blob: b1b038f455ea3340bbcf6666d97cd9c3d06ab4bd [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/test/videoprocessor.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "api/video/i420_buffer.h"
#include "common_types.h" // NOLINT(build/include)
#include "common_video/h264/h264_common.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include "modules/video_coding/include/video_codec_initializer.h"
#include "modules/video_coding/utility/default_video_bitrate_allocator.h"
#include "rtc_base/checks.h"
#include "rtc_base/timeutils.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
std::unique_ptr<VideoBitrateAllocator> CreateBitrateAllocator(
TestConfig* config) {
std::unique_ptr<TemporalLayersFactory> tl_factory;
if (config->codec_settings.codecType == VideoCodecType::kVideoCodecVP8) {
tl_factory.reset(new TemporalLayersFactory());
config->codec_settings.VP8()->tl_factory = tl_factory.get();
}
return std::unique_ptr<VideoBitrateAllocator>(
VideoCodecInitializer::CreateBitrateAllocator(config->codec_settings,
std::move(tl_factory)));
}
size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame,
const TestConfig& config) {
if (config.codec_settings.codecType != kVideoCodecH264)
return 0;
std::vector<webrtc::H264::NaluIndex> nalu_indices =
webrtc::H264::FindNaluIndices(encoded_frame._buffer,
encoded_frame._length);
RTC_CHECK(!nalu_indices.empty());
size_t max_size = 0;
for (const webrtc::H264::NaluIndex& index : nalu_indices)
max_size = std::max(max_size, index.payload_size);
return max_size;
}
int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec;
RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min());
RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max());
return static_cast<int>(diff_us);
}
void ExtractBufferWithSize(const VideoFrame& image,
int width,
int height,
rtc::Buffer* buffer) {
if (image.width() != width || image.height() != height) {
EXPECT_DOUBLE_EQ(static_cast<double>(width) / height,
static_cast<double>(image.width()) / image.height());
// Same aspect ratio, no cropping needed.
rtc::scoped_refptr<I420Buffer> scaled(I420Buffer::Create(width, height));
scaled->ScaleFrom(*image.video_frame_buffer()->ToI420());
size_t length =
CalcBufferSize(VideoType::kI420, scaled->width(), scaled->height());
buffer->SetSize(length);
RTC_CHECK_NE(ExtractBuffer(scaled, length, buffer->data()), -1);
return;
}
// No resize.
size_t length =
CalcBufferSize(VideoType::kI420, image.width(), image.height());
buffer->SetSize(length);
RTC_CHECK_NE(ExtractBuffer(image, length, buffer->data()), -1);
}
} // namespace
VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder,
webrtc::VideoDecoder* decoder,
FrameReader* analysis_frame_reader,
const TestConfig& config,
Stats* stats,
IvfFileWriter* encoded_frame_writer,
FrameWriter* decoded_frame_writer)
: config_(config),
encoder_(encoder),
decoder_(decoder),
bitrate_allocator_(CreateBitrateAllocator(&config_)),
encode_callback_(this),
decode_callback_(this),
analysis_frame_reader_(analysis_frame_reader),
encoded_frame_writer_(encoded_frame_writer),
decoded_frame_writer_(decoded_frame_writer),
last_inputed_frame_num_(0),
last_encoded_frame_num_(0),
last_decoded_frame_num_(0),
num_encoded_frames_(0),
num_decoded_frames_(0),
last_decoded_frame_buffer_(analysis_frame_reader->FrameLength()),
stats_(stats) {
RTC_DCHECK(encoder);
RTC_DCHECK(decoder);
RTC_DCHECK(analysis_frame_reader);
RTC_DCHECK(stats);
// Setup required callbacks for the encoder and decoder.
RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_),
WEBRTC_VIDEO_CODEC_OK);
RTC_CHECK_EQ(decoder_->RegisterDecodeCompleteCallback(&decode_callback_),
WEBRTC_VIDEO_CODEC_OK);
// Initialize the encoder and decoder.
RTC_CHECK_EQ(encoder_->InitEncode(&config_.codec_settings,
static_cast<int>(config_.NumberOfCores()),
config_.max_payload_size_bytes),
WEBRTC_VIDEO_CODEC_OK);
RTC_CHECK_EQ(decoder_->InitDecode(&config_.codec_settings,
static_cast<int>(config_.NumberOfCores())),
WEBRTC_VIDEO_CODEC_OK);
}
VideoProcessor::~VideoProcessor() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
RTC_CHECK_EQ(decoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
encoder_->RegisterEncodeCompleteCallback(nullptr);
decoder_->RegisterDecodeCompleteCallback(nullptr);
}
void VideoProcessor::ProcessFrame() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
const size_t frame_number = last_inputed_frame_num_++;
// Get frame from file.
rtc::scoped_refptr<I420BufferInterface> buffer(
analysis_frame_reader_->ReadFrame());
RTC_CHECK(buffer) << "Tried to read too many frames from the file.";
// Use the frame number as the basis for timestamp to identify frames. Let the
// first timestamp be non-zero, to not make the IvfFileWriter believe that we
// want to use capture timestamps in the IVF files.
// TODO(asapersson): Time stamps jump back if framerate increases.
const size_t rtp_timestamp = (frame_number + 1) * kVideoPayloadTypeFrequency /
config_.codec_settings.maxFramerate;
const int64_t render_time_ms = (frame_number + 1) * rtc::kNumMillisecsPerSec /
config_.codec_settings.maxFramerate;
input_frames_[frame_number] =
rtc::MakeUnique<VideoFrame>(buffer, static_cast<uint32_t>(rtp_timestamp),
render_time_ms, webrtc::kVideoRotation_0);
std::vector<FrameType> frame_types = config_.FrameTypeForFrame(frame_number);
// Create frame statistics object used for aggregation at end of test run.
