blob: ac2b0d72e933a8328e27ef4fafbceece9313beb1 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/rtp_rtcp/source/rtp_sender.h"
#include <cstdlib> // srand
#include "webrtc/modules/rtp_rtcp/source/rtp_packet_history.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_sender_audio.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_sender_video.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/trace.h"
#include "webrtc/system_wrappers/interface/trace_event.h"
namespace webrtc {
// Max in the RFC 3550 is 255 bytes, we limit it to be modulus 32 for SRTP.
const int kMaxPaddingLength = 224;
namespace {
const char* FrameTypeToString(const FrameType frame_type) {
switch (frame_type) {
case kFrameEmpty: return "empty";
case kAudioFrameSpeech: return "audio_speech";
case kAudioFrameCN: return "audio_cn";
case kVideoFrameKey: return "video_key";
case kVideoFrameDelta: return "video_delta";
case kVideoFrameGolden: return "video_golden";
case kVideoFrameAltRef: return "video_altref";
}
return "";
}
} // namespace
RTPSender::RTPSender(const int32_t id, const bool audio, Clock *clock,
Transport *transport, RtpAudioFeedback *audio_feedback,
PacedSender *paced_sender)
: Bitrate(clock), id_(id), audio_configured_(audio), audio_(NULL),
video_(NULL), paced_sender_(paced_sender),
send_critsect_(CriticalSectionWrapper::CreateCriticalSection()),
transport_(transport), sending_media_(true), // Default to sending media.
max_payload_length_(IP_PACKET_SIZE - 28), // Default is IP-v4/UDP.
target_send_bitrate_(0), packet_over_head_(28), payload_type_(-1),
payload_type_map_(), rtp_header_extension_map_(),
transmission_time_offset_(0), absolute_send_time_(0),
// NACK.
nack_byte_count_times_(), nack_byte_count_(), nack_bitrate_(clock),
packet_history_(new RTPPacketHistory(clock)),
// Statistics
packets_sent_(0), payload_bytes_sent_(0), start_time_stamp_forced_(false),
start_time_stamp_(0), ssrc_db_(*SSRCDatabase::GetSSRCDatabase()),
remote_ssrc_(0), sequence_number_forced_(false), ssrc_forced_(false),
timestamp_(0), capture_time_ms_(0), last_packet_marker_bit_(false),
num_csrcs_(0), csrcs_(), include_csrcs_(true),
rtx_(kRtxOff), payload_type_rtx_(-1) {
memset(nack_byte_count_times_, 0, sizeof(nack_byte_count_times_));
memset(nack_byte_count_, 0, sizeof(nack_byte_count_));
memset(csrcs_, 0, sizeof(csrcs_));
// We need to seed the random generator.
srand(static_cast<uint32_t>(clock_->TimeInMilliseconds()));
ssrc_ = ssrc_db_.CreateSSRC(); // Can't be 0.
ssrc_rtx_ = ssrc_db_.CreateSSRC(); // Can't be 0.
// Random start, 16 bits. Can't be 0.
sequence_number_rtx_ = static_cast<uint16_t>(rand() + 1) & 0x7FFF;
sequence_number_ = static_cast<uint16_t>(rand() + 1) & 0x7FFF;
if (audio) {
audio_ = new RTPSenderAudio(id, clock_, this);
audio_->RegisterAudioCallback(audio_feedback);
} else {
video_ = new RTPSenderVideo(id, clock_, this);
}
WEBRTC_TRACE(kTraceMemory, kTraceRtpRtcp, id, "%s created", __FUNCTION__);
}
RTPSender::~RTPSender() {
if (remote_ssrc_ != 0) {
ssrc_db_.ReturnSSRC(remote_ssrc_);
}
ssrc_db_.ReturnSSRC(ssrc_);
SSRCDatabase::ReturnSSRCDatabase();
delete send_critsect_;
while (!payload_type_map_.empty()) {
std::map<int8_t, ModuleRTPUtility::Payload *>::iterator it =
payload_type_map_.begin();
delete it->second;
payload_type_map_.erase(it);
}
delete packet_history_;
delete audio_;
delete video_;
WEBRTC_TRACE(kTraceMemory, kTraceRtpRtcp, id_, "%s deleted", __FUNCTION__);
}
void RTPSender::SetTargetSendBitrate(const uint32_t bits) {
target_send_bitrate_ = static_cast<uint16_t>(bits / 1000);
}
uint16_t RTPSender::ActualSendBitrateKbit() const {
return (uint16_t)(Bitrate::BitrateNow() / 1000);
}
uint32_t RTPSender::VideoBitrateSent() const {
if (video_) {
return video_->VideoBitrateSent();
}
return 0;
}
uint32_t RTPSender::FecOverheadRate() const {
if (video_) {
return video_->FecOverheadRate();
}
return 0;
}
uint32_t RTPSender::NackOverheadRate() const {
return nack_bitrate_.BitrateLast();
}
int32_t RTPSender::SetTransmissionTimeOffset(
const int32_t transmission_time_offset) {
if (transmission_time_offset > (0x800000 - 1) ||
transmission_time_offset < -(0x800000 - 1)) { // Word24.
return -1;
}
CriticalSectionScoped cs(send_critsect_);
transmission_time_offset_ = transmission_time_offset;
return 0;
}
int32_t RTPSender::SetAbsoluteSendTime(
const uint32_t absolute_send_time) {
if (absolute_send_time > 0xffffff) { // UWord24.
return -1;
}
CriticalSectionScoped cs(send_critsect_);
absolute_send_time_ = absolute_send_time;
return 0;
}
int32_t RTPSender::RegisterRtpHeaderExtension(const RTPExtensionType type,
const uint8_t id) {
CriticalSectionScoped cs(send_critsect_);
return rtp_header_extension_map_.Register(type, id);
}
int32_t RTPSender::DeregisterRtpHeaderExtension(
const RTPExtensionType type) {
CriticalSectionScoped cs(send_critsect_);
return rtp_header_extension_map_.Deregister(type);
}
uint16_t RTPSender::RtpHeaderExtensionTotalLength() const {
CriticalSectionScoped cs(send_critsect_);
return rtp_header_extension_map_.GetTotalLengthInBytes();
}
int32_t RTPSender::RegisterPayload(
const char payload_name[RTP_PAYLOAD_NAME_SIZE],
const int8_t payload_number, const uint32_t frequency,
const uint8_t channels, const uint32_t rate) {
assert(payload_name);
CriticalSectionScoped cs(send_critsect_);
std::map<int8_t, ModuleRTPUtility::Payload *>::iterator it =
payload_type_map_.find(payload_number);
if (payload_type_map_.end() != it) {
// We already use this payload type.
