| // Copyright (c) 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // --- |
| // Author: Craig Silverstein |
| // |
| // The main purpose of this file is to patch the libc allocation |
| // routines (malloc and friends, but also _msize and other |
| // windows-specific libc-style routines). However, we also patch |
| // windows routines to do accounting. We do better at the former than |
| // the latter. Here are some comments from Paul Pluzhnikov about what |
| // it might take to do a really good job patching windows routines to |
| // keep track of memory usage: |
| // |
| // "You should intercept at least the following: |
| // HeapCreate HeapDestroy HeapAlloc HeapReAlloc HeapFree |
| // RtlCreateHeap RtlDestroyHeap RtlAllocateHeap RtlFreeHeap |
| // malloc calloc realloc free |
| // malloc_dbg calloc_dbg realloc_dbg free_dbg |
| // Some of these call the other ones (but not always), sometimes |
| // recursively (i.e. HeapCreate may call HeapAlloc on a different |
| // heap, IIRC)." |
| // |
| // Since Paul didn't mention VirtualAllocEx, he may not have even been |
| // considering all the mmap-like functions that windows has (or he may |
| // just be ignoring it because he's seen we already patch it). Of the |
| // above, we do not patch the *_dbg functions, and of the windows |
| // functions, we only patch HeapAlloc and HeapFree. |
| // |
| // The *_dbg functions come into play with /MDd, /MTd, and /MLd, |
| // probably. It may be ok to just turn off tcmalloc in those cases -- |
| // if the user wants the windows debug malloc, they probably don't |
| // want tcmalloc! We should also test with all of /MD, /MT, and /ML, |
| // which we're not currently doing. |
| |
| // TODO(csilvers): try to do better here? Paul does conclude: |
| // "Keeping track of all of this was a nightmare." |
| |
| #ifndef _WIN32 |
| # error You should only be including windows/patch_functions.cc in a windows environment! |
| #endif |
| |
| #include <config.h> |
| |
| #ifdef WIN32_OVERRIDE_ALLOCATORS |
| #error This file is intended for patching allocators - use override_functions.cc instead. |
| #endif |
| |
| // We use psapi. Non-MSVC systems will have to link this in themselves. |
| #ifdef _MSC_VER |
| #pragma comment(lib, "Psapi.lib") |
| #endif |
| |
| // Make sure we always use the 'old' names of the psapi functions. |
| #ifndef PSAPI_VERSION |
| #define PSAPI_VERSION 1 |
| #endif |
| |
| #include <windows.h> |
| #include <stdio.h> |
| #include <malloc.h> // for _msize and _expand |
| #include <Psapi.h> // for EnumProcessModules, GetModuleInformation, etc. |
| #include <set> |
| #include <map> |
| #include <vector> |
| #include <base/logging.h> |
| #include "base/spinlock.h" |
| #include "gperftools/malloc_hook.h" |
| #include "malloc_hook-inl.h" |
| #include "preamble_patcher.h" |
| |
| // The maximum number of modules we allow to be in one executable |
| const int kMaxModules = 8182; |
| |
| // These are hard-coded, unfortunately. :-( They are also probably |
| // compiler specific. See get_mangled_names.cc, in this directory, |
| // for instructions on how to update these names for your compiler. |
| const char kMangledNew[] = "??2@YAPAXI@Z"; |
| const char kMangledNewArray[] = "??_U@YAPAXI@Z"; |
| const char kMangledDelete[] = "??3@YAXPAX@Z"; |
| const char kMangledDeleteArray[] = "??_V@YAXPAX@Z"; |
| const char kMangledNewNothrow[] = "??2@YAPAXIABUnothrow_t@std@@@Z"; |
| const char kMangledNewArrayNothrow[] = "??_U@YAPAXIABUnothrow_t@std@@@Z"; |
| const char kMangledDeleteNothrow[] = "??3@YAXPAXABUnothrow_t@std@@@Z"; |
| const char kMangledDeleteArrayNothrow[] = "??_V@YAXPAXABUnothrow_t@std@@@Z"; |
| |
| // This is an unused but exported symbol that we can use to tell the |
| // MSVC linker to bring in libtcmalloc, via the /INCLUDE linker flag. |
| // Without this, the linker will likely decide that libtcmalloc.dll |
| // doesn't add anything to the executable (since it does all its work |
| // through patching, which the linker can't see), and ignore it |
| // entirely. (The name 'tcmalloc' is already reserved for a |
| // namespace. I'd rather export a variable named "_tcmalloc", but I |
| // couldn't figure out how to get that to work. This function exports |
| // the symbol "__tcmalloc".) |
| extern "C" PERFTOOLS_DLL_DECL void _tcmalloc(); |
| void _tcmalloc() { } |
| |
| // This is the version needed for windows x64, which has a different |
| // decoration scheme which doesn't auto-add a leading underscore. |
| extern "C" PERFTOOLS_DLL_DECL void __tcmalloc(); |
| void __tcmalloc() { } |
| |
| namespace { // most everything here is in an unnamed namespace |
| |
| typedef void (*GenericFnPtr)(); |
| |
| using sidestep::PreamblePatcher; |
| |
| struct ModuleEntryCopy; // defined below |
| |
| // These functions are how we override the memory allocation |
| // functions, just like tcmalloc.cc and malloc_hook.cc do. |
| |
| // This is information about the routines we're patching, for a given |
| // module that implements libc memory routines. A single executable |
| // can have several libc implementations running about (in different |
| // .dll's), and we need to patch/unpatch them all. This defines |
| // everything except the new functions we're patching in, which |
| // are defined in LibcFunctions, below. |
| class LibcInfo { |
| public: |
| LibcInfo() { |
| memset(this, 0, sizeof(*this)); // easiest way to initialize the array |
| } |
| |
| bool patched() const { return is_valid(); } |
| void set_is_valid(bool b) { is_valid_ = b; } |
| // According to http://msdn.microsoft.com/en-us/library/ms684229(VS.85).aspx: |
| // "The load address of a module (lpBaseOfDll) is the same as the HMODULE |
