blob: 7a7e6adf03913c82c8315d6e99351dc446e9f586 [file] [log] [blame]
// Copyright (c) 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ---
// Author: Craig Silverstein
//
// The main purpose of this file is to patch the libc allocation
// routines (malloc and friends, but also _msize and other
// windows-specific libc-style routines). However, we also patch
// windows routines to do accounting. We do better at the former than
// the latter. Here are some comments from Paul Pluzhnikov about what
// it might take to do a really good job patching windows routines to
// keep track of memory usage:
//
// "You should intercept at least the following:
// HeapCreate HeapDestroy HeapAlloc HeapReAlloc HeapFree
// RtlCreateHeap RtlDestroyHeap RtlAllocateHeap RtlFreeHeap
// malloc calloc realloc free
// malloc_dbg calloc_dbg realloc_dbg free_dbg
// Some of these call the other ones (but not always), sometimes
// recursively (i.e. HeapCreate may call HeapAlloc on a different
// heap, IIRC)."
//
// Since Paul didn't mention VirtualAllocEx, he may not have even been
// considering all the mmap-like functions that windows has (or he may
// just be ignoring it because he's seen we already patch it). Of the
// above, we do not patch the *_dbg functions, and of the windows
// functions, we only patch HeapAlloc and HeapFree.
//
// The *_dbg functions come into play with /MDd, /MTd, and /MLd,
// probably. It may be ok to just turn off tcmalloc in those cases --
// if the user wants the windows debug malloc, they probably don't
// want tcmalloc! We should also test with all of /MD, /MT, and /ML,
// which we're not currently doing.
// TODO(csilvers): try to do better here? Paul does conclude:
// "Keeping track of all of this was a nightmare."
#ifndef _WIN32
# error You should only be including windows/patch_functions.cc in a windows environment!
#endif
#include <config.h>
#ifdef WIN32_OVERRIDE_ALLOCATORS
#error This file is intended for patching allocators - use override_functions.cc instead.
#endif
// We use psapi. Non-MSVC systems will have to link this in themselves.
#ifdef _MSC_VER
#pragma comment(lib, "Psapi.lib")
#endif
// Make sure we always use the 'old' names of the psapi functions.
#ifndef PSAPI_VERSION
#define PSAPI_VERSION 1
#endif
#include <windows.h>
#include <stdio.h>
#include <malloc.h> // for _msize and _expand
#include <Psapi.h> // for EnumProcessModules, GetModuleInformation, etc.
#include <set>
#include <map>
#include <vector>
#include <base/logging.h>
#include "base/spinlock.h"
#include "gperftools/malloc_hook.h"
#include "malloc_hook-inl.h"
#include "preamble_patcher.h"
// The maximum number of modules we allow to be in one executable
const int kMaxModules = 8182;
// These are hard-coded, unfortunately. :-( They are also probably
// compiler specific. See get_mangled_names.cc, in this directory,
// for instructions on how to update these names for your compiler.
const char kMangledNew[] = "??2@YAPAXI@Z";
const char kMangledNewArray[] = "??_U@YAPAXI@Z";
const char kMangledDelete[] = "??3@YAXPAX@Z";
const char kMangledDeleteArray[] = "??_V@YAXPAX@Z";
const char kMangledNewNothrow[] = "??2@YAPAXIABUnothrow_t@std@@@Z";
const char kMangledNewArrayNothrow[] = "??_U@YAPAXIABUnothrow_t@std@@@Z";
const char kMangledDeleteNothrow[] = "??3@YAXPAXABUnothrow_t@std@@@Z";
const char kMangledDeleteArrayNothrow[] = "??_V@YAXPAXABUnothrow_t@std@@@Z";
// This is an unused but exported symbol that we can use to tell the
// MSVC linker to bring in libtcmalloc, via the /INCLUDE linker flag.
// Without this, the linker will likely decide that libtcmalloc.dll
// doesn't add anything to the executable (since it does all its work
// through patching, which the linker can't see), and ignore it
// entirely. (The name 'tcmalloc' is already reserved for a
// namespace. I'd rather export a variable named "_tcmalloc", but I
// couldn't figure out how to get that to work. This function exports
// the symbol "__tcmalloc".)
extern "C" PERFTOOLS_DLL_DECL void _tcmalloc();
void _tcmalloc() { }
// This is the version needed for windows x64, which has a different
// decoration scheme which doesn't auto-add a leading underscore.
extern "C" PERFTOOLS_DLL_DECL void __tcmalloc();
void __tcmalloc() { }
namespace { // most everything here is in an unnamed namespace
typedef void (*GenericFnPtr)();
using sidestep::PreamblePatcher;
struct ModuleEntryCopy; // defined below
// These functions are how we override the memory allocation
// functions, just like tcmalloc.cc and malloc_hook.cc do.
// This is information about the routines we're patching, for a given
// module that implements libc memory routines. A single executable
// can have several libc implementations running about (in different
// .dll's), and we need to patch/unpatch them all. This defines
// everything except the new functions we're patching in, which
// are defined in LibcFunctions, below.
class LibcInfo {
public:
LibcInfo() {
memset(this, 0, sizeof(*this)); // easiest way to initialize the array
}
bool patched() const { return is_valid(); }
void set_is_valid(bool b) { is_valid_ = b; }
// According to http://msdn.microsoft.com/en-us/library/ms684229(VS.85).aspx:
// "The load address of a module (lpBaseOfDll) is the same as the HMODULE
// value."
HMODULE hmodule() const {
return reinterpret_cast<HMODULE>(const_cast<void*>(module_base_address_));
}
// Populates all the windows_fn_[] vars based on our module info.