ModuleRTPUtility::Payload *payload = it->second;
assert(payload);
// Check if it's the same as we already have.
if (ModuleRTPUtility::StringCompare(payload->name, payload_name,
RTP_PAYLOAD_NAME_SIZE - 1)) {
if (audio_configured_ && payload->audio &&
payload->typeSpecific.Audio.frequency == frequency &&
(payload->typeSpecific.Audio.rate == rate ||
payload->typeSpecific.Audio.rate == 0 || rate == 0)) {
payload->typeSpecific.Audio.rate = rate;
// Ensure that we update the rate if new or old is zero.
return 0;
}
if (!audio_configured_ && !payload->audio) {
return 0;
}
}
return -1;
}
int32_t ret_val = -1;
ModuleRTPUtility::Payload *payload = NULL;
if (audio_configured_) {
ret_val = audio_->RegisterAudioPayload(payload_name, payload_number,
frequency, channels, rate, payload);
} else {
ret_val = video_->RegisterVideoPayload(payload_name, payload_number, rate,
payload);
}
if (payload) {
payload_type_map_[payload_number] = payload;
}
return ret_val;
}
int32_t RTPSender::DeRegisterSendPayload(
const int8_t payload_type) {
CriticalSectionScoped lock(send_critsect_);
std::map<int8_t, ModuleRTPUtility::Payload *>::iterator it =
payload_type_map_.find(payload_type);
if (payload_type_map_.end() == it) {
return -1;
}
ModuleRTPUtility::Payload *payload = it->second;
delete payload;
payload_type_map_.erase(it);
return 0;
}
int8_t RTPSender::SendPayloadType() const { return payload_type_; }
int RTPSender::SendPayloadFrequency() const { return audio_->AudioFrequency(); }
int32_t RTPSender::SetMaxPayloadLength(
const uint16_t max_payload_length,
const uint16_t packet_over_head) {
// Sanity check.
if (max_payload_length < 100 || max_payload_length > IP_PACKET_SIZE) {
WEBRTC_TRACE(kTraceError, kTraceRtpRtcp, id_, "%s invalid argument",
__FUNCTION__);
return -1;
}
CriticalSectionScoped cs(send_critsect_);
max_payload_length_ = max_payload_length;
packet_over_head_ = packet_over_head;
WEBRTC_TRACE(kTraceInfo, kTraceRtpRtcp, id_, "SetMaxPayloadLength to %d.",
max_payload_length);
return 0;
}
uint16_t RTPSender::MaxDataPayloadLength() const {
if (audio_configured_) {
return max_payload_length_ - RTPHeaderLength();
} else {
return max_payload_length_ - RTPHeaderLength() -
video_->FECPacketOverhead() - ((rtx_) ? 2 : 0);
// Include the FEC/ULP/RED overhead.
}
}
uint16_t RTPSender::MaxPayloadLength() const {
return max_payload_length_;
}
uint16_t RTPSender::PacketOverHead() const { return packet_over_head_; }
void RTPSender::SetRTXStatus(RtxMode mode, bool set_ssrc, uint32_t ssrc) {
CriticalSectionScoped cs(send_critsect_);
rtx_ = mode;
if (rtx_ != kRtxOff) {
if (set_ssrc) {
ssrc_rtx_ = ssrc;
} else {
ssrc_rtx_ = ssrc_db_.CreateSSRC(); // Can't be 0.
}
}
}
void RTPSender::RTXStatus(RtxMode* mode, uint32_t* ssrc,
int* payload_type) const {
CriticalSectionScoped cs(send_critsect_);
*mode = rtx_;
*ssrc = ssrc_rtx_;
*payload_type = payload_type_rtx_;
}
void RTPSender::SetRtxPayloadType(int payload_type) {
CriticalSectionScoped cs(send_critsect_);
payload_type_rtx_ = payload_type;
}
int32_t RTPSender::CheckPayloadType(const int8_t payload_type,
RtpVideoCodecTypes *video_type) {
CriticalSectionScoped cs(send_critsect_);
if (payload_type < 0) {
WEBRTC_TRACE(kTraceError, kTraceRtpRtcp, id_, "\tinvalid payload_type (%d)",
payload_type);
return -1;
}
if (audio_configured_) {
int8_t red_pl_type = -1;
if (audio_->RED(red_pl_type) == 0) {
// We have configured RED.
if (red_pl_type == payload_type) {
// And it's a match...
return 0;
}
}
}
if (payload_type_ == payload_type) {
if (!audio_configured_) {
*video_type = video_->VideoCodecType();
}
return 0;
}
std::map<int8_t, ModuleRTPUtility::Payload *>::iterator it =
payload_type_map_.find(payload_type);
if (it == payload_type_map_.end()) {
WEBRTC_TRACE(kTraceError, kTraceRtpRtcp, id_,
"\tpayloadType:%d not registered", payload_type);
return -1;
}
payload_type_ = payload_type;
ModuleRTPUtility::Payload *payload = it->second;
assert(payload);
if (!payload->audio && !audio_configured_) {
video_->SetVideoCodecType(payload->typeSpecific.Video.videoCodecType);
*video_type = payload->typeSpecific.Video.videoCodecType;
video_->SetMaxConfiguredBitrateVideo(payload->typeSpecific.Video.maxRate);
}
return 0;
}
int32_t RTPSender::SendOutgoingData(
const FrameType frame_type, const int8_t payload_type,
const uint32_t capture_timestamp, int64_t capture_time_ms,
const uint8_t *payload_data, const uint32_t payload_size,
const RTPFragmentationHeader *fragmentation,
VideoCodecInformation *codec_info, const RTPVideoTypeHeader *rtp_type_hdr) {
{
// Drop this packet if we're not sending media packets.