| // value." |
| HMODULE hmodule() const { |
| return reinterpret_cast<HMODULE>(const_cast<void*>(module_base_address_)); |
| } |
| |
| // Populates all the windows_fn_[] vars based on our module info. |
| // Returns false if windows_fn_ is all NULL's, because there's |
| // nothing to patch. Also populates the rest of the module_entry |
| // info, such as the module's name. |
| bool PopulateWindowsFn(const ModuleEntryCopy& module_entry); |
| |
| protected: |
| void CopyFrom(const LibcInfo& that) { |
| if (this == &that) |
| return; |
| this->is_valid_ = that.is_valid_; |
| memcpy(this->windows_fn_, that.windows_fn_, sizeof(windows_fn_)); |
| this->module_base_address_ = that.module_base_address_; |
| this->module_base_size_ = that.module_base_size_; |
| } |
| |
| enum { |
| kMalloc, kFree, kRealloc, kCalloc, |
| kNew, kNewArray, kDelete, kDeleteArray, |
| kNewNothrow, kNewArrayNothrow, kDeleteNothrow, kDeleteArrayNothrow, |
| // These are windows-only functions from malloc.h |
| k_Msize, k_Expand, |
| // A MS CRT "internal" function, implemented using _calloc_impl |
| k_CallocCrt, |
| kNumFunctions |
| }; |
| |
| // I'd like to put these together in a struct (perhaps in the |
| // subclass, so we can put in perftools_fn_ as well), but vc8 seems |
| // to have a bug where it doesn't initialize the struct properly if |
| // we try to take the address of a function that's not yet loaded |
| // from a dll, as is the common case for static_fn_. So we need |
| // each to be in its own array. :-( |
| static const char* const function_name_[kNumFunctions]; |
| |
| // This function is only used when statically linking the binary. |
| // In that case, loading malloc/etc from the dll (via |
| // PatchOneModule) won't work, since there are no dlls. Instead, |
| // you just want to be taking the address of malloc/etc directly. |
| // In the common, non-static-link case, these pointers will all be |
| // NULL, since this initializer runs before msvcrt.dll is loaded. |
| static const GenericFnPtr static_fn_[kNumFunctions]; |
| |
| // This is the address of the function we are going to patch |
| // (malloc, etc). Other info about the function is in the |
| // patch-specific subclasses, below. |
| GenericFnPtr windows_fn_[kNumFunctions]; |
| |
| // This is set to true when this structure is initialized (because |
| // we're patching a new library) and set to false when it's |
| // uninitialized (because we've freed that library). |
| bool is_valid_; |
| |
| const void *module_base_address_; |
| size_t module_base_size_; |
| |
| public: |
| // These shouldn't have to be public, since only subclasses of |
| // LibcInfo need it, but they do. Maybe something to do with |
| // templates. Shrug. I hide them down here so users won't see |
| // them. :-) (OK, I also need to define ctrgProcAddress late.) |
| bool is_valid() const { return is_valid_; } |
| GenericFnPtr windows_fn(int ifunction) const { |
| return windows_fn_[ifunction]; |
| } |
| // These three are needed by ModuleEntryCopy. |
| static const int ctrgProcAddress = kNumFunctions; |
| static GenericFnPtr static_fn(int ifunction) { |
| return static_fn_[ifunction]; |
| } |
| static const char* const function_name(int ifunction) { |
| return function_name_[ifunction]; |
| } |
| }; |
| |
| // Template trickiness: logically, a LibcInfo would include |
| // Windows_malloc_, origstub_malloc_, and Perftools_malloc_: for a |
| // given module, these three go together. And in fact, |
| // Perftools_malloc_ may need to call origstub_malloc_, which means we |
| // either need to change Perftools_malloc_ to take origstub_malloc_ as |
| // an arugment -- unfortunately impossible since it needs to keep the |
| // same API as normal malloc -- or we need to write a different |
| // version of Perftools_malloc_ for each LibcInfo instance we create. |
| // We choose the second route, and use templates to implement it (we |
| // could have also used macros). So to get multiple versions |
| // of the struct, we say "struct<1> var1; struct<2> var2;". The price |
| // we pay is some code duplication, and more annoying, each instance |
| // of this var is a separate type. |
| template<int> class LibcInfoWithPatchFunctions : public LibcInfo { |
| public: |
| // me_info should have had PopulateWindowsFn() called on it, so the |
| // module_* vars and windows_fn_ are set up. |
| bool Patch(const LibcInfo& me_info); |
| void Unpatch(); |
| |
| private: |
| // This holds the original function contents after we patch the function. |
| // This has to be defined static in the subclass, because the perftools_fns |
| // reference origstub_fn_. |
| static GenericFnPtr origstub_fn_[kNumFunctions]; |
| |
| // This is the function we want to patch in |
| static const GenericFnPtr perftools_fn_[kNumFunctions]; |
| |
| static void* Perftools_malloc(size_t size) __THROW; |
| static void Perftools_free(void* ptr) __THROW; |
| static void* Perftools_realloc(void* ptr, size_t size) __THROW; |
| static void* Perftools_calloc(size_t nmemb, size_t size) __THROW; |
| static void* Perftools_new(size_t size); |
| static void* Perftools_newarray(size_t size); |
| static void Perftools_delete(void *ptr); |
| static void Perftools_deletearray(void *ptr); |
| static void* Perftools_new_nothrow(size_t size, |
| const std::nothrow_t&) __THROW; |
| static void* Perftools_newarray_nothrow(size_t size, |
| const std::nothrow_t&) __THROW; |
| static void Perftools_delete_nothrow(void *ptr, |
| const std::nothrow_t&) __THROW; |
| static void Perftools_deletearray_nothrow(void *ptr, |
| const std::nothrow_t&) __THROW; |
