blob: 2be6856c406395577a7b49c8c313eb8cfcfe3d48 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <vector>
#include "modules/video_coding/encoded_frame.h"
#include "modules/video_coding/generic_encoder.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "rtc_base/fakeclock.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
inline size_t FrameSize(const size_t& min_frame_size,
const size_t& max_frame_size,
const int& s,
const int& i) {
return min_frame_size + (s + 1) * i % (max_frame_size - min_frame_size);
}
class FakeEncodedImageCallback : public EncodedImageCallback {
public:
FakeEncodedImageCallback()
: last_frame_was_timing_(false),
num_frames_dropped_(0),
last_capture_timestamp_(-1) {}
Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) override {
last_frame_was_timing_ =
encoded_image.timing_.flags != VideoSendTiming::kInvalid &&
encoded_image.timing_.flags != VideoSendTiming::kNotTriggered;
last_capture_timestamp_ = encoded_image.capture_time_ms_;
return Result(Result::OK);
};
void OnDroppedFrame(DropReason reason) override { ++num_frames_dropped_; }
bool WasTimingFrame() { return last_frame_was_timing_; }
size_t GetNumFramesDropped() { return num_frames_dropped_; }
int64_t GetLastCaptureTimestamp() { return last_capture_timestamp_; }
private:
bool last_frame_was_timing_;
size_t num_frames_dropped_;
int64_t last_capture_timestamp_;
};
enum class FrameType {
kNormal,
kTiming,
kDropped,
};
// Emulates |num_frames| on |num_streams| frames with capture timestamps
// increased by 1 from 0. Size of each frame is between
// |min_frame_size| and |max_frame_size|, outliers are counted relatevely to
// |average_frame_sizes[]| for each stream.
std::vector<std::vector<FrameType>> GetTimingFrames(
const int64_t delay_ms,
const size_t min_frame_size,
const size_t max_frame_size,
std::vector<size_t> average_frame_sizes,
const int num_streams,
const int num_frames) {
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
const size_t kFramerate = 30;
callback.SetTimingFramesThresholds(
{delay_ms, kDefaultOutlierFrameSizePercent});
callback.OnFrameRateChanged(kFramerate);
int s, i;
std::vector<std::vector<FrameType>> result(num_streams);
for (s = 0; s < num_streams; ++s)
callback.OnTargetBitrateChanged(average_frame_sizes[s] * kFramerate, s);
int64_t current_timestamp = 0;
for (i = 0; i < num_frames; ++i) {
current_timestamp += 1;
for (s = 0; s < num_streams; ++s) {
// every (5+s)-th frame is dropped on s-th stream by design.
bool dropped = i % (5 + s) == 0;
EncodedImage image;
CodecSpecificInfo codec_specific;
image._length = FrameSize(min_frame_size, max_frame_size, s, i);
image.capture_time_ms_ = current_timestamp;
image.SetTimestamp(static_cast<uint32_t>(current_timestamp * 90));
image.SetSpatialIndex(s);
codec_specific.codecType = kVideoCodecGeneric;
callback.OnEncodeStarted(static_cast<uint32_t>(current_timestamp * 90),
current_timestamp, s);
if (dropped) {
result[s].push_back(FrameType::kDropped);
continue;
}
callback.OnEncodedImage(image, &codec_specific, nullptr);
if (sink.WasTimingFrame()) {
result[s].push_back(FrameType::kTiming);
} else {
result[s].push_back(FrameType::kNormal);
}
}
}
return result;
}
} // namespace
TEST(TestVCMEncodedFrameCallback, MarksTimingFramesPeriodicallyTogether) {
const int64_t kDelayMs = 29;
const size_t kMinFrameSize = 10;
const size_t kMaxFrameSize = 20;
const int kNumFrames = 1000;
const int kNumStreams = 3;
// No outliers as 1000 is larger than anything from range [10,20].
const std::vector<size_t> kAverageSize = {1000, 1000, 1000};
auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize,
kAverageSize, kNumStreams, kNumFrames);
// Timing frames should be tirggered every delayMs.
// As no outliers are expected, frames on all streams have to be
// marked together.
int last_timing_frame = -1;
for (int i = 0; i < kNumFrames; ++i) {
int num_normal = 0;
int num_timing = 0;
int num_dropped = 0;
for (int s = 0; s < kNumStreams; ++s) {
if (frames[s][i] == FrameType::kTiming) {
++num_timing;
} else if (frames[s][i] == FrameType::kNormal) {
++num_normal;
} else {
++num_dropped;
}
}
// Can't have both normal and timing frames at the same timstamp.
EXPECT_TRUE(num_timing == 0 || num_normal == 0);
if (num_dropped < kNumStreams) {
if (last_timing_frame == -1 || i >= last_timing_frame + kDelayMs) {
// If didn't have timing frames for a period, current sent frame has to
// be one. No normal frames should be sent.
EXPECT_EQ(num_normal, 0);
} else {
// No unneeded timing frames should be sent.
EXPECT_EQ(num_timing, 0);
}
}
if (num_timing > 0)
last_timing_frame = i;
}
}
TEST(TestVCMEncodedFrameCallback, MarksOutliers) {
const int64_t kDelayMs = 29;
const size_t kMinFrameSize = 2495;
const size_t kMaxFrameSize = 2505;
const int kNumFrames = 1000;
const int kNumStreams = 3;
// Possible outliers as 1000 lies in range [995, 1005].
const std::vector<size_t> kAverageSize = {998, 1000, 1004};
auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize,
kAverageSize, kNumStreams, kNumFrames);
// All outliers should be marked.
for (int i = 0; i < kNumFrames; ++i) {
for (int s = 0; s < kNumStreams; ++s) {
if (FrameSize(kMinFrameSize, kMaxFrameSize, s, i) >=
kAverageSize[s] * kDefaultOutlierFrameSizePercent / 100) {
// Too big frame. May be dropped or timing, but not normal.
