| /* | 
 |  * SpanDSP - a series of DSP components for telephony | 
 |  * | 
 |  * g711.h - In line A-law and u-law conversion routines | 
 |  * | 
 |  * Written by Steve Underwood <steveu@coppice.org> | 
 |  * | 
 |  * Copyright (C) 2001 Steve Underwood | 
 |  * | 
 |  *  Despite my general liking of the GPL, I place this code in the | 
 |  *  public domain for the benefit of all mankind - even the slimy | 
 |  *  ones who might try to proprietize my work and use it to my | 
 |  *  detriment. | 
 |  * | 
 |  * $Id: g711.h,v 1.1 2006/06/07 15:46:39 steveu Exp $ | 
 |  * | 
 |  * Modifications for WebRtc, 2011/04/28, by tlegrand: | 
 |  * -Changed to use WebRtc types | 
 |  * -Changed __inline__ to __inline | 
 |  * -Two changes to make implementation bitexact with ITU-T reference | 
 |  * implementation | 
 |  */ | 
 |  | 
 | /*! \page g711_page A-law and mu-law handling | 
 | Lookup tables for A-law and u-law look attractive, until you consider the impact | 
 | on the CPU cache. If it causes a substantial area of your processor cache to get | 
 | hit too often, cache sloshing will severely slow things down. The main reason | 
 | these routines are slow in C, is the lack of direct access to the CPU's "find | 
 | the first 1" instruction. A little in-line assembler fixes that, and the | 
 | conversion routines can be faster than lookup tables, in most real world usage. | 
 | A "find the first 1" instruction is available on most modern CPUs, and is a | 
 | much underused feature. | 
 |  | 
 | If an assembly language method of bit searching is not available, these routines | 
 | revert to a method that can be a little slow, so the cache thrashing might not | 
 | seem so bad :( | 
 |  | 
 | Feel free to submit patches to add fast "find the first 1" support for your own | 
 | favourite processor. | 
 |  | 
 | Look up tables are used for transcoding between A-law and u-law, since it is | 
 | difficult to achieve the precise transcoding procedure laid down in the G.711 | 
 | specification by other means. | 
 | */ | 
 |  | 
 | #ifndef MODULES_THIRD_PARTY_G711_G711_H_ | 
 | #define MODULES_THIRD_PARTY_G711_G711_H_ | 
 |  | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | #include <stdint.h> | 
 |  | 
 | #if defined(__i386__) | 
 | /*! \brief Find the bit position of the highest set bit in a word | 
 |     \param bits The word to be searched | 
 |     \return The bit number of the highest set bit, or -1 if the word is zero. */ | 
 | static __inline__ int top_bit(unsigned int bits) { | 
 |   int res; | 
 |  | 
 |   __asm__ __volatile__( | 
 |       " movl $-1,%%edx;\n" | 
 |       " bsrl %%eax,%%edx;\n" | 
 |       : "=d"(res) | 
 |       : "a"(bits)); | 
 |   return res; | 
 | } | 
 |  | 
 | /*! \brief Find the bit position of the lowest set bit in a word | 
 |     \param bits The word to be searched | 
 |     \return The bit number of the lowest set bit, or -1 if the word is zero. */ | 
 | static __inline__ int bottom_bit(unsigned int bits) { | 
 |   int res; | 
 |  | 
 |   __asm__ __volatile__( | 
 |       " movl $-1,%%edx;\n" | 
 |       " bsfl %%eax,%%edx;\n" | 
 |       : "=d"(res) | 
 |       : "a"(bits)); | 
 |   return res; | 
 | } | 
 | #elif defined(__x86_64__) | 
 | static __inline__ int top_bit(unsigned int bits) { | 
 |   int res; | 
 |  | 
 |   __asm__ __volatile__( | 
 |       " movq $-1,%%rdx;\n" | 
 |       " bsrq %%rax,%%rdx;\n" | 
 |       : "=d"(res) | 
 |       : "a"(bits)); | 
 |   return res; | 
 | } | 
 |  | 
 | static __inline__ int bottom_bit(unsigned int bits) { | 
 |   int res; | 
 |  | 
 |   __asm__ __volatile__( | 
 |       " movq $-1,%%rdx;\n" | 
 |       " bsfq %%rax,%%rdx;\n" | 
 |       : "=d"(res) | 
 |       : "a"(bits)); | 
 |   return res; | 
 | } | 
 | #else | 
 | static __inline int top_bit(unsigned int bits) { | 
 |   int i; | 
 |  | 
 |   if (bits == 0) { | 
 |     return -1; | 
 |   } | 
 |   i = 0; | 
 |   if (bits & 0xFFFF0000) { | 