| static size_t Perftools__msize(void *ptr) __THROW; |
| static void* Perftools__expand(void *ptr, size_t size) __THROW; |
| // malloc.h also defines these functions: |
| // _aligned_malloc, _aligned_free, |
| // _recalloc, _aligned_offset_malloc, _aligned_realloc, _aligned_recalloc |
| // _aligned_offset_realloc, _aligned_offset_recalloc, _malloca, _freea |
| // But they seem pretty obscure, and I'm fine not overriding them for now. |
| // It may be they all call into malloc/free anyway. |
| }; |
| |
| // This is a subset of MODDULEENTRY32, that we need for patching. |
| struct ModuleEntryCopy { |
| LPVOID modBaseAddr; // the same as hmodule |
| DWORD modBaseSize; |
| // This is not part of MODDULEENTRY32, but is needed to avoid making |
| // windows syscalls while we're holding patch_all_modules_lock (see |
| // lock-inversion comments at patch_all_modules_lock definition, below). |
| GenericFnPtr rgProcAddresses[LibcInfo::ctrgProcAddress]; |
| |
| ModuleEntryCopy() { |
| modBaseAddr = NULL; |
| modBaseSize = 0; |
| for (int i = 0; i < sizeof(rgProcAddresses)/sizeof(*rgProcAddresses); i++) |
| rgProcAddresses[i] = LibcInfo::static_fn(i); |
| } |
| ModuleEntryCopy(const MODULEINFO& mi) { |
| this->modBaseAddr = mi.lpBaseOfDll; |
| this->modBaseSize = mi.SizeOfImage; |
| LPVOID modEndAddr = (char*)mi.lpBaseOfDll + mi.SizeOfImage; |
| for (int i = 0; i < sizeof(rgProcAddresses)/sizeof(*rgProcAddresses); i++) { |
| FARPROC target = ::GetProcAddress( |
| reinterpret_cast<const HMODULE>(mi.lpBaseOfDll), |
| LibcInfo::function_name(i)); |
| // Sometimes a DLL forwards a function to a function in another |
| // DLL. We don't want to patch those forwarded functions -- |
| // they'll get patched when the other DLL is processed. |
| if (target >= modBaseAddr && target < modEndAddr) |
| rgProcAddresses[i] = (GenericFnPtr)target; |
| else |
| rgProcAddresses[i] = (GenericFnPtr)NULL; |
| } |
| } |
| }; |
| |
| // This class is easier because there's only one of them. |
| class WindowsInfo { |
| public: |
| void Patch(); |
| void Unpatch(); |
| |
| private: |
| // TODO(csilvers): should we be patching GlobalAlloc/LocalAlloc instead, |
| // for pre-XP systems? |
| enum { |
| kHeapAlloc, kHeapFree, kVirtualAllocEx, kVirtualFreeEx, |
| kMapViewOfFileEx, kUnmapViewOfFile, kLoadLibraryExW, kFreeLibrary, |
| kNumFunctions |
| }; |
| |
| struct FunctionInfo { |
| const char* const name; // name of fn in a module (eg "malloc") |
| GenericFnPtr windows_fn; // the fn whose name we call (&malloc) |
| GenericFnPtr origstub_fn; // original fn contents after we patch |
| const GenericFnPtr perftools_fn; // fn we want to patch in |
| }; |
| |
| static FunctionInfo function_info_[kNumFunctions]; |
| |
| // A Windows-API equivalent of malloc and free |
| static LPVOID WINAPI Perftools_HeapAlloc(HANDLE hHeap, DWORD dwFlags, |
| DWORD_PTR dwBytes); |
| static BOOL WINAPI Perftools_HeapFree(HANDLE hHeap, DWORD dwFlags, |
| LPVOID lpMem); |
| // A Windows-API equivalent of mmap and munmap, for "anonymous regions" |
| static LPVOID WINAPI Perftools_VirtualAllocEx(HANDLE process, LPVOID address, |
| SIZE_T size, DWORD type, |
| DWORD protect); |
| static BOOL WINAPI Perftools_VirtualFreeEx(HANDLE process, LPVOID address, |
| SIZE_T size, DWORD type); |
| // A Windows-API equivalent of mmap and munmap, for actual files |
| static LPVOID WINAPI Perftools_MapViewOfFileEx(HANDLE hFileMappingObject, |
| DWORD dwDesiredAccess, |
| DWORD dwFileOffsetHigh, |
| DWORD dwFileOffsetLow, |
| SIZE_T dwNumberOfBytesToMap, |
| LPVOID lpBaseAddress); |
| static BOOL WINAPI Perftools_UnmapViewOfFile(LPCVOID lpBaseAddress); |
| // We don't need the other 3 variants because they all call this one. */ |
| static HMODULE WINAPI Perftools_LoadLibraryExW(LPCWSTR lpFileName, |
| HANDLE hFile, |
| DWORD dwFlags); |
| static BOOL WINAPI Perftools_FreeLibrary(HMODULE hLibModule); |
| }; |
| |
| // If you run out, just add a few more to the array. You'll also need |
| // to update the switch statement in PatchOneModule(), and the list in |
| // UnpatchWindowsFunctions(). |
| // main_executable and main_executable_windows are two windows into |
| // the same executable. One is responsible for patching the libc |
| // routines that live in the main executable (if any) to use tcmalloc; |
| // the other is responsible for patching the windows routines like |
| // HeapAlloc/etc to use tcmalloc. |
| static LibcInfoWithPatchFunctions<0> main_executable; |
| static LibcInfoWithPatchFunctions<1> libc1; |
| static LibcInfoWithPatchFunctions<2> libc2; |
| static LibcInfoWithPatchFunctions<3> libc3; |
| static LibcInfoWithPatchFunctions<4> libc4; |
| static LibcInfoWithPatchFunctions<5> libc5; |
| static LibcInfoWithPatchFunctions<6> libc6; |
| static LibcInfoWithPatchFunctions<7> libc7; |
| static LibcInfoWithPatchFunctions<8> libc8; |
| static LibcInfo* g_module_libcs[] = { |
| &libc1, &libc2, &libc3, &libc4, &libc5, &libc6, &libc7, &libc8 |
| }; |
| static WindowsInfo main_executable_windows; |
| |
| const char* const LibcInfo::function_name_[] = { |
| "malloc", "free", "realloc", "calloc", |
| kMangledNew, kMangledNewArray, kMangledDelete, kMangledDeleteArray, |
| // Ideally we should patch the nothrow versions of new/delete, but |
| // at least in msvcrt, nothrow-new machine-code is of a type we |
| // can't patch. Since these are relatively rare, I'm hoping it's ok |
| // not to patch them. (NULL name turns off patching.) |
| NULL, // kMangledNewNothrow, |
| NULL, // kMangledNewArrayNothrow, |
| NULL, // kMangledDeleteNothrow, |
| NULL, // kMangledDeleteArrayNothrow, |
| "_msize", "_expand", "_calloc_crt", |
| }; |
| |