CriticalSectionScoped cs(send_critsect_);
if (!sending_media_) {
return 0;
}
}
RtpVideoCodecTypes video_type = kRtpVideoGeneric;
if (CheckPayloadType(payload_type, &video_type) != 0) {
WEBRTC_TRACE(kTraceError, kTraceRtpRtcp, id_,
"%s invalid argument failed to find payload_type:%d",
__FUNCTION__, payload_type);
return -1;
}
if (audio_configured_) {
TRACE_EVENT_ASYNC_STEP1("webrtc", "Audio", capture_timestamp,
"Send", "type", FrameTypeToString(frame_type));
assert(frame_type == kAudioFrameSpeech || frame_type == kAudioFrameCN ||
frame_type == kFrameEmpty);
return audio_->SendAudio(frame_type, payload_type, capture_timestamp,
payload_data, payload_size, fragmentation);
} else {
TRACE_EVENT_ASYNC_STEP1("webrtc", "Video", capture_time_ms,
"Send", "type", FrameTypeToString(frame_type));
assert(frame_type != kAudioFrameSpeech && frame_type != kAudioFrameCN);
if (frame_type == kFrameEmpty) {
if (paced_sender_->Enabled()) {
// Padding is driven by the pacer and not by the encoder.
return 0;
}
return SendPaddingAccordingToBitrate(payload_type, capture_timestamp,
capture_time_ms) ? 0 : -1;
}
return video_->SendVideo(video_type, frame_type, payload_type,
capture_timestamp, capture_time_ms, payload_data,
payload_size, fragmentation, codec_info,
rtp_type_hdr);
}
}
bool RTPSender::SendPaddingAccordingToBitrate(
int8_t payload_type, uint32_t capture_timestamp,
int64_t capture_time_ms) {
// Current bitrate since last estimate(1 second) averaged with the
// estimate since then, to get the most up to date bitrate.
uint32_t current_bitrate = BitrateNow();
int bitrate_diff = target_send_bitrate_ * 1000 - current_bitrate;
if (bitrate_diff <= 0) {
return true;
}
int bytes = 0;
if (current_bitrate == 0) {
// Start up phase. Send one 33.3 ms batch to start with.
bytes = (bitrate_diff / 8) / 30;
} else {
bytes = (bitrate_diff / 8);
// Cap at 200 ms of target send data.
int bytes_cap = target_send_bitrate_ * 25; // 1000 / 8 / 5.
if (bytes > bytes_cap) {
bytes = bytes_cap;
}
}
int bytes_sent = SendPadData(payload_type, capture_timestamp, capture_time_ms,
bytes, kDontRetransmit, false);
// We did not manage to send all bytes. Comparing with 31 due to modulus 32.
return bytes - bytes_sent < 31;
}
int RTPSender::BuildPaddingPacket(uint8_t* packet, int header_length,
int32_t bytes) {
int padding_bytes_in_packet = kMaxPaddingLength;
if (bytes < kMaxPaddingLength) {
padding_bytes_in_packet = bytes;
}
packet[0] |= 0x20; // Set padding bit.
int32_t *data =
reinterpret_cast<int32_t *>(&(packet[header_length]));
// Fill data buffer with random data.
for (int j = 0; j < (padding_bytes_in_packet >> 2); ++j) {
data[j] = rand(); // NOLINT
}
// Set number of padding bytes in the last byte of the packet.
packet[header_length + padding_bytes_in_packet - 1] = padding_bytes_in_packet;
return padding_bytes_in_packet;
}
int RTPSender::SendPadData(int payload_type, uint32_t timestamp,
int64_t capture_time_ms, int32_t bytes,
StorageType store, bool force_full_size_packets) {
// Drop this packet if we're not sending media packets.
if (!sending_media_) {
return bytes;
}
int padding_bytes_in_packet = 0;
int bytes_sent = 0;
for (; bytes > 0; bytes -= padding_bytes_in_packet) {
// Always send full padding packets.
if (force_full_size_packets && bytes < kMaxPaddingLength)
bytes = kMaxPaddingLength;
if (bytes < kMaxPaddingLength) {
if (force_full_size_packets) {
bytes = kMaxPaddingLength;
} else {
// Round to the nearest multiple of 32.
bytes = (bytes + 16) & 0xffe0;
}
}
if (bytes < 32) {
// Sanity don't send empty packets.
break;
}
uint32_t ssrc;
uint16_t sequence_number;
{
CriticalSectionScoped cs(send_critsect_);
// Only send padding packets following the last packet of a frame,
// indicated by the marker bit.
if (!last_packet_marker_bit_)
return bytes_sent;
if (rtx_ == kRtxOff) {
ssrc = ssrc_;
sequence_number = sequence_number_;
++sequence_number_;
} else {
ssrc = ssrc_rtx_;
sequence_number = sequence_number_rtx_;
++sequence_number_rtx_;
}
}
uint8_t padding_packet[IP_PACKET_SIZE];
int header_length = CreateRTPHeader(padding_packet, payload_type, ssrc,
false, timestamp, sequence_number, NULL,
0);
padding_bytes_in_packet = BuildPaddingPacket(padding_packet, header_length,
bytes);
if (0 > SendToNetwork(padding_packet, padding_bytes_in_packet,
header_length, capture_time_ms, store,
PacedSender::kLowPriority)) {
// Error sending the packet.
break;
}
bytes_sent += padding_bytes_in_packet;
}
return bytes_sent;
}
void RTPSender::SetStorePacketsStatus(const bool enable,
const uint16_t number_to_store) {
packet_history_->SetStorePacketsStatus(enable, number_to_store);
}
bool RTPSender::StorePackets() const {
return packet_history_->StorePackets();
}
int32_t RTPSender::ReSendPacket(uint16_t packet_id, uint32_t min_resend_time) {
uint16_t length = IP_PACKET_SIZE;
uint8_t data_buffer[IP_PACKET_SIZE];
uint8_t *buffer_to_send_ptr = data_buffer;
int64_t capture_time_ms;
StorageType type;
if (!packet_history_->GetRTPPacket(packet_id, min_resend_time, data_buffer,
&length, &capture_time_ms, &type)) {
// Packet not found.
return 0;
}
if (length == 0 || type == kDontRetransmit) {
// No bytes copied (packet recently resent, skip resending) or
// packet should not be retransmitted.
return 0;
}
uint8_t data_buffer_rtx[IP_PACKET_SIZE];
if (rtx_ != kRtxOff) {
BuildRtxPacket(data_buffer, &length, data_buffer_rtx);
buffer_to_send_ptr = data_buffer_rtx;
}
ModuleRTPUtility::RTPHeaderParser rtp_parser(data_buffer, length);
RTPHeader header;
rtp_parser.Parse(header);
// Store the time when the packet was last sent or added to pacer.
packet_history_->UpdateResendTime(packet_id);
{
// Update send statistics prior to pacer.
