|  | /* | 
|  | *  Copyright 2016 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "rtc_base/task_queue.h" | 
|  |  | 
|  | // clang-format off | 
|  | // clang formating would change include order. | 
|  |  | 
|  | // Include winsock2.h before including <windows.h> to maintain consistency with | 
|  | // win32.h. To include win32.h directly, it must be broken out into its own | 
|  | // build target. | 
|  | #include <winsock2.h> | 
|  | #include <windows.h> | 
|  | #include <sal.h>       // Must come after windows headers. | 
|  | #include <mmsystem.h>  // Must come after windows headers. | 
|  | // clang-format on | 
|  | #include <string.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <queue> | 
|  | #include <utility> | 
|  |  | 
|  | #include "rtc_base/arraysize.h" | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/criticalsection.h" | 
|  | #include "rtc_base/event.h" | 
|  | #include "rtc_base/logging.h" | 
|  | #include "rtc_base/numerics/safe_conversions.h" | 
|  | #include "rtc_base/platform_thread.h" | 
|  | #include "rtc_base/refcount.h" | 
|  | #include "rtc_base/refcountedobject.h" | 
|  | #include "rtc_base/timeutils.h" | 
|  |  | 
|  | namespace rtc { | 
|  | namespace { | 
|  | #define WM_RUN_TASK WM_USER + 1 | 
|  | #define WM_QUEUE_DELAYED_TASK WM_USER + 2 | 
|  |  | 
|  | using Priority = TaskQueue::Priority; | 
|  |  | 
|  | DWORD g_queue_ptr_tls = 0; | 
|  |  | 
|  | BOOL CALLBACK InitializeTls(PINIT_ONCE init_once, void* param, void** context) { | 
|  | g_queue_ptr_tls = TlsAlloc(); | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | DWORD GetQueuePtrTls() { | 
|  | static INIT_ONCE init_once = INIT_ONCE_STATIC_INIT; | 
|  | ::InitOnceExecuteOnce(&init_once, InitializeTls, nullptr, nullptr); | 
|  | return g_queue_ptr_tls; | 
|  | } | 
|  |  | 
|  | struct ThreadStartupData { | 
|  | Event* started; | 
|  | void* thread_context; | 
|  | }; | 
|  |  | 
|  | void CALLBACK InitializeQueueThread(ULONG_PTR param) { | 
|  | MSG msg; | 
|  | ::PeekMessage(&msg, nullptr, WM_USER, WM_USER, PM_NOREMOVE); | 
|  | ThreadStartupData* data = reinterpret_cast<ThreadStartupData*>(param); | 
|  | ::TlsSetValue(GetQueuePtrTls(), data->thread_context); | 
|  | data->started->Set(); | 
|  | } | 
|  |  | 
|  | ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) { | 
|  | switch (priority) { | 
|  | case Priority::HIGH: | 
|  | return kRealtimePriority; | 
|  | case Priority::LOW: | 
|  | return kLowPriority; | 
|  | case Priority::NORMAL: | 
|  | return kNormalPriority; | 
|  | default: | 
|  | RTC_NOTREACHED(); | 
|  | break; | 
|  | } | 
|  | return kNormalPriority; | 
|  | } | 
|  |  | 
|  | int64_t GetTick() { | 
|  | static const UINT kPeriod = 1; | 
|  | bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR); | 
|  | int64_t ret = TimeMillis(); | 
|  | if (high_res) | 
|  | timeEndPeriod(kPeriod); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | class DelayedTaskInfo { | 
|  | public: | 
|  | // Default ctor needed to support priority_queue::pop(). | 
|  | DelayedTaskInfo() {} | 
|  | DelayedTaskInfo(uint32_t milliseconds, std::unique_ptr<QueuedTask> task) | 
|  | : due_time_(GetTick() + milliseconds), task_(std::move(task)) {} | 
|  | DelayedTaskInfo(DelayedTaskInfo&&) = default; | 
|  |  | 
|  | // Implement for priority_queue. | 
|  | bool operator>(const DelayedTaskInfo& other) const { | 
|  | return due_time_ > other.due_time_; | 
|  | } | 
|  |  | 
|  | // Required by priority_queue::pop(). | 