| // For mingw, I can't patch the new/delete here, because the |
| // instructions are too small to patch. Luckily, they're so small |
| // because all they do is call into malloc/free, so they still end up |
| // calling tcmalloc routines, and we don't actually lose anything |
| // (except maybe some stacktrace goodness) by not patching. |
| const GenericFnPtr LibcInfo::static_fn_[] = { |
| (GenericFnPtr)&::malloc, |
| (GenericFnPtr)&::free, |
| (GenericFnPtr)&::realloc, |
| (GenericFnPtr)&::calloc, |
| #ifdef __MINGW32__ |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| #else |
| (GenericFnPtr)(void*(*)(size_t))&::operator new, |
| (GenericFnPtr)(void*(*)(size_t))&::operator new[], |
| (GenericFnPtr)(void(*)(void*))&::operator delete, |
| (GenericFnPtr)(void(*)(void*))&::operator delete[], |
| (GenericFnPtr) |
| (void*(*)(size_t, struct std::nothrow_t const &))&::operator new, |
| (GenericFnPtr) |
| (void*(*)(size_t, struct std::nothrow_t const &))&::operator new[], |
| (GenericFnPtr) |
| (void(*)(void*, struct std::nothrow_t const &))&::operator delete, |
| (GenericFnPtr) |
| (void(*)(void*, struct std::nothrow_t const &))&::operator delete[], |
| #endif |
| (GenericFnPtr)&::_msize, |
| (GenericFnPtr)&::_expand, |
| (GenericFnPtr)&::calloc, |
| }; |
| |
| template<int T> GenericFnPtr LibcInfoWithPatchFunctions<T>::origstub_fn_[] = { |
| // This will get filled in at run-time, as patching is done. |
| }; |
| |
| template<int T> |
| const GenericFnPtr LibcInfoWithPatchFunctions<T>::perftools_fn_[] = { |
| (GenericFnPtr)&Perftools_malloc, |
| (GenericFnPtr)&Perftools_free, |
| (GenericFnPtr)&Perftools_realloc, |
| (GenericFnPtr)&Perftools_calloc, |
| (GenericFnPtr)&Perftools_new, |
| (GenericFnPtr)&Perftools_newarray, |
| (GenericFnPtr)&Perftools_delete, |
| (GenericFnPtr)&Perftools_deletearray, |
| (GenericFnPtr)&Perftools_new_nothrow, |
| (GenericFnPtr)&Perftools_newarray_nothrow, |
| (GenericFnPtr)&Perftools_delete_nothrow, |
| (GenericFnPtr)&Perftools_deletearray_nothrow, |
| (GenericFnPtr)&Perftools__msize, |
| (GenericFnPtr)&Perftools__expand, |
| (GenericFnPtr)&Perftools_calloc, |
| }; |
| |
| /*static*/ WindowsInfo::FunctionInfo WindowsInfo::function_info_[] = { |
| { "HeapAlloc", NULL, NULL, (GenericFnPtr)&Perftools_HeapAlloc }, |
| { "HeapFree", NULL, NULL, (GenericFnPtr)&Perftools_HeapFree }, |
| { "VirtualAllocEx", NULL, NULL, (GenericFnPtr)&Perftools_VirtualAllocEx }, |
| { "VirtualFreeEx", NULL, NULL, (GenericFnPtr)&Perftools_VirtualFreeEx }, |
| { "MapViewOfFileEx", NULL, NULL, (GenericFnPtr)&Perftools_MapViewOfFileEx }, |
| { "UnmapViewOfFile", NULL, NULL, (GenericFnPtr)&Perftools_UnmapViewOfFile }, |
| { "LoadLibraryExW", NULL, NULL, (GenericFnPtr)&Perftools_LoadLibraryExW }, |
| { "FreeLibrary", NULL, NULL, (GenericFnPtr)&Perftools_FreeLibrary }, |
| }; |
| |
| bool LibcInfo::PopulateWindowsFn(const ModuleEntryCopy& module_entry) { |
| // First, store the location of the function to patch before |
| // patching it. If none of these functions are found in the module, |
| // then this module has no libc in it, and we just return false. |
| for (int i = 0; i < kNumFunctions; i++) { |
| if (!function_name_[i]) // we can turn off patching by unsetting name |
| continue; |
| // The ::GetProcAddress calls were done in the ModuleEntryCopy |
| // constructor, so we don't have to make any windows calls here. |
| const GenericFnPtr fn = module_entry.rgProcAddresses[i]; |
| if (fn) { |
| windows_fn_[i] = PreamblePatcher::ResolveTarget(fn); |
| } |
| } |
| |
| // Some modules use the same function pointer for new and new[]. If |
| // we find that, set one of the pointers to NULL so we don't double- |
| // patch. Same may happen with new and nothrow-new, or even new[] |
| // and nothrow-new. It's easiest just to check each fn-ptr against |
| // every other. |
| for (int i = 0; i < kNumFunctions; i++) { |
| for (int j = i+1; j < kNumFunctions; j++) { |
| if (windows_fn_[i] == windows_fn_[j]) { |
| // We NULL the later one (j), so as to minimize the chances we |
| // NULL kFree and kRealloc. See comments below. This is fragile! |
| windows_fn_[j] = NULL; |
| } |
| } |
| } |
| |
| // There's always a chance that our module uses the same function |
| // as another module that we've already loaded. In that case, we |
| // need to set our windows_fn to NULL, to avoid double-patching. |
| for (int ifn = 0; ifn < kNumFunctions; ifn++) { |
| for (int imod = 0; |
| imod < sizeof(g_module_libcs)/sizeof(*g_module_libcs); imod++) { |
| if (g_module_libcs[imod]->is_valid() && |
| this->windows_fn(ifn) == g_module_libcs[imod]->windows_fn(ifn)) { |
| windows_fn_[ifn] = NULL; |
| } |
| } |
| } |
| |
| bool found_non_null = false; |
| for (int i = 0; i < kNumFunctions; i++) { |
| if (windows_fn_[i]) |
| found_non_null = true; |
| } |
| if (!found_non_null) |
| return false; |
| |
| // It's important we didn't NULL out windows_fn_[kFree] or [kRealloc]. |
| // The reason is, if those are NULL-ed out, we'll never patch them |
| // and thus never get an origstub_fn_ value for them, and when we |
| // try to call origstub_fn_[kFree/kRealloc] in Perftools_free and |
| // Perftools_realloc, below, it will fail. We could work around |
| // that by adding a pointer from one patch-unit to the other, but we |
| // haven't needed to yet. |
| CHECK(windows_fn_[kFree]); |
| CHECK(windows_fn_[kRealloc]); |
| |
| // OK, we successfully populated. Let's store our member information. |
| module_base_address_ = module_entry.modBaseAddr; |
| module_base_size_ = module_entry.modBaseSize; |
| return true; |
| } |
| |
| template<int T> |
| bool LibcInfoWithPatchFunctions<T>::Patch(const LibcInfo& me_info) { |
