blob: 9a00beffab0e9fe72c6fe03e8cb4fe3ae4f4d335 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Test to verify correct stereo and multi-channel operation.
#include <algorithm>
#include <list>
#include <memory>
#include <string>
#include "api/audio/audio_frame.h"
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "api/environment/environment.h"
#include "api/environment/environment_factory.h"
#include "api/neteq/neteq.h"
#include "api/units/timestamp.h"
#include "modules/audio_coding/codecs/pcm16b/pcm16b.h"
#include "modules/audio_coding/neteq/default_neteq_factory.h"
#include "modules/audio_coding/neteq/tools/input_audio_file.h"
#include "modules/audio_coding/neteq/tools/rtp_generator.h"
#include "rtc_base/strings/string_builder.h"
#include "system_wrappers/include/clock.h"
#include "test/gtest.h"
#include "test/testsupport/file_utils.h"
namespace webrtc {
struct TestParameters {
int frame_size;
int sample_rate;
size_t num_channels;
};
// This is a parameterized test. The test parameters are supplied through a
// TestParameters struct, which is obtained through the GetParam() method.
//
// The objective of the test is to create a mono input signal and a
// multi-channel input signal, where each channel is identical to the mono
// input channel. The two input signals are processed through their respective
// NetEq instances. After that, the output signals are compared. The expected
// result is that each channel in the multi-channel output is identical to the
// mono output.
class NetEqStereoTest : public ::testing::TestWithParam<TestParameters> {
protected:
static const int kTimeStepMs = 10;
static const size_t kMaxBlockSize = 480; // 10 ms @ 48 kHz.
static const uint8_t kPayloadTypeMono = 95;
static const uint8_t kPayloadTypeMulti = 96;
NetEqStereoTest()
: num_channels_(GetParam().num_channels),
sample_rate_hz_(GetParam().sample_rate),
samples_per_ms_(sample_rate_hz_ / 1000),
frame_size_ms_(GetParam().frame_size),
frame_size_samples_(
static_cast<size_t>(frame_size_ms_ * samples_per_ms_)),
output_size_samples_(10 * samples_per_ms_),
clock_(0),
env_(CreateEnvironment(&clock_)),
rtp_generator_mono_(samples_per_ms_),
rtp_generator_(samples_per_ms_),
payload_size_bytes_(0),
multi_payload_size_bytes_(0),
last_send_time_(0),
last_arrival_time_(0) {
NetEq::Config config;
config.sample_rate_hz = sample_rate_hz_;
DefaultNetEqFactory neteq_factory;
auto decoder_factory = CreateBuiltinAudioDecoderFactory();
neteq_mono_ = neteq_factory.Create(env_, config, decoder_factory);
neteq_ = neteq_factory.Create(env_, config, decoder_factory);
input_ = new int16_t[frame_size_samples_];
encoded_ = new uint8_t[2 * frame_size_samples_];
input_multi_channel_ = new int16_t[frame_size_samples_ * num_channels_];
encoded_multi_channel_ =
new uint8_t[frame_size_samples_ * 2 * num_channels_];
}
~NetEqStereoTest() {
delete[] input_;
delete[] encoded_;
delete[] input_multi_channel_;
delete[] encoded_multi_channel_;
}
virtual void SetUp() {
const std::string file_name =
webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm");
input_file_.reset(new test::InputAudioFile(file_name));
RTC_CHECK_GE(num_channels_, 2);
ASSERT_TRUE(neteq_mono_->RegisterPayloadType(
kPayloadTypeMono, SdpAudioFormat("l16", sample_rate_hz_, 1)));
ASSERT_TRUE(neteq_->RegisterPayloadType(
kPayloadTypeMulti,
SdpAudioFormat("l16", sample_rate_hz_, num_channels_)));
}
virtual void TearDown() {}
int GetNewPackets() {
if (!input_file_->Read(frame_size_samples_, input_)) {
return -1;
}
payload_size_bytes_ =
WebRtcPcm16b_Encode(input_, frame_size_samples_, encoded_);
if (frame_size_samples_ * 2 != payload_size_bytes_) {
return -1;
}
int next_send_time_ms = rtp_generator_mono_.GetRtpHeader(
kPayloadTypeMono, frame_size_samples_, &rtp_header_mono_);
MakeMultiChannelInput();
multi_payload_size_bytes_ = WebRtcPcm16b_Encode(
input_multi_channel_, frame_size_samples_ * num_channels_,
encoded_multi_channel_);
if (frame_size_samples_ * 2 * num_channels_ != multi_payload_size_bytes_) {
return -1;
}
rtp_generator_.GetRtpHeader(kPayloadTypeMulti, frame_size_samples_,
&rtp_header_);
return next_send_time_ms;
}
virtual void MakeMultiChannelInput() {
test::InputAudioFile::DuplicateInterleaved(
input_, frame_size_samples_, num_channels_, input_multi_channel_);
}
virtual void VerifyOutput(size_t num_samples) {
const int16_t* output_data = output_.data();
const int16_t* output_multi_channel_data = output_multi_channel_.data();
for (size_t i = 0; i < num_samples; ++i) {
for (size_t j = 0; j < num_channels_; ++j) {
ASSERT_EQ(output_data[i],
output_multi_channel_data[i * num_channels_ + j])
<< "Diff in sample " << i << ", channel " << j << ".";
}
}
}
virtual int GetArrivalTime(int send_time) {
int arrival_time = last_arrival_time_ + (send_time - last_send_time_);
last_send_time_ = send_time;
last_arrival_time_ = arrival_time;
return arrival_time;
}
virtual bool Lost() { return false; }
void RunTest(int num_loops) {
// Get next input packets (mono and multi-channel).