CriticalSectionScoped cs(send_critsect_);
Bitrate::Update(length);
packets_sent_++;
// We on purpose don't add to payload_bytes_sent_ since this is a
// re-transmit and not new payload data.
}
TRACE_EVENT_INSTANT2("webrtc_rtp", "RTPSender::ReSendPacket",
"timestamp", header.timestamp,
"seqnum", header.sequenceNumber);
if (paced_sender_) {
if (!paced_sender_->SendPacket(PacedSender::kHighPriority,
header.ssrc,
header.sequenceNumber,
capture_time_ms,
length - header.headerLength)) {
// We can't send the packet right now.
// We will be called when it is time.
return length;
}
}
if (SendPacketToNetwork(buffer_to_send_ptr, length)) {
return length;
}
return -1;
}
bool RTPSender::SendPacketToNetwork(const uint8_t *packet, uint32_t size) {
int bytes_sent = -1;
if (transport_) {
bytes_sent = transport_->SendPacket(id_, packet, size);
}
TRACE_EVENT_INSTANT2("webrtc_rtp", "RTPSender::SendPacketToNetwork",
"size", size, "sent", bytes_sent);
// TODO(pwesin): Add a separate bitrate for sent bitrate after pacer.
if (bytes_sent <= 0) {
WEBRTC_TRACE(kTraceWarning, kTraceRtpRtcp, id_,
"Transport failed to send packet");
return false;
}
return true;
}
int RTPSender::SelectiveRetransmissions() const {
if (!video_)
return -1;
return video_->SelectiveRetransmissions();
}
int RTPSender::SetSelectiveRetransmissions(uint8_t settings) {
if (!video_)
return -1;
return video_->SetSelectiveRetransmissions(settings);
}
void RTPSender::OnReceivedNACK(
const std::list<uint16_t>& nack_sequence_numbers,
const uint16_t avg_rtt) {
TRACE_EVENT2("webrtc_rtp", "RTPSender::OnReceivedNACK",
"num_seqnum", nack_sequence_numbers.size(), "avg_rtt", avg_rtt);
const int64_t now = clock_->TimeInMilliseconds();
uint32_t bytes_re_sent = 0;
// Enough bandwidth to send NACK?
if (!ProcessNACKBitRate(now)) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_,
"NACK bitrate reached. Skip sending NACK response. Target %d",
target_send_bitrate_);
return;
}
for (std::list<uint16_t>::const_iterator it = nack_sequence_numbers.begin();
it != nack_sequence_numbers.end(); ++it) {
const int32_t bytes_sent = ReSendPacket(*it, 5 + avg_rtt);
if (bytes_sent > 0) {
bytes_re_sent += bytes_sent;
} else if (bytes_sent == 0) {
// The packet has previously been resent.
// Try resending next packet in the list.
continue;
} else if (bytes_sent < 0) {
// Failed to send one Sequence number. Give up the rest in this nack.
WEBRTC_TRACE(kTraceWarning, kTraceRtpRtcp, id_,
"Failed resending RTP packet %d, Discard rest of packets",
*it);
break;
}
// Delay bandwidth estimate (RTT * BW).
if (target_send_bitrate_ != 0 && avg_rtt) {
// kbits/s * ms = bits => bits/8 = bytes
uint32_t target_bytes =
(static_cast<uint32_t>(target_send_bitrate_) * avg_rtt) >> 3;
if (bytes_re_sent > target_bytes) {
break; // Ignore the rest of the packets in the list.
}
}
}
if (bytes_re_sent > 0) {
// TODO(pwestin) consolidate these two methods.
UpdateNACKBitRate(bytes_re_sent, now);
nack_bitrate_.Update(bytes_re_sent);
}
}
bool RTPSender::ProcessNACKBitRate(const uint32_t now) {
uint32_t num = 0;
int32_t byte_count = 0;
const uint32_t avg_interval = 1000;
CriticalSectionScoped cs(send_critsect_);
if (target_send_bitrate_ == 0) {
return true;
}
for (num = 0; num < NACK_BYTECOUNT_SIZE; ++num) {
if ((now - nack_byte_count_times_[num]) > avg_interval) {
// Don't use data older than 1sec.
break;
} else {
byte_count += nack_byte_count_[num];
}
}
int32_t time_interval = avg_interval;
if (num == NACK_BYTECOUNT_SIZE) {
// More than NACK_BYTECOUNT_SIZE nack messages has been received
// during the last msg_interval.
time_interval = now - nack_byte_count_times_[num - 1];
if (time_interval < 0) {
time_interval = avg_interval;
}
}
return (byte_count * 8) < (target_send_bitrate_ * time_interval);
}
void RTPSender::UpdateNACKBitRate(const uint32_t bytes,
const uint32_t now) {
CriticalSectionScoped cs(send_critsect_);
// Save bitrate statistics.
if (bytes > 0) {
if (now == 0) {
// Add padding length.
nack_byte_count_[0] += bytes;
} else {
if (nack_byte_count_times_[0] == 0) {
// First no shift.