| CopyFrom(me_info); // copies the module_entry and the windows_fn_ array |
| for (int i = 0; i < kNumFunctions; i++) { |
| if (windows_fn_[i] && windows_fn_[i] != perftools_fn_[i]) { |
| // if origstub_fn_ is not NULL, it's left around from a previous |
| // patch. We need to set it to NULL for the new Patch call. |
| // Since we've patched Unpatch() not to delete origstub_fn_ (it |
| // causes problems in some contexts, though obviously not this |
| // one), we should delete it now, before setting it to NULL. |
| // NOTE: casting from a function to a pointer is contra the C++ |
| // spec. It's not safe on IA64, but is on i386. We use |
| // a C-style cast here to emphasize this is not legal C++. |
| delete[] (char*)(origstub_fn_[i]); |
| origstub_fn_[i] = NULL; // Patch() will fill this in |
| CHECK_EQ(sidestep::SIDESTEP_SUCCESS, |
| PreamblePatcher::Patch(windows_fn_[i], perftools_fn_[i], |
| &origstub_fn_[i])); |
| } |
| } |
| set_is_valid(true); |
| return true; |
| } |
| |
| template<int T> |
| void LibcInfoWithPatchFunctions<T>::Unpatch() { |
| // We have to cast our GenericFnPtrs to void* for unpatch. This is |
| // contra the C++ spec; we use C-style casts to empahsize that. |
| for (int i = 0; i < kNumFunctions; i++) { |
| if (windows_fn_[i]) |
| CHECK_EQ(sidestep::SIDESTEP_SUCCESS, |
| PreamblePatcher::Unpatch((void*)windows_fn_[i], |
| (void*)perftools_fn_[i], |
| (void*)origstub_fn_[i])); |
| } |
| set_is_valid(false); |
| } |
| |
| void WindowsInfo::Patch() { |
| HMODULE hkernel32 = ::GetModuleHandleA("kernel32"); |
| CHECK_NE(hkernel32, NULL); |
| |
| // Unlike for libc, we know these exist in our module, so we can get |
| // and patch at the same time. |
| for (int i = 0; i < kNumFunctions; i++) { |
| function_info_[i].windows_fn = (GenericFnPtr) |
| ::GetProcAddress(hkernel32, function_info_[i].name); |
| // If origstub_fn is not NULL, it's left around from a previous |
| // patch. We need to set it to NULL for the new Patch call. |
| // Since we've patched Unpatch() not to delete origstub_fn_ (it |
| // causes problems in some contexts, though obviously not this |
| // one), we should delete it now, before setting it to NULL. |
| // NOTE: casting from a function to a pointer is contra the C++ |
| // spec. It's not safe on IA64, but is on i386. We use |
| // a C-style cast here to emphasize this is not legal C++. |
| delete[] (char*)(function_info_[i].origstub_fn); |
| function_info_[i].origstub_fn = NULL; // Patch() will fill this in |
| CHECK_EQ(sidestep::SIDESTEP_SUCCESS, |
| PreamblePatcher::Patch(function_info_[i].windows_fn, |
| function_info_[i].perftools_fn, |
| &function_info_[i].origstub_fn)); |
| } |
| } |
| |
| void WindowsInfo::Unpatch() { |
| // We have to cast our GenericFnPtrs to void* for unpatch. This is |
| // contra the C++ spec; we use C-style casts to empahsize that. |
| for (int i = 0; i < kNumFunctions; i++) { |
| CHECK_EQ(sidestep::SIDESTEP_SUCCESS, |
| PreamblePatcher::Unpatch((void*)function_info_[i].windows_fn, |
| (void*)function_info_[i].perftools_fn, |
| (void*)function_info_[i].origstub_fn)); |
| } |
| } |
| |
| // You should hold the patch_all_modules_lock when calling this. |
| void PatchOneModuleLocked(const LibcInfo& me_info) { |
| // If we don't already have info on this module, let's add it. This |
| // is where we're sad that each libcX has a different type, so we |
| // can't use an array; instead, we have to use a switch statement. |
| // Patch() returns false if there were no libc functions in the module. |
| for (int i = 0; i < sizeof(g_module_libcs)/sizeof(*g_module_libcs); i++) { |
| if (!g_module_libcs[i]->is_valid()) { // found an empty spot to add! |
| switch (i) { |
| case 0: libc1.Patch(me_info); return; |
| case 1: libc2.Patch(me_info); return; |
| case 2: libc3.Patch(me_info); return; |
| case 3: libc4.Patch(me_info); return; |
| case 4: libc5.Patch(me_info); return; |
| case 5: libc6.Patch(me_info); return; |
| case 6: libc7.Patch(me_info); return; |
| case 7: libc8.Patch(me_info); return; |
| } |
| } |
| } |
| printf("PERFTOOLS ERROR: Too many modules containing libc in this executable\n"); |
| } |
| |
| void PatchMainExecutableLocked() { |
| if (main_executable.patched()) |
| return; // main executable has already been patched |
| ModuleEntryCopy fake_module_entry; // make a fake one to pass into Patch() |
| // No need to call PopulateModuleEntryProcAddresses on the main executable. |
| main_executable.PopulateWindowsFn(fake_module_entry); |
| main_executable.Patch(main_executable); |
| } |
| |
| // This lock is subject to a subtle and annoying lock inversion |
| // problem: it may interact badly with unknown internal windows locks. |
| // In particular, windows may be holding a lock when it calls |
| // LoadLibraryExW and FreeLibrary, which we've patched. We have those |
| // routines call PatchAllModules, which acquires this lock. If we |
| // make windows system calls while holding this lock, those system |
| // calls may need the internal windows locks that are being held in |
| // the call to LoadLibraryExW, resulting in deadlock. The solution is |
| // to be very careful not to call *any* windows routines while holding |
| // patch_all_modules_lock, inside PatchAllModules(). |
| static SpinLock patch_all_modules_lock(SpinLock::LINKER_INITIALIZED); |
| |
| // last_loaded: The set of modules that were loaded the last time |
| // PatchAllModules was called. This is an optimization for only |
| // looking at modules that were added or removed from the last call. |
| static std::set<HMODULE> *g_last_loaded; |
| |
| // Iterates over all the modules currently loaded by the executable, |
