blob: dd7182e5546038d1a72b85cee65301475227cab2 [file] [log] [blame]
/*
* Copyright 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This file contains Macros for creating proxies for webrtc MediaStream and
// PeerConnection classes.
// TODO(deadbeef): Move this to pc/; this is part of the implementation.
//
// Example usage:
//
// class TestInterface : public rtc::RefCountInterface {
// public:
// std::string FooA() = 0;
// std::string FooB(bool arg1) const = 0;
// std::string FooC(bool arg1) = 0;
// };
//
// Note that return types can not be a const reference.
//
// class Test : public TestInterface {
// ... implementation of the interface.
// };
//
// BEGIN_PROXY_MAP(Test)
// PROXY_SIGNALING_THREAD_DESTRUCTOR()
// PROXY_METHOD0(std::string, FooA)
// PROXY_CONSTMETHOD1(std::string, FooB, arg1)
// PROXY_WORKER_METHOD1(std::string, FooC, arg1)
// END_PROXY_MAP()
//
// Where the destructor and first two methods are invoked on the signaling
// thread, and the third is invoked on the worker thread.
//
// The proxy can be created using
//
// TestProxy::Create(Thread* signaling_thread, Thread* worker_thread,
// TestInterface*).
//
// The variant defined with BEGIN_SIGNALING_PROXY_MAP is unaware of
// the worker thread, and invokes all methods on the signaling thread.
//
// The variant defined with BEGIN_OWNED_PROXY_MAP does not use
// refcounting, and instead just takes ownership of the object being proxied.
#ifndef API_PROXY_H_
#define API_PROXY_H_
#include <memory>
#include <utility>
#include "rtc_base/event.h"
#include "rtc_base/refcountedobject.h"
#include "rtc_base/thread.h"
namespace webrtc {
template <typename R>
class ReturnType {
public:
template<typename C, typename M>
void Invoke(C* c, M m) { r_ = (c->*m)(); }
template <typename C, typename M, typename T1>
void Invoke(C* c, M m, T1 a1) {
r_ = (c->*m)(std::move(a1));
}
template <typename C, typename M, typename T1, typename T2>
void Invoke(C* c, M m, T1 a1, T2 a2) {
r_ = (c->*m)(std::move(a1), std::move(a2));
}
template <typename C, typename M, typename T1, typename T2, typename T3>
void Invoke(C* c, M m, T1 a1, T2 a2, T3 a3) {
r_ = (c->*m)(std::move(a1), std::move(a2), std::move(a3));
}
template<typename C, typename M, typename T1, typename T2, typename T3,
typename T4>
void Invoke(C* c, M m, T1 a1, T2 a2, T3 a3, T4 a4) {
r_ = (c->*m)(std::move(a1), std::move(a2), std::move(a3), std::move(a4));
}
template<typename C, typename M, typename T1, typename T2, typename T3,
typename T4, typename T5>
void Invoke(C* c, M m, T1 a1, T2 a2, T3 a3, T4 a4, T5 a5) {
r_ = (c->*m)(std::move(a1), std::move(a2), std::move(a3), std::move(a4),
std::move(a5));
}
R moved_result() { return std::move(r_); }
private:
R r_;
};
template <>
class ReturnType<void> {
public:
template<typename C, typename M>
void Invoke(C* c, M m) { (c->*m)(); }
template <typename C, typename M, typename T1>
void Invoke(C* c, M m, T1 a1) {
(c->*m)(std::move(a1));
}
template <typename C, typename M, typename T1, typename T2>
void Invoke(C* c, M m, T1 a1, T2 a2) {
(c->*m)(std::move(a1), std::move(a2));
}
template <typename C, typename M, typename T1, typename T2, typename T3>
