaybeAppend(state, " "); |
| } |
| MaybeAppend(state, p->real_name); |
| state->parse_state.mangled_idx += 2; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // <special-name> ::= TV <type> |
| // ::= TT <type> |
| // ::= TI <type> |
| // ::= TS <type> |
| // ::= Tc <call-offset> <call-offset> <(base) encoding> |
| // ::= GV <(object) name> |
| // ::= T <call-offset> <(base) encoding> |
| // G++ extensions: |
| // ::= TC <type> <(offset) number> _ <(base) type> |
| // ::= TF <type> |
| // ::= TJ <type> |
| // ::= GR <name> |
| // ::= GA <encoding> |
| // ::= Th <call-offset> <(base) encoding> |
| // ::= Tv <call-offset> <(base) encoding> |
| // |
| // Note: we don't care much about them since they don't appear in |
| // stack traces. The are special data. |
| static bool ParseSpecialName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTIS") && |
| ParseType(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) && |
| ParseCallOffset(state) && ParseEncoding(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseTwoCharToken(state, "GV") && ParseName(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) && |
| ParseEncoding(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // G++ extensions |
| if (ParseTwoCharToken(state, "TC") && ParseType(state) && |
| ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && |
| DisableAppend(state) && ParseType(state)) { |
| RestoreAppend(state, copy.append); |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") && |
| ParseType(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseTwoCharToken(state, "GR") && ParseName(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") && |
| ParseCallOffset(state) && ParseEncoding(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <call-offset> ::= h <nv-offset> _ |
| // ::= v <v-offset> _ |
| static bool ParseCallOffset(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) && |
| ParseOneCharToken(state, '_')) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseOneCharToken(state, 'v') && ParseVOffset(state) && |
| ParseOneCharToken(state, '_')) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| return false; |
| } |
| |
| // <nv-offset> ::= <(offset) number> |
| static bool ParseNVOffset(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| return ParseNumber(state, nullptr); |
| } |
| |
| // <v-offset> ::= <(offset) number> _ <(virtual offset) number> |
| static bool ParseVOffset(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && |
| ParseNumber(state, nullptr)) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <ctor-dtor-name> ::= C1 | C2 | C3 |
| // ::= D0 | D1 | D2 |
| // # GCC extensions: "unified" constructor/destructor. See |
| // # https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847 |
| // ::= C4 | D4 |
| static bool ParseCtorDtorName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'C') && ParseCharClass(state, "1234")) { |
| const char *const prev_name = state->out + state->parse_state.prev_name_idx; |
| MaybeAppendWithLength(state, prev_name, |
| state->parse_state.prev_name_length); |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) { |
| const char *const prev_name = state->out + state->parse_state.prev_name_idx; |
| MaybeAppend(state, "~"); |
| MaybeAppendWithLength(state, prev_name, |
| state->parse_state.prev_name_length); |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <decltype> ::= Dt <expression> E # decltype of an id-expression or class |
| // # member access (C++0x) |
| // ::= DT <expression> E # decltype of an expression (C++0x) |
| static bool ParseDecltype(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") && |
| ParseExpression(state) && ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| return false; |
| } |
| |
| // <type> ::= <CV-qualifiers> <type> |
| // ::= P <type> # pointer-to |
| // ::= R <type> # reference-to |
| // ::= O <type> # rvalue reference-to (C++0x) |
| // ::= C <type> # complex pair (C 2000) |
| // ::= G <type> # imaginary (C 2000) |
| // ::= U <source-name> <type> # vendor extended type qualifier |
| // ::= <builtin-type> |
| // ::= <function-type> |
| // ::= <class-enum-type> # note: just an alias for <name> |
| // ::= <array-type> |
| // ::= <pointer-to-member-type> |
| // ::= <template-template-param> <template-args> |