| // according to windows, and makes sure they're all patched. Most |
| // modules will already be in loaded_modules, meaning we have already |
| // loaded and either patched them or determined they did not need to |
| // be patched. Others will not, which means we need to patch them |
| // (if necessary). Finally, we have to go through the existing |
| // g_module_libcs and see if any of those are *not* in the modules |
| // currently loaded by the executable. If so, we need to invalidate |
| // them. Returns true if we did any work (patching or invalidating), |
| // false if we were a noop. May update loaded_modules as well. |
| // NOTE: you must hold the patch_all_modules_lock to access loaded_modules. |
| bool PatchAllModules() { |
| std::vector<ModuleEntryCopy> modules; |
| bool made_changes = false; |
| |
| const HANDLE hCurrentProcess = GetCurrentProcess(); |
| DWORD num_modules = 0; |
| HMODULE hModules[kMaxModules]; // max # of modules we support in one process |
| if (!::EnumProcessModules(hCurrentProcess, hModules, sizeof(hModules), |
| &num_modules)) { |
| num_modules = 0; |
| } |
| // EnumProcessModules actually set the bytes written into hModules, |
| // so we need to divide to make num_modules actually be a module-count. |
| num_modules /= sizeof(*hModules); |
| if (num_modules >= kMaxModules) { |
| printf("PERFTOOLS ERROR: Too many modules in this executable to try" |
| " to patch them all (if you need to, raise kMaxModules in" |
| " patch_functions.cc).\n"); |
| num_modules = kMaxModules; |
| } |
| |
| // Now we handle the unpatching of modules we have in g_module_libcs |
| // but that were not found in EnumProcessModules. We need to |
| // invalidate them. To speed that up, we store the EnumProcessModules |
| // output in a set. |
| // At the same time, we prepare for the adding of new modules, by |
| // removing from hModules all the modules we know we've already |
| // patched (or decided don't need to be patched). At the end, |
| // hModules will hold only the modules that we need to consider patching. |
| std::set<HMODULE> currently_loaded_modules; |
| { |
| SpinLockHolder h(&patch_all_modules_lock); |
| if (!g_last_loaded) g_last_loaded = new std::set<HMODULE>; |
| // At the end of this loop, currently_loaded_modules contains the |
| // full list of EnumProcessModules, and hModules just the ones we |
| // haven't handled yet. |
| for (int i = 0; i < num_modules; ) { |
| currently_loaded_modules.insert(hModules[i]); |
| if (g_last_loaded->count(hModules[i]) > 0) { |
| hModules[i] = hModules[--num_modules]; // replace element i with tail |
| } else { |
| i++; // keep element i |
| } |
| } |
| // Now we do the unpatching/invalidation. |
| for (int i = 0; i < sizeof(g_module_libcs)/sizeof(*g_module_libcs); i++) { |
| if (g_module_libcs[i]->patched() && |
| currently_loaded_modules.count(g_module_libcs[i]->hmodule()) == 0) { |
| // Means g_module_libcs[i] is no longer loaded (no me32 matched). |
| // We could call Unpatch() here, but why bother? The module |
| // has gone away, so nobody is going to call into it anyway. |
| g_module_libcs[i]->set_is_valid(false); |
| made_changes = true; |
| } |
| } |
| // Update the loaded module cache. |
| g_last_loaded->swap(currently_loaded_modules); |
| } |
| |
| // Now that we know what modules are new, let's get the info we'll |
| // need to patch them. Note this *cannot* be done while holding the |
| // lock, since it needs to make windows calls (see the lock-inversion |
| // comments before the definition of patch_all_modules_lock). |
| MODULEINFO mi; |
| for (int i = 0; i < num_modules; i++) { |
| if (::GetModuleInformation(hCurrentProcess, hModules[i], &mi, sizeof(mi))) |
| modules.push_back(ModuleEntryCopy(mi)); |
| } |
| |
| // Now we can do the patching of new modules. |
| { |
| SpinLockHolder h(&patch_all_modules_lock); |
| for (std::vector<ModuleEntryCopy>::iterator it = modules.begin(); |
| it != modules.end(); ++it) { |
| LibcInfo libc_info; |
| if (libc_info.PopulateWindowsFn(*it)) { // true==module has libc routines |
| PatchOneModuleLocked(libc_info); |
| made_changes = true; |
| } |
| } |
| |
| // Now that we've dealt with the modules (dlls), update the main |
| // executable. We do this last because PatchMainExecutableLocked |
| // wants to look at how other modules were patched. |
| if (!main_executable.patched()) { |
| PatchMainExecutableLocked(); |
| made_changes = true; |
| } |
| } |
| // TODO(csilvers): for this to be reliable, we need to also take |
| // into account if we *would* have patched any modules had they not |
| // already been loaded. (That is, made_changes should ignore |
| // g_last_loaded.) |
| return made_changes; |
| } |
| |
| |
| } // end unnamed namespace |
| |
| // --------------------------------------------------------------------- |
| // Now that we've done all the patching machinery, let's actually |
| // define the functions we're patching in. Mostly these are |
| // simple wrappers around the do_* routines in tcmalloc.cc. |
| // |
| // In fact, we #include tcmalloc.cc to get at the tcmalloc internal |
| // do_* functions, the better to write our own hook functions. |
| // U-G-L-Y, I know. But the alternatives are, perhaps, worse. This |
| // also lets us define _msize(), _expand(), and other windows-specific |
| // functions here, using tcmalloc internals, without polluting |
| // tcmalloc.cc. |
| // ------------------------------------------------------------------- |
| |
| // TODO(csilvers): refactor tcmalloc.cc into two files, so I can link |
| // against the file with do_malloc, and ignore the one with malloc. |
| #include "tcmalloc.cc" |
| |