// Returns false if windows_fn_ is all NULL's, because there's
// nothing to patch. Also populates the rest of the module_entry
// info, such as the module's name.
bool PopulateWindowsFn(const ModuleEntryCopy& module_entry);
protected:
void CopyFrom(const LibcInfo& that) {
if (this == &that)
return;
this->is_valid_ = that.is_valid_;
memcpy(this->windows_fn_, that.windows_fn_, sizeof(windows_fn_));
this->module_base_address_ = that.module_base_address_;
this->module_base_size_ = that.module_base_size_;
}
enum {
kMalloc, kFree, kRealloc, kCalloc,
kNew, kNewArray, kDelete, kDeleteArray,
kNewNothrow, kNewArrayNothrow, kDeleteNothrow, kDeleteArrayNothrow,
// These are windows-only functions from malloc.h
k_Msize, k_Expand,
// A MS CRT "internal" function, implemented using _calloc_impl
k_CallocCrt,
kNumFunctions
};
// I'd like to put these together in a struct (perhaps in the
// subclass, so we can put in perftools_fn_ as well), but vc8 seems
// to have a bug where it doesn't initialize the struct properly if
// we try to take the address of a function that's not yet loaded
// from a dll, as is the common case for static_fn_. So we need
// each to be in its own array. :-(
static const char* const function_name_[kNumFunctions];
// This function is only used when statically linking the binary.
// In that case, loading malloc/etc from the dll (via
// PatchOneModule) won't work, since there are no dlls. Instead,
// you just want to be taking the address of malloc/etc directly.
// In the common, non-static-link case, these pointers will all be
// NULL, since this initializer runs before msvcrt.dll is loaded.
static const GenericFnPtr static_fn_[kNumFunctions];
// This is the address of the function we are going to patch
// (malloc, etc). Other info about the function is in the
// patch-specific subclasses, below.
GenericFnPtr windows_fn_[kNumFunctions];
// This is set to true when this structure is initialized (because
// we're patching a new library) and set to false when it's
// uninitialized (because we've freed that library).
bool is_valid_;
const void *module_base_address_;
size_t module_base_size_;
public:
// These shouldn't have to be public, since only subclasses of
// LibcInfo need it, but they do. Maybe something to do with
// templates. Shrug. I hide them down here so users won't see
// them. :-) (OK, I also need to define ctrgProcAddress late.)
bool is_valid() const { return is_valid_; }
GenericFnPtr windows_fn(int ifunction) const {
return windows_fn_[ifunction];
}
// These three are needed by ModuleEntryCopy.
static const int ctrgProcAddress = kNumFunctions;
static GenericFnPtr static_fn(int ifunction) {
return static_fn_[ifunction];
}
static const char* const function_name(int ifunction) {
return function_name_[ifunction];
}
};
// Template trickiness: logically, a LibcInfo would include
// Windows_malloc_, origstub_malloc_, and Perftools_malloc_: for a
// given module, these three go together. And in fact,
// Perftools_malloc_ may need to call origstub_malloc_, which means we
// either need to change Perftools_malloc_ to take origstub_malloc_ as
// an arugment -- unfortunately impossible since it needs to keep the
// same API as normal malloc -- or we need to write a different
// version of Perftools_malloc_ for each LibcInfo instance we create.
// We choose the second route, and use templates to implement it (we
// could have also used macros). So to get multiple versions
// of the struct, we say "struct<1> var1; struct<2> var2;". The price
// we pay is some code duplication, and more annoying, each instance
// of this var is a separate type.
template<int> class LibcInfoWithPatchFunctions : public LibcInfo {
public:
// me_info should have had PopulateWindowsFn() called on it, so the
// module_* vars and windows_fn_ are set up.
bool Patch(const LibcInfo& me_info);
void Unpatch();
private:
// This holds the original function contents after we patch the function.
// This has to be defined static in the subclass, because the perftools_fns
// reference origstub_fn_.
static GenericFnPtr origstub_fn_[kNumFunctions];
// This is the function we want to patch in
static const GenericFnPtr perftools_fn_[kNumFunctions];
static void* Perftools_malloc(size_t size) __THROW;
static void Perftools_free(void* ptr) __THROW;
static void* Perftools_realloc(void* ptr, size_t size) __THROW;
static void* Perftools_calloc(size_t nmemb, size_t size) __THROW;
static void* Perftools_new(size_t size);
static void* Perftools_newarray(size_t size);
static void Perftools_delete(void *ptr);
static void Perftools_deletearray(void *ptr);
static void* Perftools_new_nothrow(size_t size,
const std::nothrow_t&) __THROW;
static void* Perftools_newarray_nothrow(size_t size,
const std::nothrow_t&) __THROW;
static void Perftools_delete_nothrow(void *ptr,
const std::nothrow_t&) __THROW;
static void Perftools_deletearray_nothrow(void *ptr,
const std::nothrow_t&) __THROW;
static size_t Perftools__msize(void *ptr) __THROW;
static void* Perftools__expand(void *ptr, size_t size) __THROW;
// malloc.h also defines these functions:
// _aligned_malloc, _aligned_free,
// _recalloc, _aligned_offset_malloc, _aligned_realloc, _aligned_recalloc
// _aligned_offset_realloc, _aligned_offset_recalloc, _malloca, _freea
// But they seem pretty obscure, and I'm fine not overriding them for now.
// It may be they all call into malloc/free anyway.
};
// This is a subset of MODDULEENTRY32, that we need for patching.
struct ModuleEntryCopy {
LPVOID modBaseAddr; // the same as hmodule
DWORD modBaseSize;
// This is not part of MODDULEENTRY32, but is needed to avoid making
// windows syscalls while we're holding patch_all_modules_lock (see
// lock-inversion comments at patch_all_modules_lock definition, below).