| // ::= <template-param> |
| // ::= <decltype> |
| // ::= <substitution> |
| // ::= Dp <type> # pack expansion of (C++0x) |
| // |
| static bool ParseType(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| |
| // We should check CV-qualifers, and PRGC things first. |
| // |
| // CV-qualifiers overlap with some operator names, but an operator name is not |
| // valid as a type. To avoid an ambiguity that can lead to exponential time |
| // complexity, refuse to backtrack the CV-qualifiers. |
| // |
| // _Z4aoeuIrMvvE |
| // => _Z 4aoeuI rM v v E |
| // aoeu<operator%=, void, void> |
| // => _Z 4aoeuI r Mv v E |
| // aoeu<void void::* restrict> |
| // |
| // By consuming the CV-qualifiers first, the former parse is disabled. |
| if (ParseCVQualifiers(state)) { |
| const bool result = ParseType(state); |
| if (!result) state->parse_state = copy; |
| return result; |
| } |
| state->parse_state = copy; |
| |
| // Similarly, these tag characters can overlap with other <name>s resulting in |
| // two different parse prefixes that land on <template-args> in the same |
| // place, such as "C3r1xI...". So, disable the "ctor-name = C3" parse by |
| // refusing to backtrack the tag characters. |
| if (ParseCharClass(state, "OPRCG")) { |
| const bool result = ParseType(state); |
| if (!result) state->parse_state = copy; |
| return result; |
| } |
| state->parse_state = copy; |
| |
| if (ParseTwoCharToken(state, "Dp") && ParseType(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseOneCharToken(state, 'U') && ParseSourceName(state) && |
| ParseType(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseBuiltinType(state) || ParseFunctionType(state) || |
| ParseClassEnumType(state) || ParseArrayType(state) || |
| ParsePointerToMemberType(state) || ParseDecltype(state) || |
| // "std" on its own isn't a type. |
| ParseSubstitution(state, /*accept_std=*/false)) { |
| return true; |
| } |
| |
| if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Less greedy than <template-template-param> <template-args>. |
| if (ParseTemplateParam(state)) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // <CV-qualifiers> ::= [r] [V] [K] |
| // We don't allow empty <CV-qualifiers> to avoid infinite loop in |
| // ParseType(). |
| static bool ParseCVQualifiers(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| int num_cv_qualifiers = 0; |
| num_cv_qualifiers += ParseOneCharToken(state, 'r'); |
| num_cv_qualifiers += ParseOneCharToken(state, 'V'); |
| num_cv_qualifiers += ParseOneCharToken(state, 'K'); |
| return num_cv_qualifiers > 0; |
| } |
| |
| // <builtin-type> ::= v, etc. |
| // ::= u <source-name> |
| static bool ParseBuiltinType(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| const AbbrevPair *p; |
| for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) { |
| if (RemainingInput(state)[0] == p->abbrev[0]) { |
| MaybeAppend(state, p->real_name); |
| ++state->parse_state.mangled_idx; |
| return true; |
| } |
| } |
| |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <function-type> ::= F [Y] <bare-function-type> E |
| static bool ParseFunctionType(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'F') && |
| Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) && |
| ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <bare-function-type> ::= <(signature) type>+ |
| static bool ParseBareFunctionType(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| DisableAppend(state); |
| if (OneOrMore(ParseType, state)) { |
| RestoreAppend(state, copy.append); |
| MaybeAppend(state, "()"); |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <class-enum-type> ::= <name> |
| static bool ParseClassEnumType(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| return ParseName(state); |
| } |
| |
| // <array-type> ::= A <(positive dimension) number> _ <(element) type> |
| // ::= A [<(dimension) expression>] _ <(element) type> |
| static bool ParseArrayType(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) && |
| ParseOneCharToken(state, '_') && ParseType(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) && |
| ParseOneCharToken(state, '_') && ParseType(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <pointer-to-member-type> ::= M <(class) type> <(member) type> |