| template<int T> |
| void* LibcInfoWithPatchFunctions<T>::Perftools_malloc(size_t size) __THROW { |
| void* result = do_malloc_or_cpp_alloc(size); |
| MallocHook::InvokeNewHook(result, size); |
| return result; |
| } |
| |
| template<int T> |
| void LibcInfoWithPatchFunctions<T>::Perftools_free(void* ptr) __THROW { |
| MallocHook::InvokeDeleteHook(ptr); |
| // This calls the windows free if do_free decides ptr was not |
| // allocated by tcmalloc. Note it calls the origstub_free from |
| // *this* templatized instance of LibcInfo. See "template |
| // trickiness" above. |
| do_free_with_callback(ptr, (void (*)(void*))origstub_fn_[kFree]); |
| } |
| |
| template<int T> |
| void* LibcInfoWithPatchFunctions<T>::Perftools_realloc( |
| void* old_ptr, size_t new_size) __THROW { |
| if (old_ptr == NULL) { |
| void* result = do_malloc_or_cpp_alloc(new_size); |
| MallocHook::InvokeNewHook(result, new_size); |
| return result; |
| } |
| if (new_size == 0) { |
| MallocHook::InvokeDeleteHook(old_ptr); |
| do_free_with_callback(old_ptr, |
| (void (*)(void*))origstub_fn_[kFree]); |
| return NULL; |
| } |
| return do_realloc_with_callback( |
| old_ptr, new_size, |
| (void (*)(void*))origstub_fn_[kFree], |
| (size_t (*)(const void*))origstub_fn_[k_Msize]); |
| } |
| |
| template<int T> |
| void* LibcInfoWithPatchFunctions<T>::Perftools_calloc( |
| size_t n, size_t elem_size) __THROW { |
| void* result = do_calloc(n, elem_size); |
| MallocHook::InvokeNewHook(result, n * elem_size); |
| return result; |
| } |
| |
| template<int T> |
| void* LibcInfoWithPatchFunctions<T>::Perftools_new(size_t size) { |
| void* p = cpp_alloc(size, false); |
| MallocHook::InvokeNewHook(p, size); |
| return p; |
| } |
| |
| template<int T> |
| void* LibcInfoWithPatchFunctions<T>::Perftools_newarray(size_t size) { |
| void* p = cpp_alloc(size, false); |
| MallocHook::InvokeNewHook(p, size); |
| return p; |
| } |
| |
| template<int T> |
| void LibcInfoWithPatchFunctions<T>::Perftools_delete(void *p) { |
| MallocHook::InvokeDeleteHook(p); |
| do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]); |
| } |
| |
| template<int T> |
| void LibcInfoWithPatchFunctions<T>::Perftools_deletearray(void *p) { |
| MallocHook::InvokeDeleteHook(p); |
| do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]); |
| } |
| |
| template<int T> |
| void* LibcInfoWithPatchFunctions<T>::Perftools_new_nothrow( |
| size_t size, const std::nothrow_t&) __THROW { |
| void* p = cpp_alloc(size, true); |
| MallocHook::InvokeNewHook(p, size); |
| return p; |
| } |
| |
| template<int T> |
| void* LibcInfoWithPatchFunctions<T>::Perftools_newarray_nothrow( |
| size_t size, const std::nothrow_t&) __THROW { |
| void* p = cpp_alloc(size, true); |
| MallocHook::InvokeNewHook(p, size); |
| return p; |
| } |
| |
| template<int T> |
| void LibcInfoWithPatchFunctions<T>::Perftools_delete_nothrow( |
| void *p, const std::nothrow_t&) __THROW { |
| MallocHook::InvokeDeleteHook(p); |
| do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]); |
| } |
| |
| template<int T> |
| void LibcInfoWithPatchFunctions<T>::Perftools_deletearray_nothrow( |
| void *p, const std::nothrow_t&) __THROW { |
| MallocHook::InvokeDeleteHook(p); |
| do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]); |
| } |
| |
| |
| // _msize() lets you figure out how much space is reserved for a |
| // pointer, in Windows. Even if applications don't call it, any DLL |
| // with global constructors will call (transitively) something called |
| // __dllonexit_lk in order to make sure the destructors get called |
| // when the dll unloads. And that will call msize -- horrible things |
| // can ensue if this is not hooked. Other parts of libc may also call |
| // this internally. |
| |
| template<int T> |
| size_t LibcInfoWithPatchFunctions<T>::Perftools__msize(void* ptr) __THROW { |
| return GetSizeWithCallback(ptr, (size_t (*)(const void*))origstub_fn_[k_Msize]); |
| } |
| |
| // We need to define this because internal windows functions like to |
| // call into it(?). _expand() is like realloc but doesn't move the |
| // pointer. We punt, which will cause callers to fall back on realloc. |
| template<int T> |
| void* LibcInfoWithPatchFunctions<T>::Perftools__expand(void *ptr, |
| size_t size) __THROW { |
| return NULL; |
| } |
| |
| LPVOID WINAPI WindowsInfo::Perftools_HeapAlloc(HANDLE hHeap, DWORD dwFlags, |
| DWORD_PTR dwBytes) { |
| LPVOID result = ((LPVOID (WINAPI *)(HANDLE, DWORD, DWORD_PTR)) |
| function_info_[kHeapAlloc].origstub_fn)( |
| hHeap, dwFlags, dwBytes); |
| MallocHook::InvokeNewHook(result, dwBytes); |
| return result; |
| } |
| |
| BOOL WINAPI WindowsInfo::Perftools_HeapFree(HANDLE hHeap, DWORD dwFlags, |
| LPVOID lpMem) { |
| MallocHook::InvokeDeleteHook(lpMem); |
| return ((BOOL (WINAPI *)(HANDLE, DWORD, LPVOID)) |
| function_info_[kHeapFree].origstub_fn)( |
| hHeap, dwFlags, lpMem); |
| } |
| |
| LPVOID WINAPI WindowsInfo::Perftools_VirtualAllocEx(HANDLE process, |
| LPVOID address, |
| SIZE_T size, DWORD type, |
| DWORD protect) { |
| LPVOID result = ((LPVOID (WINAPI *)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD)) |
| function_info_[kVirtualAllocEx].origstub_fn)( |
| process, address, size, type, protect); |
| // VirtualAllocEx() seems to be the Windows equivalent of mmap() |
| MallocHook::InvokeMmapHook(result, address, size, protect, type, -1, 0); |
| return result; |
| } |
| |
| BOOL WINAPI WindowsInfo::Perftools_VirtualFreeEx(HANDLE process, LPVOID address, |
| SIZE_T size, DWORD type) { |
| MallocHook::InvokeMunmapHook(address, size); |
| return ((BOOL (WINAPI *)(HANDLE, LPVOID, SIZE_T, DWORD)) |
| function_info_[kVirtualFreeEx].origstub_fn)( |