GenericFnPtr rgProcAddresses[LibcInfo::ctrgProcAddress];
ModuleEntryCopy() {
modBaseAddr = NULL;
modBaseSize = 0;
for (int i = 0; i < sizeof(rgProcAddresses)/sizeof(*rgProcAddresses); i++)
rgProcAddresses[i] = LibcInfo::static_fn(i);
}
ModuleEntryCopy(const MODULEINFO& mi) {
this->modBaseAddr = mi.lpBaseOfDll;
this->modBaseSize = mi.SizeOfImage;
LPVOID modEndAddr = (char*)mi.lpBaseOfDll + mi.SizeOfImage;
for (int i = 0; i < sizeof(rgProcAddresses)/sizeof(*rgProcAddresses); i++) {
FARPROC target = ::GetProcAddress(
reinterpret_cast<const HMODULE>(mi.lpBaseOfDll),
LibcInfo::function_name(i));
// Sometimes a DLL forwards a function to a function in another
// DLL. We don't want to patch those forwarded functions --
// they'll get patched when the other DLL is processed.
if (target >= modBaseAddr && target < modEndAddr)
rgProcAddresses[i] = (GenericFnPtr)target;
else
rgProcAddresses[i] = (GenericFnPtr)NULL;
}
}
};
// This class is easier because there's only one of them.
class WindowsInfo {
public:
void Patch();
void Unpatch();
private:
// TODO(csilvers): should we be patching GlobalAlloc/LocalAlloc instead,
// for pre-XP systems?
enum {
kHeapAlloc, kHeapFree, kVirtualAllocEx, kVirtualFreeEx,
kMapViewOfFileEx, kUnmapViewOfFile, kLoadLibraryExW, kFreeLibrary,
kNumFunctions
};
struct FunctionInfo {
const char* const name; // name of fn in a module (eg "malloc")
GenericFnPtr windows_fn; // the fn whose name we call (&malloc)
GenericFnPtr origstub_fn; // original fn contents after we patch
const GenericFnPtr perftools_fn; // fn we want to patch in
};
static FunctionInfo function_info_[kNumFunctions];
// A Windows-API equivalent of malloc and free
static LPVOID WINAPI Perftools_HeapAlloc(HANDLE hHeap, DWORD dwFlags,
DWORD_PTR dwBytes);
static BOOL WINAPI Perftools_HeapFree(HANDLE hHeap, DWORD dwFlags,
LPVOID lpMem);
// A Windows-API equivalent of mmap and munmap, for "anonymous regions"
static LPVOID WINAPI Perftools_VirtualAllocEx(HANDLE process, LPVOID address,
SIZE_T size, DWORD type,
DWORD protect);
static BOOL WINAPI Perftools_VirtualFreeEx(HANDLE process, LPVOID address,
SIZE_T size, DWORD type);
// A Windows-API equivalent of mmap and munmap, for actual files
static LPVOID WINAPI Perftools_MapViewOfFileEx(HANDLE hFileMappingObject,
DWORD dwDesiredAccess,
DWORD dwFileOffsetHigh,
DWORD dwFileOffsetLow,
SIZE_T dwNumberOfBytesToMap,
LPVOID lpBaseAddress);
static BOOL WINAPI Perftools_UnmapViewOfFile(LPCVOID lpBaseAddress);
// We don't need the other 3 variants because they all call this one. */
static HMODULE WINAPI Perftools_LoadLibraryExW(LPCWSTR lpFileName,
HANDLE hFile,
DWORD dwFlags);
static BOOL WINAPI Perftools_FreeLibrary(HMODULE hLibModule);
};
// If you run out, just add a few more to the array. You'll also need
// to update the switch statement in PatchOneModule(), and the list in
// UnpatchWindowsFunctions().
// main_executable and main_executable_windows are two windows into
// the same executable. One is responsible for patching the libc
// routines that live in the main executable (if any) to use tcmalloc;
// the other is responsible for patching the windows routines like
// HeapAlloc/etc to use tcmalloc.
static LibcInfoWithPatchFunctions<0> main_executable;
static LibcInfoWithPatchFunctions<1> libc1;
static LibcInfoWithPatchFunctions<2> libc2;
static LibcInfoWithPatchFunctions<3> libc3;
static LibcInfoWithPatchFunctions<4> libc4;
static LibcInfoWithPatchFunctions<5> libc5;
static LibcInfoWithPatchFunctions<6> libc6;
static LibcInfoWithPatchFunctions<7> libc7;
static LibcInfoWithPatchFunctions<8> libc8;
static LibcInfo* g_module_libcs[] = {
&libc1, &libc2, &libc3, &libc4, &libc5, &libc6, &libc7, &libc8
};
static WindowsInfo main_executable_windows;
const char* const LibcInfo::function_name_[] = {
"malloc", "free", "realloc", "calloc",
kMangledNew, kMangledNewArray, kMangledDelete, kMangledDeleteArray,
// Ideally we should patch the nothrow versions of new/delete, but
// at least in msvcrt, nothrow-new machine-code is of a type we
// can't patch. Since these are relatively rare, I'm hoping it's ok
// not to patch them. (NULL name turns off patching.)
