|  | /* | 
|  | *  Copyright 2018 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "call/simulated_network.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <utility> | 
|  |  | 
|  | #include "api/units/data_rate.h" | 
|  | #include "api/units/data_size.h" | 
|  | #include "api/units/time_delta.h" | 
|  | #include "rtc_base/checks.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  | constexpr TimeDelta kDefaultProcessDelay = TimeDelta::Millis(5); | 
|  | }  // namespace | 
|  |  | 
|  | CoDelSimulation::CoDelSimulation() = default; | 
|  | CoDelSimulation::~CoDelSimulation() = default; | 
|  |  | 
|  | bool CoDelSimulation::DropDequeuedPacket(Timestamp now, | 
|  | Timestamp enqueing_time, | 
|  | DataSize packet_size, | 
|  | DataSize queue_size) { | 
|  | constexpr TimeDelta kWindow = TimeDelta::Millis(100); | 
|  | constexpr TimeDelta kDelayThreshold = TimeDelta::Millis(5); | 
|  | constexpr TimeDelta kDropCountMemory = TimeDelta::Millis(1600); | 
|  | constexpr DataSize kMaxPacketSize = DataSize::Bytes(1500); | 
|  |  | 
|  | // Compensates for process interval in simulation; not part of standard CoDel. | 
|  | TimeDelta queuing_time = now - enqueing_time - kDefaultProcessDelay; | 
|  |  | 
|  | if (queue_size < kMaxPacketSize || queuing_time < kDelayThreshold) { | 
|  | enter_drop_state_at_ = Timestamp::PlusInfinity(); | 
|  | state_ = kNormal; | 
|  | return false; | 
|  | } | 
|  | switch (state_) { | 
|  | case kNormal: | 
|  | enter_drop_state_at_ = now + kWindow; | 
|  | state_ = kPending; | 
|  | return false; | 
|  |  | 
|  | case kPending: | 
|  | if (now >= enter_drop_state_at_) { | 
|  | state_ = kDropping; | 
|  | // Starting the drop counter with the drops made during the most recent | 
|  | // drop state period. | 
|  | drop_count_ = drop_count_ - previous_drop_count_; | 
|  | if (now >= last_drop_at_ + kDropCountMemory) | 
|  | drop_count_ = 0; | 
|  | previous_drop_count_ = drop_count_; | 
|  | last_drop_at_ = now; | 
|  | ++drop_count_; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  |  | 
|  | case kDropping: | 
|  | TimeDelta drop_delay = kWindow / sqrt(static_cast<double>(drop_count_)); | 
|  | Timestamp next_drop_at = last_drop_at_ + drop_delay; | 
|  | if (now >= next_drop_at) { | 
|  | if (queue_size - packet_size < kMaxPacketSize) | 
|  | state_ = kPending; | 
|  | last_drop_at_ = next_drop_at; | 
|  | ++drop_count_; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | SimulatedNetwork::SimulatedNetwork(Config config, uint64_t random_seed) | 
|  | : random_(random_seed), bursting_(false) { | 
|  | SetConfig(config); | 
|  | } | 
|  |  | 
|  | SimulatedNetwork::~SimulatedNetwork() = default; | 
|  |  | 
|  | void SimulatedNetwork::SetConfig(const Config& config) { | 
|  | MutexLock lock(&config_lock_); | 
|  | config_state_.config = config;  // Shallow copy of the struct. | 
|  | double prob_loss = config.loss_percent / 100.0; | 
|  | if (config_state_.config.avg_burst_loss_length == -1) { | 
|  | // Uniform loss | 
|  | config_state_.prob_loss_bursting = prob_loss; | 
|  | config_state_.prob_start_bursting = prob_loss; | 
|  | } else { | 
|  | // Lose packets according to a gilbert-elliot model. | 
|  | int avg_burst_loss_length = config.avg_burst_loss_length; | 
|  | int min_avg_burst_loss_length = std::ceil(prob_loss / (1 - prob_loss)); | 
|  |  | 
|  | RTC_CHECK_GT(avg_burst_loss_length, min_avg_burst_loss_length) | 
|  | << "For a total packet loss of " << config.loss_percent | 
|  | << "%% then" | 
|  | " avg_burst_loss_length must be " | 
|  | << min_avg_burst_loss_length + 1 << " or higher."; | 
|  |  | 
|  | config_state_.prob_loss_bursting = (1.0 - 1.0 / avg_burst_loss_length); | 
|  | config_state_.prob_start_bursting = | 