} else {
// Shift.
for (int i = (NACK_BYTECOUNT_SIZE - 2); i >= 0; i--) {
nack_byte_count_[i + 1] = nack_byte_count_[i];
nack_byte_count_times_[i + 1] = nack_byte_count_times_[i];
}
}
nack_byte_count_[0] = bytes;
nack_byte_count_times_[0] = now;
}
}
}
// Called from pacer when we can send the packet.
bool RTPSender::TimeToSendPacket(uint16_t sequence_number,
int64_t capture_time_ms) {
StorageType type;
uint16_t length = IP_PACKET_SIZE;
uint8_t data_buffer[IP_PACKET_SIZE];
int64_t stored_time_ms;
if (packet_history_ == NULL) {
// Packet cannot be found. Allow sending to continue.
return true;
}
if (!packet_history_->GetRTPPacket(sequence_number, 0, data_buffer, &length,
&stored_time_ms, &type)) {
// Packet cannot be found. Allow sending to continue.
return true;
}
assert(length > 0);
ModuleRTPUtility::RTPHeaderParser rtp_parser(data_buffer, length);
RTPHeader rtp_header;
rtp_parser.Parse(rtp_header);
TRACE_EVENT_INSTANT2("webrtc_rtp", "RTPSender::TimeToSendPacket",
"timestamp", rtp_header.timestamp,
"seqnum", sequence_number);
int64_t now_ms = clock_->TimeInMilliseconds();
int64_t diff_ms = now_ms - capture_time_ms;
bool updated_transmission_time_offset =
UpdateTransmissionTimeOffset(data_buffer, length, rtp_header, diff_ms);
bool updated_abs_send_time =
UpdateAbsoluteSendTime(data_buffer, length, rtp_header, now_ms);
if (updated_transmission_time_offset || updated_abs_send_time) {
// Update stored packet in case of receiving a re-transmission request.
packet_history_->ReplaceRTPHeader(data_buffer,
rtp_header.sequenceNumber,
rtp_header.headerLength);
}
return SendPacketToNetwork(data_buffer, length);
}
int RTPSender::TimeToSendPadding(int bytes) {
if (!sending_media_) {
return 0;
}
int payload_type;
int64_t capture_time_ms;
uint32_t timestamp;
{
CriticalSectionScoped cs(send_critsect_);
payload_type = (rtx_ == kRtxOff) ? payload_type_ : payload_type_rtx_;
timestamp = timestamp_;
capture_time_ms = capture_time_ms_;
}
return SendPadData(payload_type, timestamp, capture_time_ms, bytes,
kDontStore, true);
}
// TODO(pwestin): send in the RTPHeaderParser to avoid parsing it again.
int32_t RTPSender::SendToNetwork(
uint8_t *buffer, int payload_length, int rtp_header_length,
int64_t capture_time_ms, StorageType storage,
PacedSender::Priority priority) {
ModuleRTPUtility::RTPHeaderParser rtp_parser(
buffer, payload_length + rtp_header_length);
RTPHeader rtp_header;
rtp_parser.Parse(rtp_header);
int64_t now_ms = clock_->TimeInMilliseconds();
// |capture_time_ms| <= 0 is considered invalid.
// TODO(holmer): This should be changed all over Video Engine so that negative
// time is consider invalid, while 0 is considered a valid time.
if (capture_time_ms > 0) {
UpdateTransmissionTimeOffset(buffer, payload_length + rtp_header_length,
rtp_header, now_ms - capture_time_ms);
}
UpdateAbsoluteSendTime(buffer, payload_length + rtp_header_length,
rtp_header, now_ms);
// Used for NACK and to spread out the transmission of packets.
if (packet_history_->PutRTPPacket(buffer, rtp_header_length + payload_length,
max_payload_length_, capture_time_ms,
storage) != 0) {
return -1;
}
// Create and send RTX Packet.
// TODO(pwesin): This should be moved to its own code path triggered by pacer.
bool rtx_sent = false;
if (rtx_ == kRtxAll && storage == kAllowRetransmission) {
uint16_t length_rtx = payload_length + rtp_header_length;
uint8_t data_buffer_rtx[IP_PACKET_SIZE];
BuildRtxPacket(buffer, &length_rtx, data_buffer_rtx);
if (!SendPacketToNetwork(data_buffer_rtx, length_rtx)) return -1;
rtx_sent = true;
}
{
// Update send statistics prior to pacer.
CriticalSectionScoped cs(send_critsect_);
Bitrate::Update(payload_length + rtp_header_length);
++packets_sent_;
payload_bytes_sent_ += payload_length;
if (rtx_sent) {
// The RTX packet.
++packets_sent_;
payload_bytes_sent_ += payload_length;
}
}
if (paced_sender_ && storage != kDontStore) {
if (!paced_sender_->SendPacket(priority, rtp_header.ssrc,
rtp_header.sequenceNumber, capture_time_ms,
payload_length)) {
// We can't send the packet right now.
// We will be called when it is time.
return 0;
}
}
if (SendPacketToNetwork(buffer, payload_length + rtp_header_length)) {
return 0;
}
return -1;
}
void RTPSender::ProcessBitrate() {
CriticalSectionScoped cs(send_critsect_);
Bitrate::Process();
nack_bitrate_.Process();
if (audio_configured_) {
return;
}
video_->ProcessBitrate();
}
uint16_t RTPSender::RTPHeaderLength() const {
uint16_t rtp_header_length = 12;
if (include_csrcs_) {
rtp_header_length += sizeof(uint32_t) * num_csrcs_;
}
rtp_header_length += RtpHeaderExtensionTotalLength();
return rtp_header_length;
}
uint16_t RTPSender::IncrementSequenceNumber() {
CriticalSectionScoped cs(send_critsect_);
return sequence_number_++;
}
void RTPSender::ResetDataCounters() {
packets_sent_ = 0;
payload_bytes_sent_ = 0;
}
uint32_t RTPSender::Packets() const {
// Don't use critsect to avoid potential deadlock.
return packets_sent_;
}
// Number of sent RTP bytes.
// Don't use critsect to avoid potental deadlock.
uint32_t RTPSender::Bytes() const {
return payload_bytes_sent_;
}
int RTPSender::CreateRTPHeader(
uint8_t* header, int8_t payload_type, uint32_t ssrc, bool marker_bit,
uint32_t timestamp, uint16_t sequence_number, const uint32_t* csrcs,
uint8_t num_csrcs) const {
header[0] = 0x80; // version 2.
header[1] = static_cast<uint8_t>(payload_type);
if (marker_bit) {
header[1] |= kRtpMarkerBitMask; // Marker bit is set.