NULL, // kMangledNewNothrow,
NULL, // kMangledNewArrayNothrow,
NULL, // kMangledDeleteNothrow,
NULL, // kMangledDeleteArrayNothrow,
"_msize", "_expand", "_calloc_crt",
};
// For mingw, I can't patch the new/delete here, because the
// instructions are too small to patch. Luckily, they're so small
// because all they do is call into malloc/free, so they still end up
// calling tcmalloc routines, and we don't actually lose anything
// (except maybe some stacktrace goodness) by not patching.
const GenericFnPtr LibcInfo::static_fn_[] = {
(GenericFnPtr)&::malloc,
(GenericFnPtr)&::free,
(GenericFnPtr)&::realloc,
(GenericFnPtr)&::calloc,
#ifdef __MINGW32__
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
#else
(GenericFnPtr)(void*(*)(size_t))&::operator new,
(GenericFnPtr)(void*(*)(size_t))&::operator new[],
(GenericFnPtr)(void(*)(void*))&::operator delete,
(GenericFnPtr)(void(*)(void*))&::operator delete[],
(GenericFnPtr)
(void*(*)(size_t, struct std::nothrow_t const &))&::operator new,
(GenericFnPtr)
(void*(*)(size_t, struct std::nothrow_t const &))&::operator new[],
(GenericFnPtr)
(void(*)(void*, struct std::nothrow_t const &))&::operator delete,
(GenericFnPtr)
(void(*)(void*, struct std::nothrow_t const &))&::operator delete[],
#endif
(GenericFnPtr)&::_msize,
(GenericFnPtr)&::_expand,
(GenericFnPtr)&::calloc,
};
template<int T> GenericFnPtr LibcInfoWithPatchFunctions<T>::origstub_fn_[] = {
// This will get filled in at run-time, as patching is done.
};
template<int T>
const GenericFnPtr LibcInfoWithPatchFunctions<T>::perftools_fn_[] = {
(GenericFnPtr)&Perftools_malloc,
(GenericFnPtr)&Perftools_free,
(GenericFnPtr)&Perftools_realloc,
(GenericFnPtr)&Perftools_calloc,
(GenericFnPtr)&Perftools_new,
(GenericFnPtr)&Perftools_newarray,
(GenericFnPtr)&Perftools_delete,
(GenericFnPtr)&Perftools_deletearray,
(GenericFnPtr)&Perftools_new_nothrow,
(GenericFnPtr)&Perftools_newarray_nothrow,
(GenericFnPtr)&Perftools_delete_nothrow,
(GenericFnPtr)&Perftools_deletearray_nothrow,
(GenericFnPtr)&Perftools__msize,
(GenericFnPtr)&Perftools__expand,
(GenericFnPtr)&Perftools_calloc,
};
/*static*/ WindowsInfo::FunctionInfo WindowsInfo::function_info_[] = {
{ "HeapAlloc", NULL, NULL, (GenericFnPtr)&Perftools_HeapAlloc },
{ "HeapFree", NULL, NULL, (GenericFnPtr)&Perftools_HeapFree },
{ "VirtualAllocEx", NULL, NULL, (GenericFnPtr)&Perftools_VirtualAllocEx },
{ "VirtualFreeEx", NULL, NULL, (GenericFnPtr)&Perftools_VirtualFreeEx },
{ "MapViewOfFileEx", NULL, NULL, (GenericFnPtr)&Perftools_MapViewOfFileEx },
{ "UnmapViewOfFile", NULL, NULL, (GenericFnPtr)&Perftools_UnmapViewOfFile },
{ "LoadLibraryExW", NULL, NULL, (GenericFnPtr)&Perftools_LoadLibraryExW },
{ "FreeLibrary", NULL, NULL, (GenericFnPtr)&Perftools_FreeLibrary },
};
bool LibcInfo::PopulateWindowsFn(const ModuleEntryCopy& module_entry) {
// First, store the location of the function to patch before
// patching it. If none of these functions are found in the module,
// then this module has no libc in it, and we just return false.
for (int i = 0; i < kNumFunctions; i++) {
if (!function_name_[i]) // we can turn off patching by unsetting name
continue;
// The ::GetProcAddress calls were done in the ModuleEntryCopy
// constructor, so we don't have to make any windows calls here.
const GenericFnPtr fn = module_entry.rgProcAddresses[i];
if (fn) {
windows_fn_[i] = PreamblePatcher::ResolveTarget(fn);
}
}
// Some modules use the same function pointer for new and new[]. If
// we find that, set one of the pointers to NULL so we don't double-
// patch. Same may happen with new and nothrow-new, or even new[]
// and nothrow-new. It's easiest just to check each fn-ptr against
// every other.
for (int i = 0; i < kNumFunctions; i++) {
for (int j = i+1; j < kNumFunctions; j++) {
if (windows_fn_[i] == windows_fn_[j]) {
// We NULL the later one (j), so as to minimize the chances we
// NULL kFree and kRealloc. See comments below. This is fragile!
windows_fn_[j] = NULL;
}
}
}
// There's always a chance that our module uses the same function
// as another module that we've already loaded. In that case, we
// need to set our windows_fn to NULL, to avoid double-patching.
for (int ifn = 0; ifn < kNumFunctions; ifn++) {
for (int imod = 0;
imod < sizeof(g_module_libcs)/sizeof(*g_module_libcs); imod++) {
if (g_module_libcs[imod]->is_valid() &&
this->windows_fn(ifn) == g_module_libcs[imod]->windows_fn(ifn)) {
windows_fn_[ifn] = NULL;
}
}
}
bool found_non_null = false;
for (int i = 0; i < kNumFunctions; i++) {
if (windows_fn_[i])
found_non_null = true;
}
if (!found_non_null)
return false;
// It's important we didn't NULL out windows_fn_[kFree] or [kRealloc].
// The reason is, if those are NULL-ed out, we'll never patch them
// and thus never get an origstub_fn_ value for them, and when we
// try to call origstub_fn_[kFree/kRealloc] in Perftools_free and
// Perftools_realloc, below, it will fail. We could work around
// that by adding a pointer from one patch-unit to the other, but we
// haven't needed to yet.