| static bool ParsePointerToMemberType(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <template-param> ::= T_ |
| // ::= T <parameter-2 non-negative number> _ |
| static bool ParseTemplateParam(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (ParseTwoCharToken(state, "T_")) { |
| MaybeAppend(state, "?"); // We don't support template substitutions. |
| return true; |
| } |
| |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) && |
| ParseOneCharToken(state, '_')) { |
| MaybeAppend(state, "?"); // We don't support template substitutions. |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <template-template-param> ::= <template-param> |
| // ::= <substitution> |
| static bool ParseTemplateTemplateParam(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| return (ParseTemplateParam(state) || |
| // "std" on its own isn't a template. |
| ParseSubstitution(state, /*accept_std=*/false)); |
| } |
| |
| // <template-args> ::= I <template-arg>+ E |
| static bool ParseTemplateArgs(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| DisableAppend(state); |
| if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) && |
| ParseOneCharToken(state, 'E')) { |
| RestoreAppend(state, copy.append); |
| MaybeAppend(state, "<>"); |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <template-arg> ::= <type> |
| // ::= <expr-primary> |
| // ::= J <template-arg>* E # argument pack |
| // ::= X <expression> E |
| static bool ParseTemplateArg(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) && |
| ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // There can be significant overlap between the following leading to |
| // exponential backtracking: |
| // |
| // <expr-primary> ::= L <type> <expr-cast-value> E |
| // e.g. L 2xxIvE 1 E |
| // <type> ==> <local-source-name> <template-args> |
| // e.g. L 2xx IvE |
| // |
| // This means parsing an entire <type> twice, and <type> can contain |
| // <template-arg>, so this can generate exponential backtracking. There is |
| // only overlap when the remaining input starts with "L <source-name>", so |
| // parse all cases that can start this way jointly to share the common prefix. |
| // |
| // We have: |
| // |
| // <template-arg> ::= <type> |
| // ::= <expr-primary> |
| // |
| // First, drop all the productions of <type> that must start with something |
| // other than 'L'. All that's left is <class-enum-type>; inline it. |
| // |
| // <type> ::= <nested-name> # starts with 'N' |
| // ::= <unscoped-name> |
| // ::= <unscoped-template-name> <template-args> |
| // ::= <local-name> # starts with 'Z' |
| // |
| // Drop and inline again: |
| // |
| // <type> ::= <unscoped-name> |
| // ::= <unscoped-name> <template-args> |
| // ::= <substitution> <template-args> # starts with 'S' |
| // |
| // Merge the first two, inline <unscoped-name>, drop last: |
| // |
| // <type> ::= <unqualified-name> [<template-args>] |
| // ::= St <unqualified-name> [<template-args>] # starts with 'S' |
| // |
| // Drop and inline: |
| // |
| // <type> ::= <operator-name> [<template-args>] # starts with lowercase |
| // ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D' |
| // ::= <source-name> [<template-args>] # starts with digit |
| // ::= <local-source-name> [<template-args>] |
| // ::= <unnamed-type-name> [<template-args>] # starts with 'U' |
| // |
| // One more time: |
| // |
| // <type> ::= L <source-name> [<template-args>] |
| // |
| // Likewise with <expr-primary>: |
| // |
| // <expr-primary> ::= L <type> <expr-cast-value> E |
| // ::= LZ <encoding> E # cannot overlap; drop |
| // ::= L <mangled_name> E # cannot overlap; drop |
| // |
| // By similar reasoning as shown above, the only <type>s starting with |
| // <source-name> are "<source-name> [<template-args>]". Inline this. |
| // |
| // <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E |
| // |
| // Now inline both of these into <template-arg>: |
| // |
| // <template-arg> ::= L <source-name> [<template-args>] |
| // ::= L <source-name> [<template-args>] <expr-cast-value> E |
| // |
| // Merge them and we're done: |
| // <template-arg> |
| // ::= L <source-name> [<template-args>] [<expr-cast-value> E] |
| if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) { |
| copy = state->parse_state; |