 |     bits &= 0xFFFF0000; | 
 |     i += 16; | 
 |   } | 
 |   if (bits & 0xFF00FF00) { | 
 |     bits &= 0xFF00FF00; | 
 |     i += 8; | 
 |   } | 
 |   if (bits & 0xF0F0F0F0) { | 
 |     bits &= 0xF0F0F0F0; | 
 |     i += 4; | 
 |   } | 
 |   if (bits & 0xCCCCCCCC) { | 
 |     bits &= 0xCCCCCCCC; | 
 |     i += 2; | 
 |   } | 
 |   if (bits & 0xAAAAAAAA) { | 
 |     bits &= 0xAAAAAAAA; | 
 |     i += 1; | 
 |   } | 
 |   return i; | 
 | } | 
 |  | 
 | static __inline int bottom_bit(unsigned int bits) { | 
 |   int i; | 
 |  | 
 |   if (bits == 0) { | 
 |     return -1; | 
 |   } | 
 |   i = 32; | 
 |   if (bits & 0x0000FFFF) { | 
 |     bits &= 0x0000FFFF; | 
 |     i -= 16; | 
 |   } | 
 |   if (bits & 0x00FF00FF) { | 
 |     bits &= 0x00FF00FF; | 
 |     i -= 8; | 
 |   } | 
 |   if (bits & 0x0F0F0F0F) { | 
 |     bits &= 0x0F0F0F0F; | 
 |     i -= 4; | 
 |   } | 
 |   if (bits & 0x33333333) { | 
 |     bits &= 0x33333333; | 
 |     i -= 2; | 
 |   } | 
 |   if (bits & 0x55555555) { | 
 |     bits &= 0x55555555; | 
 |     i -= 1; | 
 |   } | 
 |   return i; | 
 | } | 
 | #endif | 
 |  | 
 | /* N.B. It is tempting to use look-up tables for A-law and u-law conversion. | 
 |  *      However, you should consider the cache footprint. | 
 |  * | 
 |  *      A 64K byte table for linear to x-law and a 512 byte table for x-law to | 
 |  *      linear sound like peanuts these days, and shouldn't an array lookup be | 
 |  *      real fast? No! When the cache sloshes as badly as this one will, a tight | 
 |  *      calculation may be better. The messiest part is normally finding the | 
 |  *      segment, but a little inline assembly can fix that on an i386, x86_64 | 
 |  * and many other modern processors. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Mu-law is basically as follows: | 
 |  * | 
 |  *      Biased Linear Input Code        Compressed Code | 
 |  *      ------------------------        --------------- | 
 |  *      00000001wxyza                   000wxyz | 
 |  *      0000001wxyzab                   001wxyz | 
 |  *      000001wxyzabc                   010wxyz | 
 |  *      00001wxyzabcd                   011wxyz | 
 |  *      0001wxyzabcde                   100wxyz | 
 |  *      001wxyzabcdef                   101wxyz | 
 |  *      01wxyzabcdefg                   110wxyz | 
 |  *      1wxyzabcdefgh                   111wxyz | 
 |  * | 
 |  * Each biased linear code has a leading 1 which identifies the segment | 
 |  * number. The value of the segment number is equal to 7 minus the number | 
 |  * of leading 0's. The quantization interval is directly available as the | 
 |  * four bits wxyz.  * The trailing bits (a - h) are ignored. | 
 |  * | 
 |  * Ordinarily the complement of the resulting code word is used for | 
 |  * transmission, and so the code word is complemented before it is returned. | 
 |  * | 
 |  * For further information see John C. Bellamy's Digital Telephony, 1982, | 
 |  * John Wiley & Sons, pps 98-111 and 472-476. | 
 |  */ | 
 |  | 
 | //#define ULAW_ZEROTRAP                 /* turn on the trap as per the MIL-STD | 
 | //*/ | 
 | #define ULAW_BIAS 0x84 /* Bias for linear code. */ | 
 |  | 
 | /*! \brief Encode a linear sample to u-law | 
 |     \param linear The sample to encode. | 
 |     \return The u-law value. | 
 | */ | 
 | static __inline uint8_t linear_to_ulaw(int linear) { | 
 |   uint8_t u_val; | 
 |   int mask; | 
 |   int seg; | 
 |  | 
 |   /* Get the sign and the magnitude of the value. */ | 
 |   if (linear < 0) { | 
 |     /* WebRtc, tlegrand: -1 added to get bitexact to reference implementation */ | 
 |     linear = ULAW_BIAS - linear - 1; | 
 |     mask = 0x7F; | 
 |   } else { | 
 |     linear = ULAW_BIAS + linear; | 
 |     mask = 0xFF; | 
 |   } | 
 |  | 
 |   seg = top_bit(linear | 0xFF) - 7; | 
 |  | 
 |   /* | 
 |    * Combine the sign, segment, quantization bits, | 
 |    * and complement the code word. | 
 |    */ | 