CHECK(windows_fn_[kFree]);
CHECK(windows_fn_[kRealloc]);
// OK, we successfully populated. Let's store our member information.
module_base_address_ = module_entry.modBaseAddr;
module_base_size_ = module_entry.modBaseSize;
return true;
}
template<int T>
bool LibcInfoWithPatchFunctions<T>::Patch(const LibcInfo& me_info) {
CopyFrom(me_info); // copies the module_entry and the windows_fn_ array
for (int i = 0; i < kNumFunctions; i++) {
if (windows_fn_[i] && windows_fn_[i] != perftools_fn_[i]) {
// if origstub_fn_ is not NULL, it's left around from a previous
// patch. We need to set it to NULL for the new Patch call.
// Since we've patched Unpatch() not to delete origstub_fn_ (it
// causes problems in some contexts, though obviously not this
// one), we should delete it now, before setting it to NULL.
// NOTE: casting from a function to a pointer is contra the C++
// spec. It's not safe on IA64, but is on i386. We use
// a C-style cast here to emphasize this is not legal C++.
delete[] (char*)(origstub_fn_[i]);
origstub_fn_[i] = NULL; // Patch() will fill this in
CHECK_EQ(sidestep::SIDESTEP_SUCCESS,
PreamblePatcher::Patch(windows_fn_[i], perftools_fn_[i],
&origstub_fn_[i]));
}
}
set_is_valid(true);
return true;
}
template<int T>
void LibcInfoWithPatchFunctions<T>::Unpatch() {
// We have to cast our GenericFnPtrs to void* for unpatch. This is
// contra the C++ spec; we use C-style casts to empahsize that.
for (int i = 0; i < kNumFunctions; i++) {
if (windows_fn_[i])
CHECK_EQ(sidestep::SIDESTEP_SUCCESS,
PreamblePatcher::Unpatch((void*)windows_fn_[i],
(void*)perftools_fn_[i],
(void*)origstub_fn_[i]));
}
set_is_valid(false);
}
void WindowsInfo::Patch() {
HMODULE hkernel32 = ::GetModuleHandleA("kernel32");
CHECK_NE(hkernel32, NULL);
// Unlike for libc, we know these exist in our module, so we can get
// and patch at the same time.
for (int i = 0; i < kNumFunctions; i++) {
function_info_[i].windows_fn = (GenericFnPtr)
::GetProcAddress(hkernel32, function_info_[i].name);
// If origstub_fn is not NULL, it's left around from a previous
// patch. We need to set it to NULL for the new Patch call.
// Since we've patched Unpatch() not to delete origstub_fn_ (it
// causes problems in some contexts, though obviously not this
// one), we should delete it now, before setting it to NULL.
// NOTE: casting from a function to a pointer is contra the C++
// spec. It's not safe on IA64, but is on i386. We use
// a C-style cast here to emphasize this is not legal C++.
delete[] (char*)(function_info_[i].origstub_fn);
function_info_[i].origstub_fn = NULL; // Patch() will fill this in
CHECK_EQ(sidestep::SIDESTEP_SUCCESS,
PreamblePatcher::Patch(function_info_[i].windows_fn,
function_info_[i].perftools_fn,
&function_info_[i].origstub_fn));
}
}
void WindowsInfo::Unpatch() {
// We have to cast our GenericFnPtrs to void* for unpatch. This is
// contra the C++ spec; we use C-style casts to empahsize that.
for (int i = 0; i < kNumFunctions; i++) {
CHECK_EQ(sidestep::SIDESTEP_SUCCESS,
PreamblePatcher::Unpatch((void*)function_info_[i].windows_fn,
(void*)function_info_[i].perftools_fn,
(void*)function_info_[i].origstub_fn));
}
}
// You should hold the patch_all_modules_lock when calling this.
void PatchOneModuleLocked(const LibcInfo& me_info) {
// If we don't already have info on this module, let's add it. This
// is where we're sad that each libcX has a different type, so we
// can't use an array; instead, we have to use a switch statement.
// Patch() returns false if there were no libc functions in the module.
for (int i = 0; i < sizeof(g_module_libcs)/sizeof(*g_module_libcs); i++) {
if (!g_module_libcs[i]->is_valid()) { // found an empty spot to add!
switch (i) {
case 0: libc1.Patch(me_info); return;
case 1: libc2.Patch(me_info); return;
case 2: libc3.Patch(me_info); return;
case 3: libc4.Patch(me_info); return;
case 4: libc5.Patch(me_info); return;
case 5: libc6.Patch(me_info); return;
case 6: libc7.Patch(me_info); return;
case 7: libc8.Patch(me_info); return;
}
}
}
printf("PERFTOOLS ERROR: Too many modules containing libc in this executable\n");
}
void PatchMainExecutableLocked() {
if (main_executable.patched())
return; // main executable has already been patched
ModuleEntryCopy fake_module_entry; // make a fake one to pass into Patch()
// No need to call PopulateModuleEntryProcAddresses on the main executable.
main_executable.PopulateWindowsFn(fake_module_entry);
main_executable.Patch(main_executable);
}
// This lock is subject to a subtle and annoying lock inversion
// problem: it may interact badly with unknown internal windows locks.