int next_send_time_ms;
int next_arrival_time_ms;
do {
next_send_time_ms = GetNewPackets();
ASSERT_NE(-1, next_send_time_ms);
next_arrival_time_ms = GetArrivalTime(next_send_time_ms);
} while (Lost()); // If lost, immediately read the next packet.
int time_now_ms = 0;
for (int k = 0; k < num_loops; ++k) {
while (time_now_ms >= next_arrival_time_ms) {
// Insert packet in mono instance.
ASSERT_EQ(NetEq::kOK,
neteq_mono_->InsertPacket(rtp_header_mono_,
rtc::ArrayView<const uint8_t>(
encoded_, payload_size_bytes_),
Timestamp::Millis(time_now_ms)));
// Insert packet in multi-channel instance.
ASSERT_EQ(NetEq::kOK,
neteq_->InsertPacket(
rtp_header_,
rtc::ArrayView<const uint8_t>(encoded_multi_channel_,
multi_payload_size_bytes_),
Timestamp::Millis(time_now_ms)));
// Get next input packets (mono and multi-channel).
do {
next_send_time_ms = GetNewPackets();
ASSERT_NE(-1, next_send_time_ms);
next_arrival_time_ms = GetArrivalTime(next_send_time_ms);
} while (Lost()); // If lost, immediately read the next packet.
}
// Get audio from mono instance.
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_mono_->GetAudio(&output_, &muted));
ASSERT_FALSE(muted);
EXPECT_EQ(1u, output_.num_channels_);
EXPECT_EQ(output_size_samples_, output_.samples_per_channel_);
// Get audio from multi-channel instance.
ASSERT_EQ(NetEq::kOK, neteq_->GetAudio(&output_multi_channel_, &muted));
ASSERT_FALSE(muted);
EXPECT_EQ(num_channels_, output_multi_channel_.num_channels_);
EXPECT_EQ(output_size_samples_,
output_multi_channel_.samples_per_channel_);
rtc::StringBuilder ss;
ss << "Lap number " << k << ".";
SCOPED_TRACE(ss.str()); // Print out the parameter values on failure.
// Compare mono and multi-channel.
ASSERT_NO_FATAL_FAILURE(VerifyOutput(output_size_samples_));
time_now_ms += kTimeStepMs;
clock_.AdvanceTimeMilliseconds(kTimeStepMs);
}
}
const size_t num_channels_;
const int sample_rate_hz_;
const int samples_per_ms_;
const int frame_size_ms_;
const size_t frame_size_samples_;
const size_t output_size_samples_;
SimulatedClock clock_;
const Environment env_;
std::unique_ptr<NetEq> neteq_mono_;
std::unique_ptr<NetEq> neteq_;
test::RtpGenerator rtp_generator_mono_;
test::RtpGenerator rtp_generator_;
int16_t* input_;
int16_t* input_multi_channel_;
uint8_t* encoded_;
uint8_t* encoded_multi_channel_;
AudioFrame output_;
AudioFrame output_multi_channel_;
RTPHeader rtp_header_mono_;
RTPHeader rtp_header_;
size_t payload_size_bytes_;
size_t multi_payload_size_bytes_;
int last_send_time_;
int last_arrival_time_;
std::unique_ptr<test::InputAudioFile> input_file_;
};
class NetEqStereoTestNoJitter : public NetEqStereoTest {
protected:
NetEqStereoTestNoJitter() : NetEqStereoTest() {
// Start the sender 100 ms before the receiver to pre-fill the buffer.
// This is to avoid doing preemptive expand early in the test.
// TODO(hlundin): Mock the decision making instead to control the modes.
last_arrival_time_ = -100;
}
};
TEST_P(NetEqStereoTestNoJitter, RunTest) {
RunTest(8);
}
class NetEqStereoTestPositiveDrift : public NetEqStereoTest {
protected:
NetEqStereoTestPositiveDrift() : NetEqStereoTest(), drift_factor(0.9) {
// Start the sender 100 ms before the receiver to pre-fill the buffer.
// This is to avoid doing preemptive expand early in the test.