void Invoke(C* c, M m, T1 a1, T2 a2, T3 a3) {
(c->*m)(std::move(a1), std::move(a2), std::move(a3));
}
void moved_result() {}
};
namespace internal {
class SynchronousMethodCall
: public rtc::MessageData,
public rtc::MessageHandler {
public:
explicit SynchronousMethodCall(rtc::MessageHandler* proxy);
~SynchronousMethodCall() override;
void Invoke(const rtc::Location& posted_from, rtc::Thread* t);
private:
void OnMessage(rtc::Message*) override;
std::unique_ptr<rtc::Event> e_;
rtc::MessageHandler* proxy_;
};
} // namespace internal
template <typename C, typename R>
class MethodCall0 : public rtc::Message,
public rtc::MessageHandler {
public:
typedef R (C::*Method)();
MethodCall0(C* c, Method m) : c_(c), m_(m) {}
R Marshal(const rtc::Location& posted_from, rtc::Thread* t) {
internal::SynchronousMethodCall(this).Invoke(posted_from, t);
return r_.moved_result();
}
private:
void OnMessage(rtc::Message*) { r_.Invoke(c_, m_); }
C* c_;
Method m_;
ReturnType<R> r_;
};
template <typename C, typename R>
class ConstMethodCall0 : public rtc::Message,
public rtc::MessageHandler {
public:
typedef R (C::*Method)() const;
ConstMethodCall0(C* c, Method m) : c_(c), m_(m) {}
R Marshal(const rtc::Location& posted_from, rtc::Thread* t) {
internal::SynchronousMethodCall(this).Invoke(posted_from, t);
return r_.moved_result();
}
private:
void OnMessage(rtc::Message*) { r_.Invoke(c_, m_); }
C* c_;
Method m_;
ReturnType<R> r_;
};
template <typename C, typename R, typename T1>
class MethodCall1 : public rtc::Message,
public rtc::MessageHandler {
public:
typedef R (C::*Method)(T1 a1);
MethodCall1(C* c, Method m, T1 a1) : c_(c), m_(m), a1_(std::move(a1)) {}
R Marshal(const rtc::Location& posted_from, rtc::Thread* t) {
internal::SynchronousMethodCall(this).Invoke(posted_from, t);
return r_.moved_result();
}
private:
void OnMessage(rtc::Message*) { r_.Invoke(c_, m_, std::move(a1_)); }
C* c_;
Method m_;
ReturnType<R> r_;
T1 a1_;
};
template <typename C, typename R, typename T1>
class ConstMethodCall1 : public rtc::Message,
public rtc::MessageHandler {
public:
typedef R (C::*Method)(T1 a1) const;
ConstMethodCall1(C* c, Method m, T1 a1) : c_(c), m_(m), a1_(std::move(a1)) {}
R Marshal(const rtc::Location& posted_from, rtc::Thread* t) {
internal::SynchronousMethodCall(this).Invoke(posted_from, t);
return r_.moved_result();
}
private:
void OnMessage(rtc::Message*) { r_.Invoke(c_, m_, std::move(a1_)); }
C* c_;
Method m_;
ReturnType<R> r_;
T1 a1_;
};
template <typename C, typename R, typename T1, typename T2>
class MethodCall2 : public rtc::Message,
public rtc::MessageHandler {
public:
typedef R (C::*Method)(T1 a1, T2 a2);
MethodCall2(C* c, Method m, T1 a1, T2 a2)
: c_(c), m_(m), a1_(std::move(a1)), a2_(std::move(a2)) {}
R Marshal(const rtc::Location& posted_from, rtc::Thread* t) {
internal::SynchronousMethodCall(this).Invoke(posted_from, t);
return r_.moved_result();
}
private:
void OnMessage(rtc::Message*) {
r_.Invoke(c_, m_, std::move(a1_), std::move(a2_));
}
C* c_;
Method m_;
ReturnType<R> r_;
T1 a1_;
T2 a2_;
};
template <typename C, typename R, typename T1, typename T2, typename T3>
class MethodCall3 : public rtc::Message,
public rtc::MessageHandler {