// In particular, windows may be holding a lock when it calls
// LoadLibraryExW and FreeLibrary, which we've patched. We have those
// routines call PatchAllModules, which acquires this lock. If we
// make windows system calls while holding this lock, those system
// calls may need the internal windows locks that are being held in
// the call to LoadLibraryExW, resulting in deadlock. The solution is
// to be very careful not to call *any* windows routines while holding
// patch_all_modules_lock, inside PatchAllModules().
static SpinLock patch_all_modules_lock(SpinLock::LINKER_INITIALIZED);
// last_loaded: The set of modules that were loaded the last time
// PatchAllModules was called. This is an optimization for only
// looking at modules that were added or removed from the last call.
static std::set<HMODULE> *g_last_loaded;
// Iterates over all the modules currently loaded by the executable,
// according to windows, and makes sure they're all patched. Most
// modules will already be in loaded_modules, meaning we have already
// loaded and either patched them or determined they did not need to
// be patched. Others will not, which means we need to patch them
// (if necessary). Finally, we have to go through the existing
// g_module_libcs and see if any of those are *not* in the modules
// currently loaded by the executable. If so, we need to invalidate
// them. Returns true if we did any work (patching or invalidating),
// false if we were a noop. May update loaded_modules as well.
// NOTE: you must hold the patch_all_modules_lock to access loaded_modules.
bool PatchAllModules() {
std::vector<ModuleEntryCopy> modules;
bool made_changes = false;
const HANDLE hCurrentProcess = GetCurrentProcess();
DWORD num_modules = 0;
HMODULE hModules[kMaxModules]; // max # of modules we support in one process
if (!::EnumProcessModules(hCurrentProcess, hModules, sizeof(hModules),
&num_modules)) {
num_modules = 0;
}
// EnumProcessModules actually set the bytes written into hModules,
// so we need to divide to make num_modules actually be a module-count.
num_modules /= sizeof(*hModules);
if (num_modules >= kMaxModules) {
printf("PERFTOOLS ERROR: Too many modules in this executable to try"
" to patch them all (if you need to, raise kMaxModules in"
" patch_functions.cc).\n");
num_modules = kMaxModules;
}
// Now we handle the unpatching of modules we have in g_module_libcs
// but that were not found in EnumProcessModules. We need to
// invalidate them. To speed that up, we store the EnumProcessModules
// output in a set.
// At the same time, we prepare for the adding of new modules, by
// removing from hModules all the modules we know we've already
// patched (or decided don't need to be patched). At the end,
// hModules will hold only the modules that we need to consider patching.
std::set<HMODULE> currently_loaded_modules;
{
SpinLockHolder h(&patch_all_modules_lock);
if (!g_last_loaded) g_last_loaded = new std::set<HMODULE>;
// At the end of this loop, currently_loaded_modules contains the
// full list of EnumProcessModules, and hModules just the ones we
// haven't handled yet.
for (int i = 0; i < num_modules; ) {
currently_loaded_modules.insert(hModules[i]);
if (g_last_loaded->count(hModules[i]) > 0) {
hModules[i] = hModules[--num_modules]; // replace element i with tail
} else {
i++; // keep element i
}
}
// Now we do the unpatching/invalidation.
for (int i = 0; i < sizeof(g_module_libcs)/sizeof(*g_module_libcs); i++) {
if (g_module_libcs[i]->patched() &&
currently_loaded_modules.count(g_module_libcs[i]->hmodule()) == 0) {
// Means g_module_libcs[i] is no longer loaded (no me32 matched).
// We could call Unpatch() here, but why bother? The module
// has gone away, so nobody is going to call into it anyway.
g_module_libcs[i]->set_is_valid(false);
made_changes = true;
}
}
// Update the loaded module cache.
g_last_loaded->swap(currently_loaded_modules);
}
// Now that we know what modules are new, let's get the info we'll
// need to patch them. Note this *cannot* be done while holding the
// lock, since it needs to make windows calls (see the lock-inversion
// comments before the definition of patch_all_modules_lock).
MODULEINFO mi;
for (int i = 0; i < num_modules; i++) {
if (::GetModuleInformation(hCurrentProcess, hModules[i], &mi, sizeof(mi)))
modules.push_back(ModuleEntryCopy(mi));
}
// Now we can do the patching of new modules.
{
SpinLockHolder h(&patch_all_modules_lock);
for (std::vector<ModuleEntryCopy>::iterator it = modules.begin();
it != modules.end(); ++it) {
LibcInfo libc_info;
if (libc_info.PopulateWindowsFn(*it)) { // true==module has libc routines
PatchOneModuleLocked(libc_info);
made_changes = true;
}
}
// Now that we've dealt with the modules (dlls), update the main
// executable. We do this last because PatchMainExecutableLocked
// wants to look at how other modules were patched.
if (!main_executable.patched()) {
PatchMainExecutableLocked();
made_changes = true;
}
}
// TODO(csilvers): for this to be reliable, we need to also take
// into account if we *would* have patched any modules had they not
// already been loaded. (That is, made_changes should ignore
// g_last_loaded.)
return made_changes;
}
} // end unnamed namespace
// ---------------------------------------------------------------------
// Now that we've done all the patching machinery, let's actually
// define the functions we're patching in. Mostly these are
// simple wrappers around the do_* routines in tcmalloc.cc.
//
// In fact, we #include tcmalloc.cc to get at the tcmalloc internal
// do_* functions, the better to write our own hook functions.
// U-G-L-Y, I know. But the alternatives are, perhaps, worse. This
// also lets us define _msize(), _expand(), and other windows-specific
// functions here, using tcmalloc internals, without polluting
// tcmalloc.cc.
// -------------------------------------------------------------------
// TODO(csilvers): refactor tcmalloc.cc into two files, so I can link
// against the file with do_malloc, and ignore the one with malloc.