EXPECT_NE(frames[s][i], FrameType::kNormal);
}
}
}
}
TEST(TestVCMEncodedFrameCallback, NoTimingFrameIfNoEncodeStartTime) {
EncodedImage image;
CodecSpecificInfo codec_specific;
int64_t timestamp = 1;
image._length = 500;
image.capture_time_ms_ = timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
codec_specific.codecType = kVideoCodecGeneric;
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
VideoCodec::TimingFrameTriggerThresholds thresholds;
thresholds.delay_ms = 1; // Make all frames timing frames.
callback.SetTimingFramesThresholds(thresholds);
callback.OnTargetBitrateChanged(500, 0);
// Verify a single frame works with encode start time set.
callback.OnEncodeStarted(static_cast<uint32_t>(timestamp * 90), timestamp, 0);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_TRUE(sink.WasTimingFrame());
// New frame, now skip OnEncodeStarted. Should not result in timing frame.
image.capture_time_ms_ = ++timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_FALSE(sink.WasTimingFrame());
}
TEST(TestVCMEncodedFrameCallback, AdjustsCaptureTimeForInternalSourceEncoder) {
rtc::ScopedFakeClock clock;
clock.SetTimeMicros(1234567);
EncodedImage image;
CodecSpecificInfo codec_specific;
const int64_t kEncodeStartDelayMs = 2;
const int64_t kEncodeFinishDelayMs = 10;
int64_t timestamp = 1;
image._length = 500;
image.capture_time_ms_ = timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
codec_specific.codecType = kVideoCodecGeneric;
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
callback.SetInternalSource(true);
VideoCodec::TimingFrameTriggerThresholds thresholds;
thresholds.delay_ms = 1; // Make all frames timing frames.
callback.SetTimingFramesThresholds(thresholds);
callback.OnTargetBitrateChanged(500, 0);
// Verify a single frame without encode timestamps isn't a timing frame.
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_FALSE(sink.WasTimingFrame());
// New frame, but this time with encode timestamps set in timing_.
// This should be a timing frame.
image.capture_time_ms_ = ++timestamp;
image.SetTimestamp(static_cast<uint32_t>(timestamp * 90));
image.timing_.encode_start_ms = timestamp + kEncodeStartDelayMs;
image.timing_.encode_finish_ms = timestamp + kEncodeFinishDelayMs;
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_TRUE(sink.WasTimingFrame());
// Frame is captured kEncodeFinishDelayMs before it's encoded, so restored
// capture timestamp should be kEncodeFinishDelayMs in the past.
EXPECT_EQ(
sink.GetLastCaptureTimestamp(),
clock.TimeNanos() / rtc::kNumNanosecsPerMillisec - kEncodeFinishDelayMs);
}
TEST(TestVCMEncodedFrameCallback, NotifiesAboutDroppedFrames) {
EncodedImage image;
CodecSpecificInfo codec_specific;
const int64_t kTimestampMs1 = 47721840;
const int64_t kTimestampMs2 = 47721850;
const int64_t kTimestampMs3 = 47721860;
const int64_t kTimestampMs4 = 47721870;
codec_specific.codecType = kVideoCodecGeneric;
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
// Any non-zero bitrate needed to be set before the first frame.
callback.OnTargetBitrateChanged(500, 0);
image.capture_time_ms_ = kTimestampMs1;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
callback.OnEncodeStarted(image.Timestamp(), image.capture_time_ms_, 0);
EXPECT_EQ(0u, sink.GetNumFramesDropped());
callback.OnEncodedImage(image, &codec_specific, nullptr);
image.capture_time_ms_ = kTimestampMs2;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
callback.OnEncodeStarted(image.Timestamp(), image.capture_time_ms_, 0);
// No OnEncodedImageCall for timestamp2. Yet, at this moment it's not known
// that frame with timestamp2 was dropped.
EXPECT_EQ(0u, sink.GetNumFramesDropped());
image.capture_time_ms_ = kTimestampMs3;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
callback.OnEncodeStarted(image.Timestamp(), image.capture_time_ms_, 0);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_EQ(1u, sink.GetNumFramesDropped());
image.capture_time_ms_ = kTimestampMs4;
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
callback.OnEncodeStarted(image.Timestamp(), image.capture_time_ms_, 0);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_EQ(1u, sink.GetNumFramesDropped());
}
TEST(TestVCMEncodedFrameCallback, RestoresCaptureTimestamps) {
EncodedImage image;
CodecSpecificInfo codec_specific;
const int64_t kTimestampMs = 123456;
codec_specific.codecType = kVideoCodecGeneric;
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
// Any non-zero bitrate needed to be set before the first frame.
callback.OnTargetBitrateChanged(500, 0);
image.capture_time_ms_ = kTimestampMs; // Incorrect timesetamp.
image.SetTimestamp(static_cast<uint32_t>(image.capture_time_ms_ * 90));
callback.OnEncodeStarted(image.Timestamp(), image.capture_time_ms_, 0);
image.capture_time_ms_ = 0; // Incorrect timesetamp.
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_EQ(kTimestampMs, sink.GetLastCaptureTimestamp());
}
} // namespace test
} // namespace webrtc