FrameStatistic* frame_stat = stats_->AddFrame(rtp_timestamp);
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
frame_stat->encode_start_ns = rtc::TimeNanos();
frame_stat->encode_return_code =
encoder_->Encode(*input_frames_[frame_number], nullptr, &frame_types);
}
void VideoProcessor::SetRates(size_t bitrate_kbps, size_t framerate_fps) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
config_.codec_settings.maxFramerate = static_cast<uint32_t>(framerate_fps);
bitrate_allocation_ = bitrate_allocator_->GetAllocation(
static_cast<uint32_t>(bitrate_kbps * 1000),
static_cast<uint32_t>(framerate_fps));
const int set_rates_result = encoder_->SetRateAllocation(
bitrate_allocation_, static_cast<uint32_t>(framerate_fps));
RTC_DCHECK_GE(set_rates_result, 0)
<< "Failed to update encoder with new rate " << bitrate_kbps << ".";
}
void VideoProcessor::FrameEncoded(webrtc::VideoCodecType codec,
const EncodedImage& encoded_image) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
int64_t encode_stop_ns = rtc::TimeNanos();
if (config_.encoded_frame_checker) {
config_.encoded_frame_checker->CheckEncodedFrame(codec, encoded_image);
}
FrameStatistic* frame_stat =
stats_->GetFrameWithTimestamp(encoded_image._timeStamp);
// Ensure strict monotonicity.
const size_t frame_number = frame_stat->frame_number;
if (num_encoded_frames_ > 0) {
RTC_CHECK_GT(frame_number, last_encoded_frame_num_);
}
last_encoded_frame_num_ = frame_number;
// Update frame statistics.
frame_stat->encode_time_us =
GetElapsedTimeMicroseconds(frame_stat->encode_start_ns, encode_stop_ns);
frame_stat->encoding_successful = true;
frame_stat->encoded_frame_size_bytes = encoded_image._length;
frame_stat->frame_type = encoded_image._frameType;
frame_stat->temporal_layer_idx = config_.TemporalLayerForFrame(frame_number);
frame_stat->qp = encoded_image.qp_;
frame_stat->target_bitrate_kbps =
bitrate_allocation_.GetSpatialLayerSum(0) / 1000;
frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_);
// For the highest measurement accuracy of the decode time, the start/stop
// time recordings should wrap the Decode call as tightly as possible.
frame_stat->decode_start_ns = rtc::TimeNanos();
frame_stat->decode_return_code =
decoder_->Decode(encoded_image, false, nullptr);
if (encoded_frame_writer_) {
RTC_CHECK(encoded_frame_writer_->WriteFrame(encoded_image, codec));
}
++num_encoded_frames_;
}
void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
// For the highest measurement accuracy of the decode time, the start/stop
// time recordings should wrap the Decode call as tightly as possible.
int64_t decode_stop_ns = rtc::TimeNanos();
// Update frame statistics.
FrameStatistic* frame_stat =
stats_->GetFrameWithTimestamp(decoded_frame.timestamp());
frame_stat->decoded_width = decoded_frame.width();
frame_stat->decoded_height = decoded_frame.height();
frame_stat->decode_time_us =
GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns);
frame_stat->decoding_successful = true;
// Ensure strict monotonicity.
const size_t frame_number = frame_stat->frame_number;
if (num_decoded_frames_ > 0) {
RTC_CHECK_GT(frame_number, last_decoded_frame_num_);
}
// Check if the codecs have resized the frame since previously decoded frame.
if (frame_number > 0) {
if (decoded_frame_writer_ && num_decoded_frames_ > 0) {
// For dropped/lost frames, write out the last decoded frame to make it
// look like a freeze at playback.
const size_t num_dropped_frames =
frame_number - last_decoded_frame_num_ - 1;
for (size_t i = 0; i < num_dropped_frames; i++) {
WriteDecodedFrameToFile(&last_decoded_frame_buffer_);
}
}
}
last_decoded_frame_num_ = frame_number;
// Skip quality metrics calculation to not affect CPU usage.
if (!config_.measure_cpu) {
frame_stat->psnr =
I420PSNR(input_frames_[frame_number].get(), &decoded_frame);
frame_stat->ssim =
I420SSIM(input_frames_[frame_number].get(), &decoded_frame);
}
// Delay erasing of input frames by one frame. The current frame might
// still be needed for other simulcast stream or spatial layer.
if (frame_number > 0) {
auto input_frame_erase_to = input_frames_.lower_bound(frame_number - 1);
input_frames_.erase(input_frames_.begin(), input_frame_erase_to);
}
if (decoded_frame_writer_) {
ExtractBufferWithSize(decoded_frame, config_.codec_settings.width,
config_.codec_settings.height,
&last_decoded_frame_buffer_);
WriteDecodedFrameToFile(&last_decoded_frame_buffer_);
}
++num_decoded_frames_;
}
void VideoProcessor::WriteDecodedFrameToFile(rtc::Buffer* buffer) {
RTC_DCHECK_EQ(buffer->size(), decoded_frame_writer_->FrameLength());
RTC_CHECK(decoded_frame_writer_->WriteFrame(buffer->data()));
}
} // namespace test
} // namespace webrtc