|  | DelayedTaskInfo& operator=(DelayedTaskInfo&& other) = default; | 
|  |  | 
|  | // See below for why this method is const. | 
|  | void Run() const { | 
|  | RTC_DCHECK(due_time_); | 
|  | task_->Run() ? task_.reset() : static_cast<void>(task_.release()); | 
|  | } | 
|  |  | 
|  | int64_t due_time() const { return due_time_; } | 
|  |  | 
|  | private: | 
|  | int64_t due_time_ = 0;  // Absolute timestamp in milliseconds. | 
|  |  | 
|  | // |task| needs to be mutable because std::priority_queue::top() returns | 
|  | // a const reference and a key in an ordered queue must not be changed. | 
|  | // There are two basic workarounds, one using const_cast, which would also | 
|  | // make the key (|due_time|), non-const and the other is to make the non-key | 
|  | // (|task|), mutable. | 
|  | // Because of this, the |task| variable is made private and can only be | 
|  | // mutated by calling the |Run()| method. | 
|  | mutable std::unique_ptr<QueuedTask> task_; | 
|  | }; | 
|  |  | 
|  | class MultimediaTimer { | 
|  | public: | 
|  | // Note: We create an event that requires manual reset. | 
|  | MultimediaTimer() : event_(::CreateEvent(nullptr, true, false, nullptr)) {} | 
|  |  | 
|  | ~MultimediaTimer() { | 
|  | Cancel(); | 
|  | ::CloseHandle(event_); | 
|  | } | 
|  |  | 
|  | bool StartOneShotTimer(UINT delay_ms) { | 
|  | RTC_DCHECK_EQ(0, timer_id_); | 
|  | RTC_DCHECK(event_ != nullptr); | 
|  | timer_id_ = | 
|  | ::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0, | 
|  | TIME_ONESHOT | TIME_CALLBACK_EVENT_SET); | 
|  | return timer_id_ != 0; | 
|  | } | 
|  |  | 
|  | void Cancel() { | 
|  | ::ResetEvent(event_); | 
|  | if (timer_id_) { | 
|  | ::timeKillEvent(timer_id_); | 
|  | timer_id_ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | HANDLE* event_for_wait() { return &event_; } | 
|  |  | 
|  | private: | 
|  | HANDLE event_ = nullptr; | 
|  | MMRESULT timer_id_ = 0; | 
|  |  | 
|  | RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer); | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | class TaskQueue::Impl : public RefCountInterface { | 
|  | public: | 
|  | Impl(const char* queue_name, TaskQueue* queue, Priority priority); | 
|  | ~Impl() override; | 
|  |  | 
|  | static TaskQueue::Impl* Current(); | 
|  | static TaskQueue* CurrentQueue(); | 
|  |  | 
|  | // Used for DCHECKing the current queue. | 
|  | bool IsCurrent() const; | 
|  |  | 
|  | template <class Closure, | 
|  | typename std::enable_if<!std::is_convertible< | 
|  | Closure, | 
|  | std::unique_ptr<QueuedTask>>::value>::type* = nullptr> | 
|  | void PostTask(Closure&& closure) { | 
|  | PostTask(NewClosure(std::forward<Closure>(closure))); | 
|  | } | 
|  |  | 
|  | void PostTask(std::unique_ptr<QueuedTask> task); | 
|  | void PostTaskAndReply(std::unique_ptr<QueuedTask> task, | 
|  | std::unique_ptr<QueuedTask> reply, | 
|  | TaskQueue::Impl* reply_queue); | 
|  |  | 
|  | void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds); | 
|  |  | 
|  | void RunPendingTasks(); | 
|  |  | 
|  | private: | 
|  | static void ThreadMain(void* context); | 
|  |  | 
|  | class WorkerThread : public PlatformThread { | 
|  | public: | 
|  | WorkerThread(ThreadRunFunction func, | 
|  | void* obj, | 
|  | const char* thread_name, | 
|  | ThreadPriority priority) | 
|  | : PlatformThread(func, obj, thread_name, priority) {} | 
|  |  | 
|  | bool QueueAPC(PAPCFUNC apc_function, ULONG_PTR data) { | 
|  | return PlatformThread::QueueAPC(apc_function, data); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ThreadState { | 