// TODO(hlundin): Mock the decision making instead to control the modes.
last_arrival_time_ = -100;
}
virtual int GetArrivalTime(int send_time) {
int arrival_time =
last_arrival_time_ + drift_factor * (send_time - last_send_time_);
last_send_time_ = send_time;
last_arrival_time_ = arrival_time;
return arrival_time;
}
double drift_factor;
};
TEST_P(NetEqStereoTestPositiveDrift, RunTest) {
RunTest(100);
}
class NetEqStereoTestNegativeDrift : public NetEqStereoTestPositiveDrift {
protected:
NetEqStereoTestNegativeDrift() : NetEqStereoTestPositiveDrift() {
drift_factor = 1.1;
last_arrival_time_ = 0;
}
};
TEST_P(NetEqStereoTestNegativeDrift, RunTest) {
RunTest(100);
}
class NetEqStereoTestDelays : public NetEqStereoTest {
protected:
static const int kDelayInterval = 10;
static const int kDelay = 1000;
NetEqStereoTestDelays() : NetEqStereoTest(), frame_index_(0) {}
virtual int GetArrivalTime(int send_time) {
// Deliver immediately, unless we have a back-log.
int arrival_time = std::min(last_arrival_time_, send_time);
if (++frame_index_ % kDelayInterval == 0) {
// Delay this packet.
arrival_time += kDelay;
}
last_send_time_ = send_time;
last_arrival_time_ = arrival_time;
return arrival_time;
}
int frame_index_;
};
TEST_P(NetEqStereoTestDelays, RunTest) {
RunTest(1000);
}
class NetEqStereoTestLosses : public NetEqStereoTest {
protected:
static const int kLossInterval = 10;
NetEqStereoTestLosses() : NetEqStereoTest(), frame_index_(0) {}
virtual bool Lost() { return (++frame_index_) % kLossInterval == 0; }
// TODO(hlundin): NetEq is not giving bitexact results for these cases.
virtual void VerifyOutput(size_t num_samples) {
for (size_t i = 0; i < num_samples; ++i) {
const int16_t* output_data = output_.data();
const int16_t* output_multi_channel_data = output_multi_channel_.data();
auto first_channel_sample = output_multi_channel_data[i * num_channels_];
for (size_t j = 0; j < num_channels_; ++j) {
const int kErrorMargin = 200;
EXPECT_NEAR(output_data[i],
output_multi_channel_data[i * num_channels_ + j],
kErrorMargin)
<< "Diff in sample " << i << ", channel " << j << ".";
EXPECT_EQ(first_channel_sample,
output_multi_channel_data[i * num_channels_ + j]);
}
}
}
int frame_index_;
};
TEST_P(NetEqStereoTestLosses, RunTest) {
RunTest(100);
}
class NetEqStereoTestSingleActiveChannelPlc : public NetEqStereoTestLosses {
protected:
NetEqStereoTestSingleActiveChannelPlc() : NetEqStereoTestLosses() {}
virtual void MakeMultiChannelInput() override {
// Create a multi-channel input by copying the mono channel from file to the
// first channel, and setting the others to zero.
memset(input_multi_channel_, 0,
frame_size_samples_ * num_channels_ * sizeof(int16_t));
for (size_t i = 0; i < frame_size_samples_; ++i) {
input_multi_channel_[i * num_channels_] = input_[i];
}
}
virtual void VerifyOutput(size_t num_samples) override {
// Simply verify that all samples in channels other than the first are zero.
const int16_t* output_multi_channel_data = output_multi_channel_.data();
for (size_t i = 0; i < num_samples; ++i) {
for (size_t j = 1; j < num_channels_; ++j) {
EXPECT_EQ(0, output_multi_channel_data[i * num_channels_ + j])
<< "Sample " << i << ", channel " << j << " is non-zero.";
}
}
}
};
TEST_P(NetEqStereoTestSingleActiveChannelPlc, RunTest) {
RunTest(100);
}
// Creates a list of parameter sets.
std::list<TestParameters> GetTestParameters() {
std::list<TestParameters> l;
const int sample_rates[] = {8000, 16000, 32000};
const int num_rates = sizeof(sample_rates) / sizeof(sample_rates[0]);
// Loop through sample rates.
for (int rate_index = 0; rate_index < num_rates; ++rate_index) {
int sample_rate = sample_rates[rate_index];
// Loop through all frame sizes between 10 and 60 ms.
for (int frame_size = 10; frame_size <= 60; frame_size += 10) {
TestParameters p;
p.frame_size = frame_size;
p.sample_rate = sample_rate;
p.num_channels = 2;
l.push_back(p);
if (sample_rate == 8000) {
// Add a five-channel test for 8000 Hz.
p.num_channels = 5;
l.push_back(p);
}
}
}
return l;
}
// Pretty-printing the test parameters in case of an error.
void PrintTo(const TestParameters& p, ::std::ostream* os) {
*os << "{frame_size = " << p.frame_size
<< ", num_channels = " << p.num_channels
<< ", sample_rate = " << p.sample_rate << "}";
}
// Instantiate the tests. Each test is instantiated using the function above,
// so that all different parameter combinations are tested.
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestNoJitter,
::testing::ValuesIn(GetTestParameters()));
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestPositiveDrift,
::testing::ValuesIn(GetTestParameters()));
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestNegativeDrift,
::testing::ValuesIn(GetTestParameters()));
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestDelays,
::testing::ValuesIn(GetTestParameters()));
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestLosses,
::testing::ValuesIn(GetTestParameters()));
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestSingleActiveChannelPlc,
::testing::ValuesIn(GetTestParameters()));
} // namespace webrtc