#include "tcmalloc.cc"
template<int T>
void* LibcInfoWithPatchFunctions<T>::Perftools_malloc(size_t size) __THROW {
void* result = do_malloc_or_cpp_alloc(size);
MallocHook::InvokeNewHook(result, size);
return result;
}
template<int T>
void LibcInfoWithPatchFunctions<T>::Perftools_free(void* ptr) __THROW {
MallocHook::InvokeDeleteHook(ptr);
// This calls the windows free if do_free decides ptr was not
// allocated by tcmalloc. Note it calls the origstub_free from
// *this* templatized instance of LibcInfo. See "template
// trickiness" above.
do_free_with_callback(ptr, (void (*)(void*))origstub_fn_[kFree]);
}
template<int T>
void* LibcInfoWithPatchFunctions<T>::Perftools_realloc(
void* old_ptr, size_t new_size) __THROW {
if (old_ptr == NULL) {
void* result = do_malloc_or_cpp_alloc(new_size);
MallocHook::InvokeNewHook(result, new_size);
return result;
}
if (new_size == 0) {
MallocHook::InvokeDeleteHook(old_ptr);
do_free_with_callback(old_ptr,
(void (*)(void*))origstub_fn_[kFree]);
return NULL;
}
return do_realloc_with_callback(
old_ptr, new_size,
(void (*)(void*))origstub_fn_[kFree],
(size_t (*)(const void*))origstub_fn_[k_Msize]);
}
template<int T>
void* LibcInfoWithPatchFunctions<T>::Perftools_calloc(
size_t n, size_t elem_size) __THROW {
void* result = do_calloc(n, elem_size);
MallocHook::InvokeNewHook(result, n * elem_size);
return result;
}
template<int T>
void* LibcInfoWithPatchFunctions<T>::Perftools_new(size_t size) {
void* p = cpp_alloc(size, false);
MallocHook::InvokeNewHook(p, size);
return p;
}
template<int T>
void* LibcInfoWithPatchFunctions<T>::Perftools_newarray(size_t size) {
void* p = cpp_alloc(size, false);
MallocHook::InvokeNewHook(p, size);
return p;
}
template<int T>
void LibcInfoWithPatchFunctions<T>::Perftools_delete(void *p) {
MallocHook::InvokeDeleteHook(p);
do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]);
}
template<int T>
void LibcInfoWithPatchFunctions<T>::Perftools_deletearray(void *p) {
MallocHook::InvokeDeleteHook(p);
do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]);
}
template<int T>
void* LibcInfoWithPatchFunctions<T>::Perftools_new_nothrow(
size_t size, const std::nothrow_t&) __THROW {
void* p = cpp_alloc(size, true);
MallocHook::InvokeNewHook(p, size);
return p;
}
template<int T>
void* LibcInfoWithPatchFunctions<T>::Perftools_newarray_nothrow(
size_t size, const std::nothrow_t&) __THROW {
void* p = cpp_alloc(size, true);
MallocHook::InvokeNewHook(p, size);
return p;
}
template<int T>
void LibcInfoWithPatchFunctions<T>::Perftools_delete_nothrow(
void *p, const std::nothrow_t&) __THROW {
MallocHook::InvokeDeleteHook(p);
do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]);
}
template<int T>
void LibcInfoWithPatchFunctions<T>::Perftools_deletearray_nothrow(
void *p, const std::nothrow_t&) __THROW {
MallocHook::InvokeDeleteHook(p);
do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]);
}
// _msize() lets you figure out how much space is reserved for a
// pointer, in Windows. Even if applications don't call it, any DLL
// with global constructors will call (transitively) something called
// __dllonexit_lk in order to make sure the destructors get called
// when the dll unloads. And that will call msize -- horrible things
// can ensue if this is not hooked. Other parts of libc may also call
// this internally.
template<int T>
size_t LibcInfoWithPatchFunctions<T>::Perftools__msize(void* ptr) __THROW {
return GetSizeWithCallback(ptr, (size_t (*)(const void*))origstub_fn_[k_Msize]);
}
// We need to define this because internal windows functions like to
// call into it(?). _expand() is like realloc but doesn't move the
// pointer. We punt, which will cause callers to fall back on realloc.
template<int T>
void* LibcInfoWithPatchFunctions<T>::Perftools__expand(void *ptr,
size_t size) __THROW {
return NULL;
}
LPVOID WINAPI WindowsInfo::Perftools_HeapAlloc(HANDLE hHeap, DWORD dwFlags,
DWORD_PTR dwBytes) {
LPVOID result = ((LPVOID (WINAPI *)(HANDLE, DWORD, DWORD_PTR))
function_info_[kHeapAlloc].origstub_fn)(
hHeap, dwFlags, dwBytes);
MallocHook::InvokeNewHook(result, dwBytes);
return result;
}
BOOL WINAPI WindowsInfo::Perftools_HeapFree(HANDLE hHeap, DWORD dwFlags,
LPVOID lpMem) {
MallocHook::InvokeDeleteHook(lpMem);
return ((BOOL (WINAPI *)(HANDLE, DWORD, LPVOID))
function_info_[kHeapFree].origstub_fn)(
hHeap, dwFlags, lpMem);
}
LPVOID WINAPI WindowsInfo::Perftools_VirtualAllocEx(HANDLE process,
LPVOID address,
SIZE_T size, DWORD type,
DWORD protect) {
LPVOID result = ((LPVOID (WINAPI *)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD))
function_info_[kVirtualAllocEx].origstub_fn)(
process, address, size, type, protect);
// VirtualAllocEx() seems to be the Windows equivalent of mmap()
MallocHook::InvokeMmapHook(result, address, size, protect, type, -1, 0);
return result;
}
BOOL WINAPI WindowsInfo::Perftools_VirtualFreeEx(HANDLE process, LPVOID address,
SIZE_T size, DWORD type) {
MallocHook::InvokeMunmapHook(address, size);
return ((BOOL (WINAPI *)(HANDLE, LPVOID, SIZE_T, DWORD))
function_info_[kVirtualFreeEx].origstub_fn)(
process, address, size, type);
}
LPVOID WINAPI WindowsInfo::Perftools_MapViewOfFileEx(
HANDLE hFileMappingObject, DWORD dwDesiredAccess, DWORD dwFileOffsetHigh,
DWORD dwFileOffsetLow, SIZE_T dwNumberOfBytesToMap, LPVOID lpBaseAddress) {
// For this function pair, you always deallocate the full block of
// data that you allocate, so NewHook/DeleteHook is the right API.