|  | public: | 
|  | explicit ThreadState(HANDLE in_queue) : in_queue_(in_queue) {} | 
|  | ~ThreadState() {} | 
|  |  | 
|  | void RunThreadMain(); | 
|  |  | 
|  | private: | 
|  | bool ProcessQueuedMessages(); | 
|  | void RunDueTasks(); | 
|  | void ScheduleNextTimer(); | 
|  | void CancelTimers(); | 
|  |  | 
|  | // Since priority_queue<> by defult orders items in terms of | 
|  | // largest->smallest, using std::less<>, and we want smallest->largest, | 
|  | // we would like to use std::greater<> here. Alas it's only available in | 
|  | // C++14 and later, so we roll our own compare template that that relies on | 
|  | // operator<(). | 
|  | template <typename T> | 
|  | struct greater { | 
|  | bool operator()(const T& l, const T& r) { return l > r; } | 
|  | }; | 
|  |  | 
|  | MultimediaTimer timer_; | 
|  | std::priority_queue<DelayedTaskInfo, | 
|  | std::vector<DelayedTaskInfo>, | 
|  | greater<DelayedTaskInfo>> | 
|  | timer_tasks_; | 
|  | UINT_PTR timer_id_ = 0; | 
|  | HANDLE in_queue_; | 
|  | }; | 
|  |  | 
|  | TaskQueue* const queue_; | 
|  | WorkerThread thread_; | 
|  | rtc::CriticalSection pending_lock_; | 
|  | std::queue<std::unique_ptr<QueuedTask>> pending_ | 
|  | RTC_GUARDED_BY(pending_lock_); | 
|  | HANDLE in_queue_; | 
|  | }; | 
|  |  | 
|  | TaskQueue::Impl::Impl(const char* queue_name, | 
|  | TaskQueue* queue, | 
|  | Priority priority) | 
|  | : queue_(queue), | 
|  | thread_(&TaskQueue::Impl::ThreadMain, | 
|  | this, | 
|  | queue_name, | 
|  | TaskQueuePriorityToThreadPriority(priority)), | 
|  | in_queue_(::CreateEvent(nullptr, true, false, nullptr)) { | 
|  | RTC_DCHECK(queue_name); | 
|  | RTC_DCHECK(in_queue_); | 
|  | thread_.Start(); | 
|  | Event event(false, false); | 
|  | ThreadStartupData startup = {&event, this}; | 
|  | RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread, | 
|  | reinterpret_cast<ULONG_PTR>(&startup))); | 
|  | event.Wait(Event::kForever); | 
|  | } | 
|  |  | 
|  | TaskQueue::Impl::~Impl() { | 
|  | RTC_DCHECK(!IsCurrent()); | 
|  | while (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) { | 
|  | RTC_CHECK_EQ(ERROR_NOT_ENOUGH_QUOTA, ::GetLastError()); | 
|  | Sleep(1); | 
|  | } | 
|  | thread_.Stop(); | 
|  | ::CloseHandle(in_queue_); | 
|  | } | 
|  |  | 
|  | // static | 
|  | TaskQueue::Impl* TaskQueue::Impl::Current() { | 
|  | return static_cast<TaskQueue::Impl*>(::TlsGetValue(GetQueuePtrTls())); | 
|  | } | 
|  |  | 
|  | // static | 
|  | TaskQueue* TaskQueue::Impl::CurrentQueue() { | 
|  | TaskQueue::Impl* current = Current(); | 
|  | return current ? current->queue_ : nullptr; | 
|  | } | 
|  |  | 
|  | bool TaskQueue::Impl::IsCurrent() const { | 
|  | return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef()); | 
|  | } | 
|  |  | 
|  | void TaskQueue::Impl::PostTask(std::unique_ptr<QueuedTask> task) { | 
|  | rtc::CritScope lock(&pending_lock_); | 
|  | pending_.push(std::move(task)); | 
|  | ::SetEvent(in_queue_); | 
|  | } | 
|  |  | 
|  | void TaskQueue::Impl::PostDelayedTask(std::unique_ptr<QueuedTask> task, | 
|  | uint32_t milliseconds) { | 
|  | if (!milliseconds) { | 
|  | PostTask(std::move(task)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // TODO(tommi): Avoid this allocation.  It is currently here since | 
|  | // the timestamp stored in the task info object, is a 64bit timestamp | 
|  | // and WPARAM is 32bits in 32bit builds.  Otherwise, we could pass the | 
|  | // task pointer and timestamp as LPARAM and WPARAM. | 