}
ModuleRTPUtility::AssignUWord16ToBuffer(header + 2, sequence_number);
ModuleRTPUtility::AssignUWord32ToBuffer(header + 4, timestamp);
ModuleRTPUtility::AssignUWord32ToBuffer(header + 8, ssrc);
int32_t rtp_header_length = 12;
// Add the CSRCs if any.
if (num_csrcs > 0) {
if (num_csrcs > kRtpCsrcSize) {
// error
assert(false);
return -1;
}
uint8_t *ptr = &header[rtp_header_length];
for (int i = 0; i < num_csrcs; ++i) {
ModuleRTPUtility::AssignUWord32ToBuffer(ptr, csrcs[i]);
ptr += 4;
}
header[0] = (header[0] & 0xf0) | num_csrcs;
// Update length of header.
rtp_header_length += sizeof(uint32_t) * num_csrcs;
}
uint16_t len = BuildRTPHeaderExtension(header + rtp_header_length);
if (len > 0) {
header[0] |= 0x10; // Set extension bit.
rtp_header_length += len;
}
return rtp_header_length;
}
int32_t RTPSender::BuildRTPheader(
uint8_t *data_buffer, const int8_t payload_type,
const bool marker_bit, const uint32_t capture_timestamp,
int64_t capture_time_ms, const bool time_stamp_provided,
const bool inc_sequence_number) {
assert(payload_type >= 0);
CriticalSectionScoped cs(send_critsect_);
if (time_stamp_provided) {
timestamp_ = start_time_stamp_ + capture_timestamp;
} else {
// Make a unique time stamp.
// We can't inc by the actual time, since then we increase the risk of back
// timing.
timestamp_++;
}
uint32_t sequence_number = sequence_number_++;
capture_time_ms_ = capture_time_ms;
last_packet_marker_bit_ = marker_bit;
int csrcs_length = 0;
if (include_csrcs_)
csrcs_length = num_csrcs_;
return CreateRTPHeader(data_buffer, payload_type, ssrc_, marker_bit,
timestamp_, sequence_number, csrcs_, csrcs_length);
}
uint16_t RTPSender::BuildRTPHeaderExtension(uint8_t* data_buffer) const {
if (rtp_header_extension_map_.Size() <= 0) {
return 0;
}
// RTP header extension, RFC 3550.
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | defined by profile | length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | header extension |
// | .... |
//
const uint32_t kPosLength = 2;
const uint32_t kHeaderLength = kRtpOneByteHeaderLength;
// Add extension ID (0xBEDE).
ModuleRTPUtility::AssignUWord16ToBuffer(data_buffer,
kRtpOneByteHeaderExtensionId);
// Add extensions.
uint16_t total_block_length = 0;
RTPExtensionType type = rtp_header_extension_map_.First();
while (type != kRtpExtensionNone) {
uint8_t block_length = 0;
switch (type) {
case kRtpExtensionTransmissionTimeOffset:
block_length = BuildTransmissionTimeOffsetExtension(
data_buffer + kHeaderLength + total_block_length);
break;
case kRtpExtensionAudioLevel:
// Because AudioLevel is handled specially by RTPSenderAudio, we pretend
// we don't have to care about it here, which is true until we wan't to
// use it together with any of the other extensions we support.
break;
case kRtpExtensionAbsoluteSendTime:
block_length = BuildAbsoluteSendTimeExtension(
data_buffer + kHeaderLength + total_block_length);
break;
default:
assert(false);
}
total_block_length += block_length;
type = rtp_header_extension_map_.Next(type);
}
if (total_block_length == 0) {
// No extension added.
return 0;
}
// Set header length (in number of Word32, header excluded).
assert(total_block_length % 4 == 0);
ModuleRTPUtility::AssignUWord16ToBuffer(data_buffer + kPosLength,
total_block_length / 4);
// Total added length.
return kHeaderLength + total_block_length;
}
uint8_t RTPSender::BuildTransmissionTimeOffsetExtension(
uint8_t* data_buffer) const {
// From RFC 5450: Transmission Time Offsets in RTP Streams.
//
// The transmission time is signaled to the receiver in-band using the
// general mechanism for RTP header extensions [RFC5285]. The payload
// of this extension (the transmitted value) is a 24-bit signed integer.
// When added to the RTP timestamp of the packet, it represents the
// "effective" RTP transmission time of the packet, on the RTP
// timescale.
//
// The form of the transmission offset extension block:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=2 | transmission offset |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Get id defined by user.
uint8_t id;
if (rtp_header_extension_map_.GetId(kRtpExtensionTransmissionTimeOffset,
&id) != 0) {
// Not registered.
return 0;
}
size_t pos = 0;
const uint8_t len = 2;
data_buffer[pos++] = (id << 4) + len;
ModuleRTPUtility::AssignUWord24ToBuffer(data_buffer + pos,
transmission_time_offset_);
pos += 3;
assert(pos == kTransmissionTimeOffsetLength);
return kTransmissionTimeOffsetLength;
}
uint8_t RTPSender::BuildAbsoluteSendTimeExtension(
uint8_t* data_buffer) const {
// Absolute send time in RTP streams.
//
// The absolute send time is signaled to the receiver in-band using the
// general mechanism for RTP header extensions [RFC5285]. The payload
// of this extension (the transmitted value) is a 24-bit unsigned integer
// containing the sender's current time in seconds as a fixed point number
// with 18 bits fractional part.
//
// The form of the absolute send time extension block:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | ID | len=2 | absolute send time |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Get id defined by user.
uint8_t id;
if (rtp_header_extension_map_.GetId(kRtpExtensionAbsoluteSendTime,
&id) != 0) {
// Not registered.
return 0;
}
size_t pos = 0;
const uint8_t len = 2;
data_buffer[pos++] = (id << 4) + len;
ModuleRTPUtility::AssignUWord24ToBuffer(data_buffer + pos,
absolute_send_time_);
pos += 3;
assert(pos == kAbsoluteSendTimeLength);
return kAbsoluteSendTimeLength;
}
bool RTPSender::UpdateTransmissionTimeOffset(
uint8_t *rtp_packet, const uint16_t rtp_packet_length,
const RTPHeader &rtp_header, const int64_t time_diff_ms) const {
CriticalSectionScoped cs(send_critsect_);
// Get length until start of header extension block.