LPVOID result = ((LPVOID (WINAPI *)(HANDLE, DWORD, DWORD, DWORD,
SIZE_T, LPVOID))
function_info_[kMapViewOfFileEx].origstub_fn)(
hFileMappingObject, dwDesiredAccess, dwFileOffsetHigh,
dwFileOffsetLow, dwNumberOfBytesToMap, lpBaseAddress);
MallocHook::InvokeNewHook(result, dwNumberOfBytesToMap);
return result;
}
BOOL WINAPI WindowsInfo::Perftools_UnmapViewOfFile(LPCVOID lpBaseAddress) {
MallocHook::InvokeDeleteHook(lpBaseAddress);
return ((BOOL (WINAPI *)(LPCVOID))
function_info_[kUnmapViewOfFile].origstub_fn)(
lpBaseAddress);
}
// g_load_map holds a copy of windows' refcount for how many times
// each currently loaded module has been loaded and unloaded. We use
// it as an optimization when the same module is loaded more than
// once: as long as the refcount stays above 1, we don't need to worry
// about patching because it's already patched. Likewise, we don't
// need to unpatch until the refcount drops to 0. load_map is
// maintained in LoadLibraryExW and FreeLibrary, and only covers
// modules explicitly loaded/freed via those interfaces.
static std::map<HMODULE, int>* g_load_map = NULL;
HMODULE WINAPI WindowsInfo::Perftools_LoadLibraryExW(LPCWSTR lpFileName,
HANDLE hFile,
DWORD dwFlags) {
HMODULE rv;
// Check to see if the modules is already loaded, flag 0 gets a
// reference if it was loaded. If it was loaded no need to call
// PatchAllModules, just increase the reference count to match
// what GetModuleHandleExW does internally inside windows.
if (::GetModuleHandleExW(0, lpFileName, &rv)) {
return rv;
} else {
// Not already loaded, so load it.
rv = ((HMODULE (WINAPI *)(LPCWSTR, HANDLE, DWORD))
function_info_[kLoadLibraryExW].origstub_fn)(
lpFileName, hFile, dwFlags);
// This will patch any newly loaded libraries, if patching needs
// to be done.
PatchAllModules();
return rv;
}
}
BOOL WINAPI WindowsInfo::Perftools_FreeLibrary(HMODULE hLibModule) {
BOOL rv = ((BOOL (WINAPI *)(HMODULE))
function_info_[kFreeLibrary].origstub_fn)(hLibModule);
// Check to see if the module is still loaded by passing the base
// address and seeing if it comes back with the same address. If it
// is the same address it's still loaded, so the FreeLibrary() call
// was a noop, and there's no need to redo the patching.
HMODULE owner = NULL;
BOOL result = ::GetModuleHandleExW(
(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT),
(LPCWSTR)hLibModule,
&owner);
if (result && owner == hLibModule)
return rv;
PatchAllModules(); // this will fix up the list of patched libraries
return rv;
}
// ---------------------------------------------------------------------
// PatchWindowsFunctions()
// This is the function that is exposed to the outside world.
// It should be called before the program becomes multi-threaded,
// since main_executable_windows.Patch() is not thread-safe.
// ---------------------------------------------------------------------
void PatchWindowsFunctions() {
// This does the libc patching in every module, and the main executable.
PatchAllModules();
main_executable_windows.Patch();
}
#if 0
// It's possible to unpatch all the functions when we are exiting.
// The idea is to handle properly windows-internal data that is
// allocated before PatchWindowsFunctions is called. If all
// destruction happened in reverse order from construction, then we
// could call UnpatchWindowsFunctions at just the right time, so that
// that early-allocated data would be freed using the windows
// allocation functions rather than tcmalloc. The problem is that
// windows allocates some structures lazily, so it would allocate them
// late (using tcmalloc) and then try to deallocate them late as well.
// So instead of unpatching, we just modify all the tcmalloc routines
// so they call through to the libc rountines if the memory in
// question doesn't seem to have been allocated with tcmalloc. I keep
// this unpatch code around for reference.
void UnpatchWindowsFunctions() {
// We need to go back to the system malloc/etc at global destruct time,
// so objects that were constructed before tcmalloc, using the system
// malloc, can destroy themselves using the system free. This depends
// on DLLs unloading in the reverse order in which they load!
//
// We also go back to the default HeapAlloc/etc, just for consistency.
// Who knows, it may help avoid weird bugs in some situations.
main_executable_windows.Unpatch();
main_executable.Unpatch();
if (libc1.is_valid()) libc1.Unpatch();
if (libc2.is_valid()) libc2.Unpatch();
if (libc3.is_valid()) libc3.Unpatch();
if (libc4.is_valid()) libc4.Unpatch();
if (libc5.is_valid()) libc5.Unpatch();
if (libc6.is_valid()) libc6.Unpatch();
if (libc7.is_valid()) libc7.Unpatch();
if (libc8.is_valid()) libc8.Unpatch();
}
#endif