|  | auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task)); | 
|  | if (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, 0, | 
|  | reinterpret_cast<LPARAM>(task_info))) { | 
|  | delete task_info; | 
|  | } | 
|  | } | 
|  |  | 
|  | void TaskQueue::Impl::PostTaskAndReply(std::unique_ptr<QueuedTask> task, | 
|  | std::unique_ptr<QueuedTask> reply, | 
|  | TaskQueue::Impl* reply_queue) { | 
|  | QueuedTask* task_ptr = task.release(); | 
|  | QueuedTask* reply_task_ptr = reply.release(); | 
|  | DWORD reply_thread_id = reply_queue->thread_.GetThreadRef(); | 
|  | PostTask([task_ptr, reply_task_ptr, reply_thread_id]() { | 
|  | if (task_ptr->Run()) | 
|  | delete task_ptr; | 
|  | // If the thread's message queue is full, we can't queue the task and will | 
|  | // have to drop it (i.e. delete). | 
|  | if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0, | 
|  | reinterpret_cast<LPARAM>(reply_task_ptr))) { | 
|  | delete reply_task_ptr; | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | void TaskQueue::Impl::RunPendingTasks() { | 
|  | while (true) { | 
|  | std::unique_ptr<QueuedTask> task; | 
|  | { | 
|  | rtc::CritScope lock(&pending_lock_); | 
|  | if (pending_.empty()) | 
|  | break; | 
|  | task = std::move(pending_.front()); | 
|  | pending_.pop(); | 
|  | } | 
|  |  | 
|  | if (!task->Run()) | 
|  | task.release(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // static | 
|  | void TaskQueue::Impl::ThreadMain(void* context) { | 
|  | ThreadState state(static_cast<TaskQueue::Impl*>(context)->in_queue_); | 
|  | state.RunThreadMain(); | 
|  | } | 
|  |  | 
|  | void TaskQueue::Impl::ThreadState::RunThreadMain() { | 
|  | HANDLE handles[2] = {*timer_.event_for_wait(), in_queue_}; | 
|  | while (true) { | 
|  | // Make sure we do an alertable wait as that's required to allow APCs to run | 
|  | // (e.g. required for InitializeQueueThread and stopping the thread in | 
|  | // PlatformThread). | 
|  | DWORD result = ::MsgWaitForMultipleObjectsEx( | 
|  | arraysize(handles), handles, INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE); | 
|  | RTC_CHECK_NE(WAIT_FAILED, result); | 
|  | if (result == (WAIT_OBJECT_0 + 2)) { | 
|  | // There are messages in the message queue that need to be handled. | 
|  | if (!ProcessQueuedMessages()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (result == WAIT_OBJECT_0 || | 
|  | (!timer_tasks_.empty() && | 
|  | ::WaitForSingleObject(*timer_.event_for_wait(), 0) == WAIT_OBJECT_0)) { | 
|  | // The multimedia timer was signaled. | 
|  | timer_.Cancel(); | 
|  | RunDueTasks(); | 
|  | ScheduleNextTimer(); | 
|  | } | 
|  |  | 
|  | if (result == (WAIT_OBJECT_0 + 1)) { | 
|  | ::ResetEvent(in_queue_); | 
|  | TaskQueue::Impl::Current()->RunPendingTasks(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool TaskQueue::Impl::ThreadState::ProcessQueuedMessages() { | 
|  | MSG msg = {}; | 
|  | // To protect against overly busy message queues, we limit the time | 
|  | // we process tasks to a few milliseconds. If we don't do that, there's | 
|  | // a chance that timer tasks won't ever run. | 
|  | static const int kMaxTaskProcessingTimeMs = 500; | 
|  | auto start = GetTick(); | 
|  | while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) && | 
|  | msg.message != WM_QUIT) { | 
|  | if (!msg.hwnd) { | 
|  | switch (msg.message) { | 
|  | // TODO(tommi): Stop using this way of queueing tasks. | 
|  | case WM_RUN_TASK: { | 
|  | QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam); | 