| process, address, size, type); |
| } |
| |
| LPVOID WINAPI WindowsInfo::Perftools_MapViewOfFileEx( |
| HANDLE hFileMappingObject, DWORD dwDesiredAccess, DWORD dwFileOffsetHigh, |
| DWORD dwFileOffsetLow, SIZE_T dwNumberOfBytesToMap, LPVOID lpBaseAddress) { |
| // For this function pair, you always deallocate the full block of |
| // data that you allocate, so NewHook/DeleteHook is the right API. |
| LPVOID result = ((LPVOID (WINAPI *)(HANDLE, DWORD, DWORD, DWORD, |
| SIZE_T, LPVOID)) |
| function_info_[kMapViewOfFileEx].origstub_fn)( |
| hFileMappingObject, dwDesiredAccess, dwFileOffsetHigh, |
| dwFileOffsetLow, dwNumberOfBytesToMap, lpBaseAddress); |
| MallocHook::InvokeNewHook(result, dwNumberOfBytesToMap); |
| return result; |
| } |
| |
| BOOL WINAPI WindowsInfo::Perftools_UnmapViewOfFile(LPCVOID lpBaseAddress) { |
| MallocHook::InvokeDeleteHook(lpBaseAddress); |
| return ((BOOL (WINAPI *)(LPCVOID)) |
| function_info_[kUnmapViewOfFile].origstub_fn)( |
| lpBaseAddress); |
| } |
| |
| // g_load_map holds a copy of windows' refcount for how many times |
| // each currently loaded module has been loaded and unloaded. We use |
| // it as an optimization when the same module is loaded more than |
| // once: as long as the refcount stays above 1, we don't need to worry |
| // about patching because it's already patched. Likewise, we don't |
| // need to unpatch until the refcount drops to 0. load_map is |
| // maintained in LoadLibraryExW and FreeLibrary, and only covers |
| // modules explicitly loaded/freed via those interfaces. |
| static std::map<HMODULE, int>* g_load_map = NULL; |
| |
| HMODULE WINAPI WindowsInfo::Perftools_LoadLibraryExW(LPCWSTR lpFileName, |
| HANDLE hFile, |
| DWORD dwFlags) { |
| HMODULE rv; |
| // Check to see if the modules is already loaded, flag 0 gets a |
| // reference if it was loaded. If it was loaded no need to call |
| // PatchAllModules, just increase the reference count to match |
| // what GetModuleHandleExW does internally inside windows. |
| if (::GetModuleHandleExW(0, lpFileName, &rv)) { |
| return rv; |
| } else { |
| // Not already loaded, so load it. |
| rv = ((HMODULE (WINAPI *)(LPCWSTR, HANDLE, DWORD)) |
| function_info_[kLoadLibraryExW].origstub_fn)( |
| lpFileName, hFile, dwFlags); |
| // This will patch any newly loaded libraries, if patching needs |
| // to be done. |
| PatchAllModules(); |
| |
| return rv; |
| } |
| } |
| |
| BOOL WINAPI WindowsInfo::Perftools_FreeLibrary(HMODULE hLibModule) { |
| BOOL rv = ((BOOL (WINAPI *)(HMODULE)) |
| function_info_[kFreeLibrary].origstub_fn)(hLibModule); |
| |
| // Check to see if the module is still loaded by passing the base |
| // address and seeing if it comes back with the same address. If it |
| // is the same address it's still loaded, so the FreeLibrary() call |
| // was a noop, and there's no need to redo the patching. |
| HMODULE owner = NULL; |
| BOOL result = ::GetModuleHandleExW( |
| (GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | |
| GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT), |
| (LPCWSTR)hLibModule, |
| &owner); |
| if (result && owner == hLibModule) |
| return rv; |
| |
| PatchAllModules(); // this will fix up the list of patched libraries |
| return rv; |
| } |
| |
| |
| // --------------------------------------------------------------------- |
| // PatchWindowsFunctions() |
| // This is the function that is exposed to the outside world. |
| // It should be called before the program becomes multi-threaded, |
| // since main_executable_windows.Patch() is not thread-safe. |
| // --------------------------------------------------------------------- |
| |
| void PatchWindowsFunctions() { |
| // This does the libc patching in every module, and the main executable. |
| PatchAllModules(); |
| main_executable_windows.Patch(); |
| } |
| |
| #if 0 |
| // It's possible to unpatch all the functions when we are exiting. |
| |
| // The idea is to handle properly windows-internal data that is |
| // allocated before PatchWindowsFunctions is called. If all |
| // destruction happened in reverse order from construction, then we |
| // could call UnpatchWindowsFunctions at just the right time, so that |
| // that early-allocated data would be freed using the windows |
| // allocation functions rather than tcmalloc. The problem is that |
| // windows allocates some structures lazily, so it would allocate them |
| // late (using tcmalloc) and then try to deallocate them late as well. |
| // So instead of unpatching, we just modify all the tcmalloc routines |
| // so they call through to the libc rountines if the memory in |
| // question doesn't seem to have been allocated with tcmalloc. I keep |
| // this unpatch code around for reference. |
| |
| void UnpatchWindowsFunctions() { |
| // We need to go back to the system malloc/etc at global destruct time, |
| // so objects that were constructed before tcmalloc, using the system |
| // malloc, can destroy themselves using the system free. This depends |
| // on DLLs unloading in the reverse order in which they load! |
| // |
| // We also go back to the default HeapAlloc/etc, just for consistency. |
| // Who knows, it may help avoid weird bugs in some situations. |
| main_executable_windows.Unpatch(); |
| main_executable.Unpatch(); |
| if (libc1.is_valid()) libc1.Unpatch(); |
| if (libc2.is_valid()) libc2.Unpatch(); |
| if (libc3.is_valid()) libc3.Unpatch(); |
| if (libc4.is_valid()) libc4.Unpatch(); |
| if (libc5.is_valid()) libc5.Unpatch(); |
| if (libc6.is_valid()) libc6.Unpatch(); |
| if (libc7.is_valid()) libc7.Unpatch(); |
| if (libc8.is_valid()) libc8.Unpatch(); |
| } |
| #endif |