| if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy; |
| return true; |
| } |
| |
| // Now that the overlapping cases can't reach this code, we can safely call |
| // both of these. |
| if (ParseType(state) || ParseExprPrimary(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseOneCharToken(state, 'X') && ParseExpression(state) && |
| ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <unresolved-type> ::= <template-param> [<template-args>] |
| // ::= <decltype> |
| // ::= <substitution> |
| static inline bool ParseUnresolvedType(State *state) { |
| // No ComplexityGuard because we don't copy the state in this stack frame. |
| return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) || |
| ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false); |
| } |
| |
| // <simple-id> ::= <source-name> [<template-args>] |
| static inline bool ParseSimpleId(State *state) { |
| // No ComplexityGuard because we don't copy the state in this stack frame. |
| |
| // Note: <simple-id> cannot be followed by a parameter pack; see comment in |
| // ParseUnresolvedType. |
| return ParseSourceName(state) && Optional(ParseTemplateArgs(state)); |
| } |
| |
| // <base-unresolved-name> ::= <source-name> [<template-args>] |
| // ::= on <operator-name> [<template-args>] |
| // ::= dn <destructor-name> |
| static bool ParseBaseUnresolvedName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| |
| if (ParseSimpleId(state)) { |
| return true; |
| } |
| |
| ParseState copy = state->parse_state; |
| if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) && |
| Optional(ParseTemplateArgs(state))) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseTwoCharToken(state, "dn") && |
| (ParseUnresolvedType(state) || ParseSimpleId(state))) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| return false; |
| } |
| |
| // <unresolved-name> ::= [gs] <base-unresolved-name> |
| // ::= sr <unresolved-type> <base-unresolved-name> |
| // ::= srN <unresolved-type> <unresolved-qualifier-level>+ E |
| // <base-unresolved-name> |
| // ::= [gs] sr <unresolved-qualifier-level>+ E |
| // <base-unresolved-name> |
| static bool ParseUnresolvedName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| |
| ParseState copy = state->parse_state; |
| if (Optional(ParseTwoCharToken(state, "gs")) && |
| ParseBaseUnresolvedName(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) && |
| ParseBaseUnresolvedName(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') && |
| ParseUnresolvedType(state) && |
| OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) && |
| ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (Optional(ParseTwoCharToken(state, "gs")) && |
| ParseTwoCharToken(state, "sr") && |
| OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) && |
| ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| return false; |
| } |
| |
| // <expression> ::= <1-ary operator-name> <expression> |
| // ::= <2-ary operator-name> <expression> <expression> |
| // ::= <3-ary operator-name> <expression> <expression> <expression> |
| // ::= cl <expression>+ E |
| // ::= cv <type> <expression> # type (expression) |
| // ::= cv <type> _ <expression>* E # type (expr-list) |
| // ::= st <type> |
| // ::= <template-param> |
| // ::= <function-param> |
| // ::= <expr-primary> |
| // ::= dt <expression> <unresolved-name> # expr.name |
| // ::= pt <expression> <unresolved-name> # expr->name |
| // ::= sp <expression> # argument pack expansion |
| // ::= sr <type> <unqualified-name> <template-args> |
| // ::= sr <type> <unqualified-name> |
| // <function-param> ::= fp <(top-level) CV-qualifiers> _ |
| // ::= fp <(top-level) CV-qualifiers> <number> _ |
| // ::= fL <number> p <(top-level) CV-qualifiers> _ |
| // ::= fL <number> p <(top-level) CV-qualifiers> <number> _ |
| static bool ParseExpression(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (ParseTemplateParam(state) || ParseExprPrimary(state)) { |
| return true; |
| } |
| |
| // Object/function call expression. |
| ParseState copy = state->parse_state; |
| if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) && |
| ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Function-param expression (level 0). |
| if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) && |
| Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Function-param expression (level 1+). |
| if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) && |
| ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) && |
| Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Parse the conversion expressions jointly to avoid re-parsing the <type> in |
| // their common prefix. Parsed as: |
| // <expression> ::= cv <type> <conversion-args> |
| // <conversion-args> ::= _ <expression>* E |
| // ::= <expression> |
| // |
| // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName |
| // also needs to accept "cv <type>" in other contexts. |
| if (ParseTwoCharToken(state, "cv")) { |
| if (ParseType(state)) { |
| ParseState copy2 = state->parse_state; |
| if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) && |
| ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy2; |
| if (ParseExpression(state)) { |
| return true; |
| } |
| } |
| } else { |
| // Parse unary, binary, and ternary operator expressions jointly, taking |
| // care not to re-parse subexpressions repeatedly. Parse like: |
| // <expression> ::= <operator-name> <expression> |
| // [<one-to-two-expressions>] |
| // <one-to-two-expressions> ::= <expression> [<expression>] |
| int arity = -1; |
| if (ParseOperatorName(state, &arity) && |
| arity > 0 && // 0 arity => disabled. |
| (arity < 3 || ParseExpression(state)) && |
| (arity < 2 || ParseExpression(state)) && |
| (arity < 1 || ParseExpression(state))) { |
| return true; |
| } |
| } |
| state->parse_state = copy; |
| |
| // sizeof type |
| if (ParseTwoCharToken(state, "st") && ParseType(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Object and pointer member access expressions. |
| if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) && |
| ParseExpression(state) && ParseType(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Parameter pack expansion |
| if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| return ParseUnresolvedName(state); |
| } |
| |
| // <expr-primary> ::= L <type> <(value) number> E |
| // ::= L <type> <(value) float> E |
| // ::= L <mangled-name> E |
| // // A bug in g++'s C++ ABI version 2 (-fabi-version=2). |
| // ::= LZ <encoding> E |
| // |
| // Warning, subtle: the "bug" LZ production above is ambiguous with the first |
| // production where <type> starts with <local-name>, which can lead to |
| // exponential backtracking in two scenarios: |
| // |
| // - When whatever follows the E in the <local-name> in the first production is |
| // not a name, we backtrack the whole <encoding> and re-parse the whole thing. |
| // |
| // - When whatever follows the <local-name> in the first production is not a |
| // number and this <expr-primary> may be followed by a name, we backtrack the |
| // <name> and re-parse it. |
| // |
| // Moreover this ambiguity isn't always resolved -- for example, the following |
| // has two different parses: |
| // |
| // _ZaaILZ4aoeuE1x1EvE |
| // => operator&&<aoeu, x, E, void> |
| // => operator&&<(aoeu::x)(1), void> |
| // |
| // To resolve this, we just do what GCC's demangler does, and refuse to parse |
| // casts to <local-name> types. |
| static bool ParseExprPrimary(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| |
| // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E" |
| // or fail, no backtracking. |
| if (ParseTwoCharToken(state, "LZ")) { |
| if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // The merged cast production. |
| if (ParseOneCharToken(state, 'L') && ParseType(state) && |
| ParseExprCastValue(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseOneCharToken(state, 'L') && ParseMangledName(state) && |
| ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| return false; |
| } |
| |
| // <number> or <float>, followed by 'E', as described above ParseExprPrimary. |
| static bool ParseExprCastValue(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| // We have to be able to backtrack after accepting a number because we could |
| // have e.g. "7fffE", which will accept "7" as a number but then fail to find |
| // the 'E'. |
| ParseState copy = state->parse_state; |
| if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) { |
| return true; |
| } |
| state->parse_state = copy; |