|  | if (task->Run()) | 
|  | delete task; | 
|  | break; | 
|  | } | 
|  | case WM_QUEUE_DELAYED_TASK: { | 
|  | std::unique_ptr<DelayedTaskInfo> info( | 
|  | reinterpret_cast<DelayedTaskInfo*>(msg.lParam)); | 
|  | bool need_to_schedule_timers = | 
|  | timer_tasks_.empty() || | 
|  | timer_tasks_.top().due_time() > info->due_time(); | 
|  | timer_tasks_.emplace(std::move(*info.get())); | 
|  | if (need_to_schedule_timers) { | 
|  | CancelTimers(); | 
|  | ScheduleNextTimer(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case WM_TIMER: { | 
|  | RTC_DCHECK_EQ(timer_id_, msg.wParam); | 
|  | ::KillTimer(nullptr, msg.wParam); | 
|  | timer_id_ = 0; | 
|  | RunDueTasks(); | 
|  | ScheduleNextTimer(); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | RTC_NOTREACHED(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | ::TranslateMessage(&msg); | 
|  | ::DispatchMessage(&msg); | 
|  | } | 
|  |  | 
|  | if (GetTick() > start + kMaxTaskProcessingTimeMs) | 
|  | break; | 
|  | } | 
|  | return msg.message != WM_QUIT; | 
|  | } | 
|  |  | 
|  | void TaskQueue::Impl::ThreadState::RunDueTasks() { | 
|  | RTC_DCHECK(!timer_tasks_.empty()); | 
|  | auto now = GetTick(); | 
|  | do { | 
|  | const auto& top = timer_tasks_.top(); | 
|  | if (top.due_time() > now) | 
|  | break; | 
|  | top.Run(); | 
|  | timer_tasks_.pop(); | 
|  | } while (!timer_tasks_.empty()); | 
|  | } | 
|  |  | 
|  | void TaskQueue::Impl::ThreadState::ScheduleNextTimer() { | 
|  | RTC_DCHECK_EQ(timer_id_, 0); | 
|  | if (timer_tasks_.empty()) | 
|  | return; | 
|  |  | 
|  | const auto& next_task = timer_tasks_.top(); | 
|  | int64_t delay_ms = std::max(0ll, next_task.due_time() - GetTick()); | 
|  | uint32_t milliseconds = rtc::dchecked_cast<uint32_t>(delay_ms); | 
|  | if (!timer_.StartOneShotTimer(milliseconds)) | 
|  | timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr); | 
|  | } | 
|  |  | 
|  | void TaskQueue::Impl::ThreadState::CancelTimers() { | 
|  | timer_.Cancel(); | 
|  | if (timer_id_) { | 
|  | ::KillTimer(nullptr, timer_id_); | 
|  | timer_id_ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Boilerplate for the PIMPL pattern. | 
|  | TaskQueue::TaskQueue(const char* queue_name, Priority priority) | 
|  | : impl_(new RefCountedObject<TaskQueue::Impl>(queue_name, this, priority)) { | 
|  | } | 
|  |  | 
|  | TaskQueue::~TaskQueue() {} | 
|  |  | 
|  | // static | 
|  | TaskQueue* TaskQueue::Current() { | 
|  | return TaskQueue::Impl::CurrentQueue(); | 
|  | } | 
|  |  | 
|  | // Used for DCHECKing the current queue. | 
|  | bool TaskQueue::IsCurrent() const { | 
|  | return impl_->IsCurrent(); | 
|  | } | 
|  |  | 
|  | void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) { | 
|  | return TaskQueue::impl_->PostTask(std::move(task)); | 
|  | } | 
|  |  | 
|  | void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, | 
|  | std::unique_ptr<QueuedTask> reply, | 
|  | TaskQueue* reply_queue) { | 
|  | return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply), | 
|  | reply_queue->impl_.get()); | 
|  | } | 
|  |  | 
|  | void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, | 
|  | std::unique_ptr<QueuedTask> reply) { | 
|  | return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply), | 
|  | impl_.get()); | 
|  | } | 
|  |  | 
|  | void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task, | 
|  | uint32_t milliseconds) { | 
|  | return TaskQueue::impl_->PostDelayedTask(std::move(task), milliseconds); | 
|  | } | 
|  |  | 
|  | }  // namespace rtc |