 |   if (seg >= 8) | 
 |     u_val = (uint8_t)(0x7F ^ mask); | 
 |   else | 
 |     u_val = (uint8_t)(((seg << 4) | ((linear >> (seg + 3)) & 0xF)) ^ mask); | 
 | #ifdef ULAW_ZEROTRAP | 
 |   /* Optional ITU trap */ | 
 |   if (u_val == 0) | 
 |     u_val = 0x02; | 
 | #endif | 
 |   return u_val; | 
 | } | 
 |  | 
 | /*! \brief Decode an u-law sample to a linear value. | 
 |     \param ulaw The u-law sample to decode. | 
 |     \return The linear value. | 
 | */ | 
 | static __inline int16_t ulaw_to_linear(uint8_t ulaw) { | 
 |   int t; | 
 |  | 
 |   /* Complement to obtain normal u-law value. */ | 
 |   ulaw = ~ulaw; | 
 |   /* | 
 |    * Extract and bias the quantization bits. Then | 
 |    * shift up by the segment number and subtract out the bias. | 
 |    */ | 
 |   t = (((ulaw & 0x0F) << 3) + ULAW_BIAS) << (((int)ulaw & 0x70) >> 4); | 
 |   return (int16_t)((ulaw & 0x80) ? (ULAW_BIAS - t) : (t - ULAW_BIAS)); | 
 | } | 
 |  | 
 | /* | 
 |  * A-law is basically as follows: | 
 |  * | 
 |  *      Linear Input Code        Compressed Code | 
 |  *      -----------------        --------------- | 
 |  *      0000000wxyza             000wxyz | 
 |  *      0000001wxyza             001wxyz | 
 |  *      000001wxyzab             010wxyz | 
 |  *      00001wxyzabc             011wxyz | 
 |  *      0001wxyzabcd             100wxyz | 
 |  *      001wxyzabcde             101wxyz | 
 |  *      01wxyzabcdef             110wxyz | 
 |  *      1wxyzabcdefg             111wxyz | 
 |  * | 
 |  * For further information see John C. Bellamy's Digital Telephony, 1982, | 
 |  * John Wiley & Sons, pps 98-111 and 472-476. | 
 |  */ | 
 |  | 
 | #define ALAW_AMI_MASK 0x55 | 
 |  | 
 | /*! \brief Encode a linear sample to A-law | 
 |     \param linear The sample to encode. | 
 |     \return The A-law value. | 
 | */ | 
 | static __inline uint8_t linear_to_alaw(int linear) { | 
 |   int mask; | 
 |   int seg; | 
 |  | 
 |   if (linear >= 0) { | 
 |     /* Sign (bit 7) bit = 1 */ | 
 |     mask = ALAW_AMI_MASK | 0x80; | 
 |   } else { | 
 |     /* Sign (bit 7) bit = 0 */ | 
 |     mask = ALAW_AMI_MASK; | 
 |     /* WebRtc, tlegrand: Changed from -8 to -1 to get bitexact to reference | 
 |      * implementation */ | 
 |     linear = -linear - 1; | 
 |   } | 
 |  | 
 |   /* Convert the scaled magnitude to segment number. */ | 
 |   seg = top_bit(linear | 0xFF) - 7; | 
 |   if (seg >= 8) { | 
 |     if (linear >= 0) { | 
 |       /* Out of range. Return maximum value. */ | 
 |       return (uint8_t)(0x7F ^ mask); | 
 |     } | 
 |     /* We must be just a tiny step below zero */ | 
 |     return (uint8_t)(0x00 ^ mask); | 
 |   } | 
 |   /* Combine the sign, segment, and quantization bits. */ | 
 |   return (uint8_t)(((seg << 4) | ((linear >> ((seg) ? (seg + 3) : 4)) & 0x0F)) ^ | 
 |                    mask); | 
 | } | 
 |  | 
 | /*! \brief Decode an A-law sample to a linear value. | 
 |     \param alaw The A-law sample to decode. | 
 |     \return The linear value. | 
 | */ | 
 | static __inline int16_t alaw_to_linear(uint8_t alaw) { | 
 |   int i; | 
 |   int seg; | 
 |  | 
 |   alaw ^= ALAW_AMI_MASK; | 
 |   i = ((alaw & 0x0F) << 4); | 
 |   seg = (((int)alaw & 0x70) >> 4); | 
 |   if (seg) | 
 |     i = (i + 0x108) << (seg - 1); | 
 |   else | 
 |     i += 8; | 
 |   return (int16_t)((alaw & 0x80) ? i : -i); | 
 | } | 
 |  | 
 | /*! \brief Transcode from A-law to u-law, using the procedure defined in G.711. | 
 |     \param alaw The A-law sample to transcode. | 
 |     \return The best matching u-law value. | 
 | */ | 
 | uint8_t alaw_to_ulaw(uint8_t alaw); | 
 |  | 
 | /*! \brief Transcode from u-law to A-law, using the procedure defined in G.711. | 
 |     \param alaw The u-law sample to transcode. | 
 |     \return The best matching A-law value. | 
 | */ | 
 | uint8_t ulaw_to_alaw(uint8_t ulaw); | 
 |  | 
 | #ifdef __cplusplus | 
 | } | 
 | #endif | 
 |  | 
 | #endif /* MODULES_THIRD_PARTY_G711_G711_H_ */ |