| |
| return false; |
| } |
| |
| // <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>] |
| // ::= Z <(function) encoding> E s [<discriminator>] |
| // |
| // Parsing a common prefix of these two productions together avoids an |
| // exponential blowup of backtracking. Parse like: |
| // <local-name> := Z <encoding> E <local-name-suffix> |
| // <local-name-suffix> ::= s [<discriminator>] |
| // ::= <name> [<discriminator>] |
| |
| static bool ParseLocalNameSuffix(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| |
| if (MaybeAppend(state, "::") && ParseName(state) && |
| Optional(ParseDiscriminator(state))) { |
| return true; |
| } |
| |
| // Since we're not going to overwrite the above "::" by re-parsing the |
| // <encoding> (whose trailing '\0' byte was in the byte now holding the |
| // first ':'), we have to rollback the "::" if the <name> parse failed. |
| if (state->parse_state.append) { |
| state->out[state->parse_state.out_cur_idx - 2] = '\0'; |
| } |
| |
| return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state)); |
| } |
| |
| static bool ParseLocalName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) && |
| ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <discriminator> := _ <(non-negative) number> |
| static bool ParseDiscriminator(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) { |
| return true; |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // <substitution> ::= S_ |
| // ::= S <seq-id> _ |
| // ::= St, etc. |
| // |
| // "St" is special in that it's not valid as a standalone name, and it *is* |
| // allowed to precede a name without being wrapped in "N...E". This means that |
| // if we accept it on its own, we can accept "St1a" and try to parse |
| // template-args, then fail and backtrack, accept "St" on its own, then "1a" as |
| // an unqualified name and re-parse the same template-args. To block this |
| // exponential backtracking, we disable it with 'accept_std=false' in |
| // problematic contexts. |
| static bool ParseSubstitution(State *state, bool accept_std) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (ParseTwoCharToken(state, "S_")) { |
| MaybeAppend(state, "?"); // We don't support substitutions. |
| return true; |
| } |
| |
| ParseState copy = state->parse_state; |
| if (ParseOneCharToken(state, 'S') && ParseSeqId(state) && |
| ParseOneCharToken(state, '_')) { |
| MaybeAppend(state, "?"); // We don't support substitutions. |
| return true; |
| } |
| state->parse_state = copy; |
| |
| // Expand abbreviations like "St" => "std". |
| if (ParseOneCharToken(state, 'S')) { |
| const AbbrevPair *p; |
| for (p = kSubstitutionList; p->abbrev != nullptr; ++p) { |
| if (RemainingInput(state)[0] == p->abbrev[1] && |
| (accept_std || p->abbrev[1] != 't')) { |
| MaybeAppend(state, "std"); |
| if (p->real_name[0] != '\0') { |
| MaybeAppend(state, "::"); |
| MaybeAppend(state, p->real_name); |
| } |
| ++state->parse_state.mangled_idx; |
| return true; |
| } |
| } |
| } |
| state->parse_state = copy; |
| return false; |
| } |
| |
| // Parse <mangled-name>, optionally followed by either a function-clone suffix |
| // or version suffix. Returns true only if all of "mangled_cur" was consumed. |
| static bool ParseTopLevelMangledName(State *state) { |
| ComplexityGuard guard(state); |
| if (guard.IsTooComplex()) return false; |
| if (ParseMangledName(state)) { |
| if (RemainingInput(state)[0] != '\0') { |
| // Drop trailing function clone suffix, if any. |
| if (IsFunctionCloneSuffix(RemainingInput(state))) { |
| return true; |
| } |
| // Append trailing version suffix if any. |
| // ex. _Z3foo@@GLIBCXX_3.4 |
| if (RemainingInput(state)[0] == '@') { |
| MaybeAppend(state, RemainingInput(state)); |
| return true; |
| } |
| return false; // Unconsumed suffix. |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| static bool Overflowed(const State *state) { |
| return state->parse_state.out_cur_idx >= state->out_end_idx; |
| } |
| |
| // The demangler entry point. |
| bool Demangle(const char *mangled, char *out, int out_size) { |
| State state; |
| InitState(&state, mangled, out, out_size); |
| return ParseTopLevelMangledName(&state) && !Overflowed(&state); |
| } |
| |
| } // namespace debugging_internal |
| } // namespace absl |