int extension_block_pos =
rtp_header_extension_map_.GetLengthUntilBlockStartInBytes(
kRtpExtensionTransmissionTimeOffset);
if (extension_block_pos < 0) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_,
"Failed to update transmission time offset, not registered.");
return false;
}
int block_pos = 12 + rtp_header.numCSRCs + extension_block_pos;
if (rtp_packet_length < block_pos + kTransmissionTimeOffsetLength ||
rtp_header.headerLength <
block_pos + kTransmissionTimeOffsetLength) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_,
"Failed to update transmission time offset, invalid length.");
return false;
}
// Verify that header contains extension.
if (!((rtp_packet[12 + rtp_header.numCSRCs] == 0xBE) &&
(rtp_packet[12 + rtp_header.numCSRCs + 1] == 0xDE))) {
WEBRTC_TRACE(
kTraceStream, kTraceRtpRtcp, id_,
"Failed to update transmission time offset, hdr extension not found.");
return false;
}
// Get id.
uint8_t id = 0;
if (rtp_header_extension_map_.GetId(kRtpExtensionTransmissionTimeOffset,
&id) != 0) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_,
"Failed to update transmission time offset, no id.");
return false;
}
// Verify first byte in block.
const uint8_t first_block_byte = (id << 4) + 2;
if (rtp_packet[block_pos] != first_block_byte) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_,
"Failed to update transmission time offset.");
return false;
}
// Update transmission offset field (converting to a 90 kHz timestamp).
ModuleRTPUtility::AssignUWord24ToBuffer(rtp_packet + block_pos + 1,
time_diff_ms * 90); // RTP timestamp.
return true;
}
bool RTPSender::UpdateAbsoluteSendTime(
uint8_t *rtp_packet, const uint16_t rtp_packet_length,
const RTPHeader &rtp_header, const int64_t now_ms) const {
CriticalSectionScoped cs(send_critsect_);
// Get length until start of header extension block.
int extension_block_pos =
rtp_header_extension_map_.GetLengthUntilBlockStartInBytes(
kRtpExtensionAbsoluteSendTime);
if (extension_block_pos < 0) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_,
"Failed to update absolute send time, not registered.");
return false;
}
int block_pos = 12 + rtp_header.numCSRCs + extension_block_pos;
if (rtp_packet_length < block_pos + kAbsoluteSendTimeLength ||
rtp_header.headerLength < block_pos + kAbsoluteSendTimeLength) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_,
"Failed to update absolute send time, invalid length.");
return false;
}
// Verify that header contains extension.
if (!((rtp_packet[12 + rtp_header.numCSRCs] == 0xBE) &&
(rtp_packet[12 + rtp_header.numCSRCs + 1] == 0xDE))) {
WEBRTC_TRACE(
kTraceStream, kTraceRtpRtcp, id_,
"Failed to update absolute send time, hdr extension not found.");
return false;
}
// Get id.
uint8_t id = 0;
if (rtp_header_extension_map_.GetId(kRtpExtensionAbsoluteSendTime,
&id) != 0) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_,
"Failed to update absolute send time, no id.");
return false;
}
// Verify first byte in block.
const uint8_t first_block_byte = (id << 4) + 2;
if (rtp_packet[block_pos] != first_block_byte) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_,
"Failed to update absolute send time.");
return false;
}
// Update absolute send time field (convert ms to 24-bit unsigned with 18 bit
// fractional part).
ModuleRTPUtility::AssignUWord24ToBuffer(rtp_packet + block_pos + 1,
((now_ms << 18) / 1000) & 0x00ffffff);
return true;
}
void RTPSender::SetSendingStatus(const bool enabled) {
if (enabled) {
uint32_t frequency_hz;
if (audio_configured_) {
uint32_t frequency = audio_->AudioFrequency();
// sanity
switch (frequency) {
case 8000:
case 12000:
case 16000:
case 24000:
case 32000:
break;
default:
assert(false);
return;
}
frequency_hz = frequency;
} else {
frequency_hz = kVideoPayloadTypeFrequency;
}
uint32_t RTPtime = ModuleRTPUtility::GetCurrentRTP(clock_, frequency_hz);
// Will be ignored if it's already configured via API.
SetStartTimestamp(RTPtime, false);
} else {
if (!ssrc_forced_) {
// Generate a new SSRC.
ssrc_db_.ReturnSSRC(ssrc_);
ssrc_ = ssrc_db_.CreateSSRC(); // Can't be 0.
}
// Don't initialize seq number if SSRC passed externally.
if (!sequence_number_forced_ && !ssrc_forced_) {
// Generate a new sequence number.
sequence_number_ =
rand() / (RAND_MAX / MAX_INIT_RTP_SEQ_NUMBER); // NOLINT
}
}
}
void RTPSender::SetSendingMediaStatus(const bool enabled) {
CriticalSectionScoped cs(send_critsect_);
sending_media_ = enabled;
}
bool RTPSender::SendingMedia() const {
CriticalSectionScoped cs(send_critsect_);
return sending_media_;
}
uint32_t RTPSender::Timestamp() const {
CriticalSectionScoped cs(send_critsect_);
return timestamp_;
}
void RTPSender::SetStartTimestamp(uint32_t timestamp, bool force) {
CriticalSectionScoped cs(send_critsect_);
if (force) {
start_time_stamp_forced_ = force;
start_time_stamp_ = timestamp;
} else {
if (!start_time_stamp_forced_) {
start_time_stamp_ = timestamp;
}
}
}
uint32_t RTPSender::StartTimestamp() const {
CriticalSectionScoped cs(send_critsect_);
return start_time_stamp_;
}
uint32_t RTPSender::GenerateNewSSRC() {
// If configured via API, return 0.
CriticalSectionScoped cs(send_critsect_);
if (ssrc_forced_) {
return 0;
}
ssrc_ = ssrc_db_.CreateSSRC(); // Can't be 0.
return ssrc_;
}
void RTPSender::SetSSRC(uint32_t ssrc) {
// This is configured via the API.
CriticalSectionScoped cs(send_critsect_);
if (ssrc_ == ssrc && ssrc_forced_) {
return; // Since it's same ssrc, don't reset anything.