|  | prob_loss / (1 - prob_loss) / avg_burst_loss_length; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SimulatedNetwork::UpdateConfig( | 
|  | std::function<void(BuiltInNetworkBehaviorConfig*)> config_modifier) { | 
|  | MutexLock lock(&config_lock_); | 
|  | config_modifier(&config_state_.config); | 
|  | } | 
|  |  | 
|  | void SimulatedNetwork::PauseTransmissionUntil(int64_t until_us) { | 
|  | MutexLock lock(&config_lock_); | 
|  | config_state_.pause_transmission_until_us = until_us; | 
|  | } | 
|  |  | 
|  | bool SimulatedNetwork::EnqueuePacket(PacketInFlightInfo packet) { | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); | 
|  | ConfigState state = GetConfigState(); | 
|  |  | 
|  | UpdateCapacityQueue(state, packet.send_time_us); | 
|  |  | 
|  | packet.size += state.config.packet_overhead; | 
|  |  | 
|  | if (state.config.queue_length_packets > 0 && | 
|  | capacity_link_.size() >= state.config.queue_length_packets) { | 
|  | // Too many packet on the link, drop this one. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set arrival time = send time for now; actual arrival time will be | 
|  | // calculated in UpdateCapacityQueue. | 
|  | queue_size_bytes_ += packet.size; | 
|  | capacity_link_.push({packet, packet.send_time_us}); | 
|  | if (!next_process_time_us_) { | 
|  | next_process_time_us_ = packet.send_time_us + kDefaultProcessDelay.us(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | absl::optional<int64_t> SimulatedNetwork::NextDeliveryTimeUs() const { | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); | 
|  | return next_process_time_us_; | 
|  | } | 
|  |  | 
|  | void SimulatedNetwork::UpdateCapacityQueue(ConfigState state, | 
|  | int64_t time_now_us) { | 
|  | bool needs_sort = false; | 
|  |  | 
|  | // Catch for thread races. | 
|  | if (time_now_us < last_capacity_link_visit_us_.value_or(time_now_us)) | 
|  | return; | 
|  |  | 
|  | int64_t time_us = last_capacity_link_visit_us_.value_or(time_now_us); | 
|  | // Check the capacity link first. | 
|  | while (!capacity_link_.empty()) { | 
|  | int64_t time_until_front_exits_us = 0; | 
|  | if (state.config.link_capacity_kbps > 0) { | 
|  | int64_t remaining_bits = | 
|  | capacity_link_.front().packet.size * 8 - pending_drain_bits_; | 
|  | RTC_DCHECK(remaining_bits > 0); | 
|  | // Division rounded up - packet not delivered until its last bit is. | 
|  | time_until_front_exits_us = | 
|  | (1000 * remaining_bits + state.config.link_capacity_kbps - 1) / | 
|  | state.config.link_capacity_kbps; | 
|  | } | 
|  |  | 
|  | if (time_us + time_until_front_exits_us > time_now_us) { | 
|  | // Packet at front will not exit yet. Will not enter here on infinite | 
|  | // capacity(=0) so no special handling needed. | 
|  | pending_drain_bits_ += | 
|  | ((time_now_us - time_us) * state.config.link_capacity_kbps) / 1000; | 
|  | break; | 
|  | } | 
|  | if (state.config.link_capacity_kbps > 0) { | 
|  | pending_drain_bits_ += | 
|  | (time_until_front_exits_us * state.config.link_capacity_kbps) / 1000; | 
|  | } else { | 
|  | // Enough to drain the whole queue. | 
|  | pending_drain_bits_ = queue_size_bytes_ * 8; | 
|  | } | 
|  |  | 
|  | // Time to get this packet. | 
|  | PacketInfo packet = capacity_link_.front(); | 
|  | capacity_link_.pop(); | 
|  |  | 
|  | time_us += time_until_front_exits_us; | 
|  | if (state.config.codel_active_queue_management) { | 
|  | while (!capacity_link_.empty() && | 
|  | codel_controller_.DropDequeuedPacket( | 
|  | Timestamp::Micros(time_us), | 
|  | Timestamp::Micros(capacity_link_.front().packet.send_time_us), | 
|  | DataSize::Bytes(capacity_link_.front().packet.size), | 
|  | DataSize::Bytes(queue_size_bytes_))) { | 