public:
typedef R (C::*Method)(T1 a1, T2 a2, T3 a3);
MethodCall3(C* c, Method m, T1 a1, T2 a2, T3 a3)
: c_(c),
m_(m),
a1_(std::move(a1)),
a2_(std::move(a2)),
a3_(std::move(a3)) {}
R Marshal(const rtc::Location& posted_from, rtc::Thread* t) {
internal::SynchronousMethodCall(this).Invoke(posted_from, t);
return r_.moved_result();
}
private:
void OnMessage(rtc::Message*) {
r_.Invoke(c_, m_, std::move(a1_), std::move(a2_), std::move(a3_));
}
C* c_;
Method m_;
ReturnType<R> r_;
T1 a1_;
T2 a2_;
T3 a3_;
};
template <typename C, typename R, typename T1, typename T2, typename T3,
typename T4>
class MethodCall4 : public rtc::Message,
public rtc::MessageHandler {
public:
typedef R (C::*Method)(T1 a1, T2 a2, T3 a3, T4 a4);
MethodCall4(C* c, Method m, T1 a1, T2 a2, T3 a3, T4 a4)
: c_(c),
m_(m),
a1_(std::move(a1)),
a2_(std::move(a2)),
a3_(std::move(a3)),
a4_(std::move(a4)) {}
R Marshal(const rtc::Location& posted_from, rtc::Thread* t) {
internal::SynchronousMethodCall(this).Invoke(posted_from, t);
return r_.moved_result();
}
private:
void OnMessage(rtc::Message*) {
r_.Invoke(c_, m_, std::move(a1_), std::move(a2_), std::move(a3_),
std::move(a4_));
}
C* c_;
Method m_;
ReturnType<R> r_;
T1 a1_;
T2 a2_;
T3 a3_;
T4 a4_;
};
template <typename C, typename R, typename T1, typename T2, typename T3,
typename T4, typename T5>
class MethodCall5 : public rtc::Message,
public rtc::MessageHandler {
public:
typedef R (C::*Method)(T1 a1, T2 a2, T3 a3, T4 a4, T5 a5);
MethodCall5(C* c, Method m, T1 a1, T2 a2, T3 a3, T4 a4, T5 a5)
: c_(c),
m_(m),
a1_(std::move(a1)),
a2_(std::move(a2)),
a3_(std::move(a3)),
a4_(std::move(a4)),
a5_(std::move(a5)) {}
R Marshal(const rtc::Location& posted_from, rtc::Thread* t) {
internal::SynchronousMethodCall(this).Invoke(posted_from, t);
return r_.moved_result();
}
private:
void OnMessage(rtc::Message*) {
r_.Invoke(c_, m_, std::move(a1_), std::move(a2_), std::move(a3_),
std::move(a4_), std::move(a5_));
}
C* c_;
Method m_;
ReturnType<R> r_;
T1 a1_;
T2 a2_;
T3 a3_;
T4 a4_;
T5 a5_;
};
// Helper macros to reduce code duplication.
#define PROXY_MAP_BOILERPLATE(c) \
template <class INTERNAL_CLASS> \
class c##ProxyWithInternal; \
typedef c##ProxyWithInternal<c##Interface> c##Proxy; \
template <class INTERNAL_CLASS> \
class c##ProxyWithInternal : public c##Interface { \
protected: \
typedef c##Interface C; \
\
public: \
const INTERNAL_CLASS* internal() const { return c_; } \
INTERNAL_CLASS* internal() { return c_; }
#define END_PROXY_MAP() \
};
#define SIGNALING_PROXY_MAP_BOILERPLATE(c) \
protected: \
c##ProxyWithInternal(rtc::Thread* signaling_thread, INTERNAL_CLASS* c) \
: signaling_thread_(signaling_thread), c_(c) {} \
\
private: \
mutable rtc::Thread* signaling_thread_;
#define WORKER_PROXY_MAP_BOILERPLATE(c) \
protected: \
c##ProxyWithInternal(rtc::Thread* signaling_thread, \
rtc::Thread* worker_thread, INTERNAL_CLASS* c) \
: signaling_thread_(signaling_thread), \
worker_thread_(worker_thread), \
c_(c) {} \
\
private: \
mutable rtc::Thread* signaling_thread_; \
mutable rtc::Thread* worker_thread_;
// Note that the destructor is protected so that the proxy can only be
// destroyed via RefCountInterface.
#define REFCOUNTED_PROXY_MAP_BOILERPLATE(c) \
protected: \
~c##ProxyWithInternal() { \
MethodCall0<c##ProxyWithInternal, void> call( \
this, &c##ProxyWithInternal::DestroyInternal); \
call.Marshal(RTC_FROM_HERE, destructor_thread()); \
} \
\
private: \
void DestroyInternal() { c_ = nullptr; } \
rtc::scoped_refptr<INTERNAL_CLASS> c_;
// Note: This doesn't use a unique_ptr, because it intends to handle a corner
// case where an object's deletion triggers a callback that calls back into
// this proxy object. If relying on a unique_ptr to delete the object, its
// inner pointer would be set to null before this reentrant callback would have
// a chance to run, resulting in a segfault.
#define OWNED_PROXY_MAP_BOILERPLATE(c) \
public: \
~c##ProxyWithInternal() { \
MethodCall0<c##ProxyWithInternal, void> call( \
this, &c##ProxyWithInternal::DestroyInternal); \
call.Marshal(RTC_FROM_HERE, destructor_thread()); \
} \
\
private: \
void DestroyInternal() { delete c_; } \
INTERNAL_CLASS* c_;
#define BEGIN_SIGNALING_PROXY_MAP(c) \
PROXY_MAP_BOILERPLATE(c) \
SIGNALING_PROXY_MAP_BOILERPLATE(c) \
REFCOUNTED_PROXY_MAP_BOILERPLATE(c) \
public: \
static rtc::scoped_refptr<c##ProxyWithInternal> Create( \
rtc::Thread* signaling_thread, INTERNAL_CLASS* c) { \
return new rtc::RefCountedObject<c##ProxyWithInternal>(signaling_thread, \
c); \
}
#define BEGIN_PROXY_MAP(c) \
PROXY_MAP_BOILERPLATE(c) \
WORKER_PROXY_MAP_BOILERPLATE(c) \
REFCOUNTED_PROXY_MAP_BOILERPLATE(c) \
public: \
static rtc::scoped_refptr<c##ProxyWithInternal> Create( \
rtc::Thread* signaling_thread, rtc::Thread* worker_thread, \
INTERNAL_CLASS* c) { \
return new rtc::RefCountedObject<c##ProxyWithInternal>(signaling_thread, \
worker_thread, c); \
}
#define BEGIN_OWNED_PROXY_MAP(c) \
PROXY_MAP_BOILERPLATE(c) \
WORKER_PROXY_MAP_BOILERPLATE(c) \
OWNED_PROXY_MAP_BOILERPLATE(c) \
public: \
static std::unique_ptr<c##Interface> Create( \
rtc::Thread* signaling_thread, rtc::Thread* worker_thread, \
std::unique_ptr<INTERNAL_CLASS> c) { \
return std::unique_ptr<c##Interface>(new c##ProxyWithInternal( \
signaling_thread, worker_thread, c.release())); \
}
#define PROXY_SIGNALING_THREAD_DESTRUCTOR() \
private: \
rtc::Thread* destructor_thread() const { return signaling_thread_; } \
\
public: // NOLINTNEXTLINE
#define PROXY_WORKER_THREAD_DESTRUCTOR() \
private: \
rtc::Thread* destructor_thread() const { return worker_thread_; } \
\
public: // NOLINTNEXTLINE
#define PROXY_METHOD0(r, method) \
r method() override { \
MethodCall0<C, r> call(c_, &C::method); \
return call.Marshal(RTC_FROM_HERE, signaling_thread_); \
}
#define PROXY_CONSTMETHOD0(r, method) \
r method() const override { \
ConstMethodCall0<C, r> call(c_, &C::method); \
return call.Marshal(RTC_FROM_HERE, signaling_thread_); \
}
#define PROXY_METHOD1(r, method, t1) \
r method(t1 a1) override { \
MethodCall1<C, r, t1> call(c_, &C::method, std::move(a1)); \
return call.Marshal(RTC_FROM_HERE, signaling_thread_); \
}
#define PROXY_CONSTMETHOD1(r, method, t1) \
r method(t1 a1) const override { \
ConstMethodCall1<C, r, t1> call(c_, &C::method, std::move(a1)); \
return call.Marshal(RTC_FROM_HERE, signaling_thread_); \
}
#define PROXY_METHOD2(r, method, t1, t2) \
r method(t1 a1, t2 a2) override { \
MethodCall2<C, r, t1, t2> call(c_, &C::method, std::move(a1), \
std::move(a2)); \
return call.Marshal(RTC_FROM_HERE, signaling_thread_); \
}
#define PROXY_METHOD3(r, method, t1, t2, t3) \
r method(t1 a1, t2 a2, t3 a3) override { \
MethodCall3<C, r, t1, t2, t3> call(c_, &C::method, std::move(a1), \
std::move(a2), std::move(a3)); \
return call.Marshal(RTC_FROM_HERE, signaling_thread_); \
}
#define PROXY_METHOD4(r, method, t1, t2, t3, t4) \
r method(t1 a1, t2 a2, t3 a3, t4 a4) override { \
MethodCall4<C, r, t1, t2, t3, t4> call(c_, &C::method, std::move(a1), \
std::move(a2), std::move(a3), \
std::move(a4)); \
return call.Marshal(RTC_FROM_HERE, signaling_thread_); \
}
#define PROXY_METHOD5(r, method, t1, t2, t3, t4, t5) \
r method(t1 a1, t2 a2, t3 a3, t4 a4, t5 a5) override { \
MethodCall5<C, r, t1, t2, t3, t4, t5> call(c_, &C::method, std::move(a1), \
std::move(a2), std::move(a3), \
std::move(a4), std::move(a5)); \
return call.Marshal(RTC_FROM_HERE, signaling_thread_); \
}
// Define methods which should be invoked on the worker thread.
#define PROXY_WORKER_METHOD0(r, method) \
r method() override { \
MethodCall0<C, r> call(c_, &C::method); \
return call.Marshal(RTC_FROM_HERE, worker_thread_); \
}
#define PROXY_WORKER_CONSTMETHOD0(r, method) \
r method() const override { \
ConstMethodCall0<C, r> call(c_, &C::method); \
return call.Marshal(RTC_FROM_HERE, worker_thread_); \
}
#define PROXY_WORKER_METHOD1(r, method, t1) \
r method(t1 a1) override { \
MethodCall1<C, r, t1> call(c_, &C::method, std::move(a1)); \
return call.Marshal(RTC_FROM_HERE, worker_thread_); \
}
#define PROXY_WORKER_CONSTMETHOD1(r, method, t1) \
r method(t1 a1) const override { \
ConstMethodCall1<C, r, t1> call(c_, &C::method, std::move(a1)); \
return call.Marshal(RTC_FROM_HERE, worker_thread_); \
}
#define PROXY_WORKER_METHOD2(r, method, t1, t2) \
r method(t1 a1, t2 a2) override { \
MethodCall2<C, r, t1, t2> call(c_, &C::method, std::move(a1), \
std::move(a2)); \
return call.Marshal(RTC_FROM_HERE, worker_thread_); \
}
#define PROXY_WORKER_CONSTMETHOD2(r, method, t1, t2) \
r method(t1 a1, t2 a2) const override { \
ConstMethodCall2<C, r, t1, t2> call(c_, &C::method, std::move(a1), \
std::move(a2)); \
return call.Marshal(RTC_FROM_HERE, worker_thread_); \
}
#define PROXY_WORKER_METHOD3(r, method, t1, t2, t3) \
r method(t1 a1, t2 a2, t3 a3) override { \
MethodCall3<C, r, t1, t2, t3> call(c_, &C::method, std::move(a1), \
std::move(a2), std::move(a3)); \
return call.Marshal(RTC_FROM_HERE, worker_thread_); \
}
#define PROXY_WORKER_CONSTMETHOD3(r, method, t1, t2) \
r method(t1 a1, t2 a2, t3 a3) const override { \
ConstMethodCall3<C, r, t1, t2, t3> call(c_, &C::method, std::move(a1), \
std::move(a2), std::move(a3)); \
return call.Marshal(RTC_FROM_HERE, worker_thread_); \
}
} // namespace webrtc
#endif // API_PROXY_H_