}
ssrc_forced_ = true;
ssrc_db_.ReturnSSRC(ssrc_);
ssrc_db_.RegisterSSRC(ssrc);
ssrc_ = ssrc;
if (!sequence_number_forced_) {
sequence_number_ =
rand() / (RAND_MAX / MAX_INIT_RTP_SEQ_NUMBER); // NOLINT
}
}
uint32_t RTPSender::SSRC() const {
CriticalSectionScoped cs(send_critsect_);
return ssrc_;
}
void RTPSender::SetCSRCStatus(const bool include) {
include_csrcs_ = include;
}
void RTPSender::SetCSRCs(const uint32_t arr_of_csrc[kRtpCsrcSize],
const uint8_t arr_length) {
assert(arr_length <= kRtpCsrcSize);
CriticalSectionScoped cs(send_critsect_);
for (int i = 0; i < arr_length; i++) {
csrcs_[i] = arr_of_csrc[i];
}
num_csrcs_ = arr_length;
}
int32_t RTPSender::CSRCs(uint32_t arr_of_csrc[kRtpCsrcSize]) const {
assert(arr_of_csrc);
CriticalSectionScoped cs(send_critsect_);
for (int i = 0; i < num_csrcs_ && i < kRtpCsrcSize; i++) {
arr_of_csrc[i] = csrcs_[i];
}
return num_csrcs_;
}
void RTPSender::SetSequenceNumber(uint16_t seq) {
CriticalSectionScoped cs(send_critsect_);
sequence_number_forced_ = true;
sequence_number_ = seq;
}
uint16_t RTPSender::SequenceNumber() const {
CriticalSectionScoped cs(send_critsect_);
return sequence_number_;
}
// Audio.
int32_t RTPSender::SendTelephoneEvent(const uint8_t key,
const uint16_t time_ms,
const uint8_t level) {
if (!audio_configured_) {
return -1;
}
return audio_->SendTelephoneEvent(key, time_ms, level);
}
bool RTPSender::SendTelephoneEventActive(int8_t *telephone_event) const {
if (!audio_configured_) {
return false;
}
return audio_->SendTelephoneEventActive(*telephone_event);
}
int32_t RTPSender::SetAudioPacketSize(
const uint16_t packet_size_samples) {
if (!audio_configured_) {
return -1;
}
return audio_->SetAudioPacketSize(packet_size_samples);
}
int32_t RTPSender::SetAudioLevelIndicationStatus(const bool enable,
const uint8_t ID) {
if (!audio_configured_) {
return -1;
}
return audio_->SetAudioLevelIndicationStatus(enable, ID);
}
int32_t RTPSender::AudioLevelIndicationStatus(bool *enable,
uint8_t* id) const {
return audio_->AudioLevelIndicationStatus(*enable, *id);
}
int32_t RTPSender::SetAudioLevel(const uint8_t level_d_bov) {
return audio_->SetAudioLevel(level_d_bov);
}
int32_t RTPSender::SetRED(const int8_t payload_type) {
if (!audio_configured_) {
return -1;
}
return audio_->SetRED(payload_type);
}
int32_t RTPSender::RED(int8_t *payload_type) const {
if (!audio_configured_) {
return -1;
}
return audio_->RED(*payload_type);
}
// Video
VideoCodecInformation *RTPSender::CodecInformationVideo() {
if (audio_configured_) {
return NULL;
}
return video_->CodecInformationVideo();
}
RtpVideoCodecTypes RTPSender::VideoCodecType() const {
assert(!audio_configured_ && "Sender is an audio stream!");
return video_->VideoCodecType();
}
uint32_t RTPSender::MaxConfiguredBitrateVideo() const {
if (audio_configured_) {
return 0;
}
return video_->MaxConfiguredBitrateVideo();
}
int32_t RTPSender::SendRTPIntraRequest() {
if (audio_configured_) {
return -1;
}
return video_->SendRTPIntraRequest();
}
int32_t RTPSender::SetGenericFECStatus(
const bool enable, const uint8_t payload_type_red,
const uint8_t payload_type_fec) {
if (audio_configured_) {
return -1;
}
return video_->SetGenericFECStatus(enable, payload_type_red,
payload_type_fec);
}
int32_t RTPSender::GenericFECStatus(
bool *enable, uint8_t *payload_type_red,
uint8_t *payload_type_fec) const {
if (audio_configured_) {
return -1;
}
return video_->GenericFECStatus(
*enable, *payload_type_red, *payload_type_fec);
}
int32_t RTPSender::SetFecParameters(
const FecProtectionParams *delta_params,
const FecProtectionParams *key_params) {
if (audio_configured_) {
return -1;
}
return video_->SetFecParameters(delta_params, key_params);
}
void RTPSender::BuildRtxPacket(uint8_t* buffer, uint16_t* length,
uint8_t* buffer_rtx) {
CriticalSectionScoped cs(send_critsect_);
uint8_t* data_buffer_rtx = buffer_rtx;
// Add RTX header.
ModuleRTPUtility::RTPHeaderParser rtp_parser(
reinterpret_cast<const uint8_t *>(buffer), *length);
RTPHeader rtp_header;
rtp_parser.Parse(rtp_header);
// Add original RTP header.
memcpy(data_buffer_rtx, buffer, rtp_header.headerLength);
// Replace payload type, if a specific type is set for RTX.
if (payload_type_rtx_ != -1) {
data_buffer_rtx[1] = static_cast<uint8_t>(payload_type_rtx_);
if (rtp_header.markerBit)
data_buffer_rtx[1] |= kRtpMarkerBitMask;
}
// Replace sequence number.
uint8_t *ptr = data_buffer_rtx + 2;
ModuleRTPUtility::AssignUWord16ToBuffer(ptr, sequence_number_rtx_++);
// Replace SSRC.
ptr += 6;
ModuleRTPUtility::AssignUWord32ToBuffer(ptr, ssrc_rtx_);
// Add OSN (original sequence number).
ptr = data_buffer_rtx + rtp_header.headerLength;
ModuleRTPUtility::AssignUWord16ToBuffer(ptr, rtp_header.sequenceNumber);
ptr += 2;
// Add original payload data.
memcpy(ptr, buffer + rtp_header.headerLength,
*length - rtp_header.headerLength);
*length += 2;
}
} // namespace webrtc