|  | PacketInfo dropped = capacity_link_.front(); | 
|  | capacity_link_.pop(); | 
|  | queue_size_bytes_ -= dropped.packet.size; | 
|  | dropped.arrival_time_us = PacketDeliveryInfo::kNotReceived; | 
|  | delay_link_.emplace_back(dropped); | 
|  | } | 
|  | } | 
|  | RTC_DCHECK(time_us >= packet.packet.send_time_us); | 
|  | packet.arrival_time_us = | 
|  | std::max(state.pause_transmission_until_us, time_us); | 
|  | queue_size_bytes_ -= packet.packet.size; | 
|  | pending_drain_bits_ -= packet.packet.size * 8; | 
|  | RTC_DCHECK(pending_drain_bits_ >= 0); | 
|  |  | 
|  | // Drop packets at an average rate of |state.config.loss_percent| with | 
|  | // and average loss burst length of |state.config.avg_burst_loss_length|. | 
|  | if ((bursting_ && random_.Rand<double>() < state.prob_loss_bursting) || | 
|  | (!bursting_ && random_.Rand<double>() < state.prob_start_bursting)) { | 
|  | bursting_ = true; | 
|  | packet.arrival_time_us = PacketDeliveryInfo::kNotReceived; | 
|  | } else { | 
|  | bursting_ = false; | 
|  | int64_t arrival_time_jitter_us = std::max( | 
|  | random_.Gaussian(state.config.queue_delay_ms * 1000, | 
|  | state.config.delay_standard_deviation_ms * 1000), | 
|  | 0.0); | 
|  |  | 
|  | // If reordering is not allowed then adjust arrival_time_jitter | 
|  | // to make sure all packets are sent in order. | 
|  | int64_t last_arrival_time_us = | 
|  | delay_link_.empty() ? -1 : delay_link_.back().arrival_time_us; | 
|  | if (!state.config.allow_reordering && !delay_link_.empty() && | 
|  | packet.arrival_time_us + arrival_time_jitter_us < | 
|  | last_arrival_time_us) { | 
|  | arrival_time_jitter_us = last_arrival_time_us - packet.arrival_time_us; | 
|  | } | 
|  | packet.arrival_time_us += arrival_time_jitter_us; | 
|  | if (packet.arrival_time_us >= last_arrival_time_us) { | 
|  | last_arrival_time_us = packet.arrival_time_us; | 
|  | } else { | 
|  | needs_sort = true; | 
|  | } | 
|  | } | 
|  | delay_link_.emplace_back(packet); | 
|  | } | 
|  | last_capacity_link_visit_us_ = time_now_us; | 
|  | // Cannot save unused capacity for later. | 
|  | pending_drain_bits_ = std::min(pending_drain_bits_, queue_size_bytes_ * 8); | 
|  |  | 
|  | if (needs_sort) { | 
|  | // Packet(s) arrived out of order, make sure list is sorted. | 
|  | std::sort(delay_link_.begin(), delay_link_.end(), | 
|  | [](const PacketInfo& p1, const PacketInfo& p2) { | 
|  | return p1.arrival_time_us < p2.arrival_time_us; | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | SimulatedNetwork::ConfigState SimulatedNetwork::GetConfigState() const { | 
|  | MutexLock lock(&config_lock_); | 
|  | return config_state_; | 
|  | } | 
|  |  | 
|  | std::vector<PacketDeliveryInfo> SimulatedNetwork::DequeueDeliverablePackets( | 
|  | int64_t receive_time_us) { | 
|  | RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); | 
|  | UpdateCapacityQueue(GetConfigState(), receive_time_us); | 
|  | std::vector<PacketDeliveryInfo> packets_to_deliver; | 
|  | // Check the extra delay queue. | 
|  | while (!delay_link_.empty() && | 
|  | receive_time_us >= delay_link_.front().arrival_time_us) { | 
|  | PacketInfo packet_info = delay_link_.front(); | 
|  | packets_to_deliver.emplace_back( | 
|  | PacketDeliveryInfo(packet_info.packet, packet_info.arrival_time_us)); | 
|  | delay_link_.pop_front(); | 
|  | } | 
|  |  | 
|  | if (!delay_link_.empty()) { | 
|  | next_process_time_us_ = delay_link_.front().arrival_time_us; | 
|  | } else if (!capacity_link_.empty()) { | 
|  | next_process_time_us_ = receive_time_us + kDefaultProcessDelay.us(); | 
|  | } else { | 
|  | next_process_time_us_.reset(); | 
|  | } | 
|  | return packets_to_deliver; | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |