| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/video_coding/codecs/test/videoprocessor_integrationtest.h" |
| |
| #include <algorithm> |
| #include <utility> |
| |
| #if defined(WEBRTC_ANDROID) |
| #include "modules/video_coding/codecs/test/android_test_initializer.h" |
| #include "sdk/android/src/jni/androidmediadecoder_jni.h" |
| #include "sdk/android/src/jni/androidmediaencoder_jni.h" |
| #elif defined(WEBRTC_IOS) |
| #include "modules/video_coding/codecs/test/objc_codec_h264_test.h" |
| #endif |
| |
| #include "common_types.h" // NOLINT(build/include) |
| #include "media/base/h264_profile_level_id.h" |
| #include "media/engine/internaldecoderfactory.h" |
| #include "media/engine/internalencoderfactory.h" |
| #include "media/engine/videodecodersoftwarefallbackwrapper.h" |
| #include "media/engine/videoencodersoftwarefallbackwrapper.h" |
| #include "modules/video_coding/codecs/vp8/include/vp8_common_types.h" |
| #include "modules/video_coding/include/video_codec_interface.h" |
| #include "modules/video_coding/include/video_coding.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/cpu_time.h" |
| #include "rtc_base/event.h" |
| #include "rtc_base/file.h" |
| #include "rtc_base/ptr_util.h" |
| #include "system_wrappers/include/sleep.h" |
| #include "test/testsupport/fileutils.h" |
| #include "test/testsupport/metrics/video_metrics.h" |
| |
| namespace webrtc { |
| namespace test { |
| |
| namespace { |
| |
| const int kMaxBitrateMismatchPercent = 20; |
| |
| // Parameters from VP8 wrapper, which control target size of key frames. |
| const float kInitialBufferSize = 0.5f; |
| const float kOptimalBufferSize = 0.6f; |
| const float kScaleKeyFrameSize = 0.5f; |
| |
| void VerifyQuality(const QualityMetricsResult& psnr_result, |
| const QualityMetricsResult& ssim_result, |
| const QualityThresholds& quality_thresholds) { |
| EXPECT_GT(psnr_result.average, quality_thresholds.min_avg_psnr); |
| EXPECT_GT(psnr_result.min, quality_thresholds.min_min_psnr); |
| EXPECT_GT(ssim_result.average, quality_thresholds.min_avg_ssim); |
| EXPECT_GT(ssim_result.min, quality_thresholds.min_min_ssim); |
| } |
| |
| void PrintQualityMetrics(const QualityMetricsResult& psnr_result, |
| const QualityMetricsResult& ssim_result) { |
| printf("Quality statistics\n==\n"); |
| printf("PSNR avg: %f, min: %f\n", psnr_result.average, psnr_result.min); |
| printf("SSIM avg: %f, min: %f\n", ssim_result.average, ssim_result.min); |
| printf("\n"); |
| } |
| |
| bool RunEncodeInRealTime(const TestConfig& config) { |
| if (config.measure_cpu) { |
| return true; |
| } |
| #if defined(WEBRTC_ANDROID) |
| // In order to not overwhelm the OpenMAX buffers in the Android MediaCodec. |
| return (config.hw_encoder || config.hw_decoder); |
| #else |
| return false; |
| #endif |
| } |
| |
| } // namespace |
| |
| void VideoProcessorIntegrationTest::H264KeyframeChecker::CheckEncodedFrame( |
| webrtc::VideoCodecType codec, |
| const EncodedImage& encoded_frame) const { |
| EXPECT_EQ(kVideoCodecH264, codec); |
| bool contains_sps = false; |
| bool contains_pps = false; |
| bool contains_idr = false; |
| const std::vector<webrtc::H264::NaluIndex> nalu_indices = |
| webrtc::H264::FindNaluIndices(encoded_frame._buffer, |
| encoded_frame._length); |
| for (const webrtc::H264::NaluIndex& index : nalu_indices) { |
| webrtc::H264::NaluType nalu_type = webrtc::H264::ParseNaluType( |
| encoded_frame._buffer[index.payload_start_offset]); |
| if (nalu_type == webrtc::H264::NaluType::kSps) { |
| contains_sps = true; |
| } else if (nalu_type == webrtc::H264::NaluType::kPps) { |
| contains_pps = true; |
| } else if (nalu_type == webrtc::H264::NaluType::kIdr) { |
| contains_idr = true; |
| } |
| } |
| if (encoded_frame._frameType == kVideoFrameKey) { |
| EXPECT_TRUE(contains_sps) << "Keyframe should contain SPS."; |
| EXPECT_TRUE(contains_pps) << "Keyframe should contain PPS."; |
| EXPECT_TRUE(contains_idr) << "Keyframe should contain IDR."; |
| } else if (encoded_frame._frameType == kVideoFrameDelta) { |
| EXPECT_FALSE(contains_sps) << "Delta frame should not contain SPS."; |
| EXPECT_FALSE(contains_pps) << "Delta frame should not contain PPS."; |
| EXPECT_FALSE(contains_idr) << "Delta frame should not contain IDR."; |
| } else { |
| RTC_NOTREACHED(); |
| } |
| } |
| |
| class VideoProcessorIntegrationTest::CpuProcessTime final { |
| public: |
| explicit CpuProcessTime(const TestConfig& config) : config_(config) {} |
| ~CpuProcessTime() {} |
| |
| void Start() { |
| if (config_.measure_cpu) { |
| cpu_time_ -= rtc::GetProcessCpuTimeNanos(); |
| wallclock_time_ -= rtc::SystemTimeNanos(); |
| } |
| } |
| void Stop() { |
| if (config_.measure_cpu) { |
| cpu_time_ += rtc::GetProcessCpuTimeNanos(); |
| wallclock_time_ += rtc::SystemTimeNanos(); |
| } |
| } |
| void Print() const { |
| if (config_.measure_cpu) { |
| printf("CPU usage %%: %f\n", GetUsagePercent() / config_.NumberOfCores()); |
| printf("\n"); |
| } |
| } |
| |
| private: |
| double GetUsagePercent() const { |
| return static_cast<double>(cpu_time_) / wallclock_time_ * 100.0; |
| } |
| |
| const TestConfig config_; |
| int64_t cpu_time_ = 0; |
| int64_t wallclock_time_ = 0; |
| }; |
| |
| VideoProcessorIntegrationTest::VideoProcessorIntegrationTest() { |
| #if defined(WEBRTC_ANDROID) |
| InitializeAndroidObjects(); |
| #endif |
| } |
| |
| VideoProcessorIntegrationTest::~VideoProcessorIntegrationTest() = default; |
| |
| // Processes all frames in the clip and verifies the result. |
| void VideoProcessorIntegrationTest::ProcessFramesAndMaybeVerify( |
| const std::vector<RateProfile>& rate_profiles, |
| const std::vector<RateControlThresholds>* rc_thresholds, |
| const QualityThresholds* quality_thresholds, |
| const BitstreamThresholds* bs_thresholds, |
| const VisualizationParams* visualization_params) { |
| RTC_DCHECK(!rate_profiles.empty()); |
| // The Android HW codec needs to be run on a task queue, so we simply always |
| // run the test on a task queue. |
| rtc::TaskQueue task_queue("VidProc TQ"); |
| rtc::Event sync_event(false, false); |
| |
| SetUpAndInitObjects(&task_queue, rate_profiles[0].target_kbps, |
| rate_profiles[0].input_fps, visualization_params); |
| PrintSettings(); |
| |
| // Set initial rates. |
| int rate_update_index = 0; |
| task_queue.PostTask([this, &rate_profiles, rate_update_index] { |
| processor_->SetRates(rate_profiles[rate_update_index].target_kbps, |
| rate_profiles[rate_update_index].input_fps); |
| }); |
| |
| cpu_process_time_->Start(); |
| |
| // Process all frames. |
| int frame_number = 0; |
| const int num_frames = config_.num_frames; |
| RTC_DCHECK_GE(num_frames, 1); |
| while (frame_number < num_frames) { |
| if (RunEncodeInRealTime(config_)) { |
| // Roughly pace the frames. |
| SleepMs(rtc::kNumMillisecsPerSec / |
| rate_profiles[rate_update_index].input_fps); |
| } |
| |
| task_queue.PostTask([this] { processor_->ProcessFrame(); }); |
| ++frame_number; |
| |
| if (frame_number == |
| rate_profiles[rate_update_index].frame_index_rate_update) { |
| ++rate_update_index; |
| RTC_DCHECK_GT(rate_profiles.size(), rate_update_index); |
| |
| task_queue.PostTask([this, &rate_profiles, rate_update_index] { |
| processor_->SetRates(rate_profiles[rate_update_index].target_kbps, |
| rate_profiles[rate_update_index].input_fps); |
| }); |
| } |
| } |
| |
| // Give the VideoProcessor pipeline some time to process the last frame, |
| // and then release the codecs. |
| if (config_.hw_encoder || config_.hw_decoder) { |
| SleepMs(1 * rtc::kNumMillisecsPerSec); |
| } |
| cpu_process_time_->Stop(); |
| |
| std::vector<int> num_dropped_frames; |
| std::vector<int> num_spatial_resizes; |
| sync_event.Reset(); |
| task_queue.PostTask( |
| [this, &num_dropped_frames, &num_spatial_resizes, &sync_event]() { |
| num_dropped_frames = processor_->NumberDroppedFramesPerRateUpdate(); |
| num_spatial_resizes = processor_->NumberSpatialResizesPerRateUpdate(); |
| sync_event.Set(); |
| }); |
| sync_event.Wait(rtc::Event::kForever); |
| |
| ReleaseAndCloseObjects(&task_queue); |
| |
| // Calculate and print rate control statistics. |
| rate_update_index = 0; |
| frame_number = 0; |
| ResetRateControlMetrics(rate_update_index, rate_profiles); |
| while (frame_number < num_frames) { |
| UpdateRateControlMetrics(frame_number); |
| |
| if (bs_thresholds) { |
| VerifyBitstream(frame_number, *bs_thresholds); |
| } |
| |
| ++frame_number; |
| |
| if (frame_number == |
| rate_profiles[rate_update_index].frame_index_rate_update) { |
| PrintRateControlMetrics(rate_update_index, num_dropped_frames, |
| num_spatial_resizes); |
| VerifyRateControlMetrics(rate_update_index, rc_thresholds, |
| num_dropped_frames, num_spatial_resizes); |
| ++rate_update_index; |
| ResetRateControlMetrics(rate_update_index, rate_profiles); |
| } |
| } |
| |
| PrintRateControlMetrics(rate_update_index, num_dropped_frames, |
| num_spatial_resizes); |
| VerifyRateControlMetrics(rate_update_index, rc_thresholds, num_dropped_frames, |
| num_spatial_resizes); |
| |
| // Calculate and print other statistics. |
| EXPECT_EQ(num_frames, static_cast<int>(stats_.size())); |
| stats_.PrintSummary(); |
| cpu_process_time_->Print(); |
| |
| // Calculate and print image quality statistics. |
| // TODO(marpan): Should compute these quality metrics per SetRates update. |
| QualityMetricsResult psnr_result, ssim_result; |
| EXPECT_EQ(0, I420MetricsFromFiles(config_.input_filename.c_str(), |
| config_.output_filename.c_str(), |
| config_.codec_settings.width, |
| config_.codec_settings.height, &psnr_result, |
| &ssim_result)); |
| if (quality_thresholds) { |
| VerifyQuality(psnr_result, ssim_result, *quality_thresholds); |
| } |
| PrintQualityMetrics(psnr_result, ssim_result); |
| |
| // Remove analysis file. |
| if (remove(config_.output_filename.c_str()) < 0) { |
| fprintf(stderr, "Failed to remove temporary file!\n"); |
| } |
| } |
| |
| void VideoProcessorIntegrationTest::CreateEncoderAndDecoder() { |
| std::unique_ptr<cricket::WebRtcVideoEncoderFactory> encoder_factory; |
| if (config_.hw_encoder) { |
| #if defined(WEBRTC_ANDROID) |
| encoder_factory.reset(new jni::MediaCodecVideoEncoderFactory()); |
| #elif defined(WEBRTC_IOS) |
| EXPECT_EQ(kVideoCodecH264, config_.codec_settings.codecType) |
| << "iOS HW codecs only support H264."; |
| encoder_factory = CreateObjCEncoderFactory(); |
| #else |
| RTC_NOTREACHED() << "Only support HW encoder on Android and iOS."; |
| #endif |
| } else { |
| encoder_factory.reset(new cricket::InternalEncoderFactory()); |
| } |
| |
| std::unique_ptr<cricket::WebRtcVideoDecoderFactory> decoder_factory; |
| if (config_.hw_decoder) { |
| #if defined(WEBRTC_ANDROID) |
| decoder_factory.reset(new jni::MediaCodecVideoDecoderFactory()); |
| #elif defined(WEBRTC_IOS) |
| EXPECT_EQ(kVideoCodecH264, config_.codec_settings.codecType) |
| << "iOS HW codecs only support H264."; |
| decoder_factory = CreateObjCDecoderFactory(); |
| #else |
| RTC_NOTREACHED() << "Only support HW decoder on Android and iOS."; |
| #endif |
| } else { |
| decoder_factory.reset(new cricket::InternalDecoderFactory()); |
| } |
| |
| cricket::VideoCodec codec; |
| cricket::VideoDecoderParams decoder_params; // Empty. |
| switch (config_.codec_settings.codecType) { |
| case kVideoCodecVP8: |
| codec = cricket::VideoCodec(cricket::kVp8CodecName); |
| encoder_.reset(encoder_factory->CreateVideoEncoder(codec)); |
| decoder_.reset( |
| decoder_factory->CreateVideoDecoderWithParams(codec, decoder_params)); |
| break; |
| case kVideoCodecVP9: |
| codec = cricket::VideoCodec(cricket::kVp9CodecName); |
| encoder_.reset(encoder_factory->CreateVideoEncoder(codec)); |
| decoder_.reset( |
| decoder_factory->CreateVideoDecoderWithParams(codec, decoder_params)); |
| break; |
| case kVideoCodecH264: |
| codec = cricket::VideoCodec(cricket::kH264CodecName); |
| if (config_.h264_codec_settings.profile == |
| H264::kProfileConstrainedHigh) { |
| const H264::ProfileLevelId constrained_high_profile( |
| H264::kProfileConstrainedHigh, H264::kLevel3_1); |
| codec.SetParam(cricket::kH264FmtpProfileLevelId, |
| *H264::ProfileLevelIdToString(constrained_high_profile)); |
| } else { |
| RTC_CHECK_EQ(config_.h264_codec_settings.profile, |
| H264::kProfileConstrainedBaseline); |
| const H264::ProfileLevelId constrained_baseline_profile( |
| H264::kProfileConstrainedBaseline, H264::kLevel3_1); |
| codec.SetParam( |
| cricket::kH264FmtpProfileLevelId, |
| *H264::ProfileLevelIdToString(constrained_baseline_profile)); |
| } |
| if (config_.h264_codec_settings.packetization_mode == |
| H264PacketizationMode::NonInterleaved) { |
| codec.SetParam(cricket::kH264FmtpPacketizationMode, "1"); |
| } else { |
| RTC_CHECK_EQ(config_.h264_codec_settings.packetization_mode, |
| H264PacketizationMode::SingleNalUnit); |
| codec.SetParam(cricket::kH264FmtpPacketizationMode, "0"); |
| } |
| encoder_.reset(encoder_factory->CreateVideoEncoder(codec)); |
| decoder_.reset( |
| decoder_factory->CreateVideoDecoderWithParams(codec, decoder_params)); |
| break; |
| default: |
| RTC_NOTREACHED(); |
| break; |
| } |
| |
| if (config_.sw_fallback_encoder) { |
| encoder_ = rtc::MakeUnique<VideoEncoderSoftwareFallbackWrapper>( |
| codec, std::move(encoder_)); |
| } |
| if (config_.sw_fallback_decoder) { |
| decoder_ = rtc::MakeUnique<VideoDecoderSoftwareFallbackWrapper>( |
| config_.codec_settings.codecType, std::move(decoder_)); |
| } |
| |
| EXPECT_TRUE(encoder_) << "Encoder not successfully created."; |
| EXPECT_TRUE(decoder_) << "Decoder not successfully created."; |
| } |
| |
| void VideoProcessorIntegrationTest::DestroyEncoderAndDecoder() { |
| encoder_.reset(); |
| decoder_.reset(); |
| } |
| |
| void VideoProcessorIntegrationTest::SetUpAndInitObjects( |
| rtc::TaskQueue* task_queue, |
| const int initial_bitrate_kbps, |
| const int initial_framerate_fps, |
| const VisualizationParams* visualization_params) { |
| CreateEncoderAndDecoder(); |
| |
| // Create file objects for quality analysis. |
| analysis_frame_reader_.reset(new YuvFrameReaderImpl( |
| config_.input_filename, config_.codec_settings.width, |
| config_.codec_settings.height)); |
| analysis_frame_writer_.reset(new YuvFrameWriterImpl( |
| config_.output_filename, config_.codec_settings.width, |
| config_.codec_settings.height)); |
| EXPECT_TRUE(analysis_frame_reader_->Init()); |
| EXPECT_TRUE(analysis_frame_writer_->Init()); |
| |
| if (visualization_params) { |
| const std::string codec_name = |
| CodecTypeToPayloadString(config_.codec_settings.codecType); |
| const std::string implementation_type = config_.hw_encoder ? "hw" : "sw"; |
| // clang-format off |
| const std::string output_filename_base = |
| OutputPath() + config_.filename + "-" + |
| codec_name + "-" + implementation_type + "-" + |
| std::to_string(initial_bitrate_kbps); |
| // clang-format on |
| if (visualization_params->save_encoded_ivf) { |
| rtc::File post_encode_file = |
| rtc::File::Create(output_filename_base + ".ivf"); |
| encoded_frame_writer_ = |
| IvfFileWriter::Wrap(std::move(post_encode_file), 0); |
| } |
| if (visualization_params->save_decoded_y4m) { |
| decoded_frame_writer_.reset(new Y4mFrameWriterImpl( |
| output_filename_base + ".y4m", config_.codec_settings.width, |
| config_.codec_settings.height, initial_framerate_fps)); |
| EXPECT_TRUE(decoded_frame_writer_->Init()); |
| } |
| } |
| |
| cpu_process_time_.reset(new CpuProcessTime(config_)); |
| packet_manipulator_.reset(new PacketManipulatorImpl( |
| &packet_reader_, config_.networking_config, false)); |
| |
| config_.codec_settings.minBitrate = 0; |
| config_.codec_settings.startBitrate = initial_bitrate_kbps; |
| config_.codec_settings.maxFramerate = initial_framerate_fps; |
| |
| rtc::Event sync_event(false, false); |
| task_queue->PostTask([this, &sync_event]() { |
| processor_ = rtc::MakeUnique<VideoProcessor>( |
| encoder_.get(), decoder_.get(), analysis_frame_reader_.get(), |
| analysis_frame_writer_.get(), packet_manipulator_.get(), config_, |
| &stats_, encoded_frame_writer_.get(), decoded_frame_writer_.get()); |
| sync_event.Set(); |
| }); |
| sync_event.Wait(rtc::Event::kForever); |
| } |
| |
| void VideoProcessorIntegrationTest::ReleaseAndCloseObjects( |
| rtc::TaskQueue* task_queue) { |
| rtc::Event sync_event(false, false); |
| task_queue->PostTask([this, &sync_event]() { |
| processor_.reset(); |
| sync_event.Set(); |
| }); |
| sync_event.Wait(rtc::Event::kForever); |
| |
| // The VideoProcessor must be destroyed before the codecs. |
| DestroyEncoderAndDecoder(); |
| |
| // Close the analysis files before we use them for SSIM/PSNR calculations. |
| analysis_frame_reader_->Close(); |
| analysis_frame_writer_->Close(); |
| |
| // Close visualization files. |
| if (encoded_frame_writer_) { |
| EXPECT_TRUE(encoded_frame_writer_->Close()); |
| } |
| if (decoded_frame_writer_) { |
| decoded_frame_writer_->Close(); |
| } |
| } |
| |
| // For every encoded frame, update the rate control metrics. |
| void VideoProcessorIntegrationTest::UpdateRateControlMetrics(int frame_number) { |
| RTC_CHECK_GE(frame_number, 0); |
| |
| const int tl_idx = config_.TemporalLayerForFrame(frame_number); |
| ++actual_.num_frames_layer[tl_idx]; |
| ++actual_.num_frames; |
| |
| const FrameStatistic* frame_stat = stats_.GetFrame(frame_number); |
| FrameType frame_type = frame_stat->frame_type; |
| float framesize_kbits = frame_stat->encoded_frame_size_bytes * 8.0f / 1000.0f; |
| |
| // Update rate mismatch relative to per-frame bandwidth. |
| if (frame_type == kVideoFrameDelta) { |
| // TODO(marpan): Should we count dropped (zero size) frames in mismatch? |
| actual_.sum_delta_framesize_mismatch_layer[tl_idx] += |
| fabs(framesize_kbits - target_.framesize_kbits_layer[tl_idx]) / |
| target_.framesize_kbits_layer[tl_idx]; |
| } else { |
| float key_framesize_kbits = (frame_number == 0) |
| ? target_.key_framesize_kbits_initial |
| : target_.key_framesize_kbits; |
| actual_.sum_key_framesize_mismatch += |
| fabs(framesize_kbits - key_framesize_kbits) / key_framesize_kbits; |
| ++actual_.num_key_frames; |
| } |
| actual_.sum_framesize_kbits += framesize_kbits; |
| actual_.sum_framesize_kbits_layer[tl_idx] += framesize_kbits; |
| |
| // Encoded bitrate: from the start of the update/run to current frame. |
| actual_.kbps = actual_.sum_framesize_kbits * target_.fps / actual_.num_frames; |
| actual_.kbps_layer[tl_idx] = actual_.sum_framesize_kbits_layer[tl_idx] * |
| target_.fps_layer[tl_idx] / |
| actual_.num_frames_layer[tl_idx]; |
| |
| // Number of frames to hit target bitrate. |
| if (actual_.BitrateMismatchPercent(target_.kbps) < |
| kMaxBitrateMismatchPercent) { |
| actual_.num_frames_to_hit_target = |
| std::min(actual_.num_frames, actual_.num_frames_to_hit_target); |
| } |
| } |
| |
| // Verify expected behavior of rate control. |
| void VideoProcessorIntegrationTest::VerifyRateControlMetrics( |
| int rate_update_index, |
| const std::vector<RateControlThresholds>* rc_thresholds, |
| const std::vector<int>& num_dropped_frames, |
| const std::vector<int>& num_spatial_resizes) const { |
| if (!rc_thresholds) |
| return; |
| |
| const RateControlThresholds& rc_threshold = |
| (*rc_thresholds)[rate_update_index]; |
| |
| EXPECT_LE(num_dropped_frames[rate_update_index], |
| rc_threshold.max_num_dropped_frames); |
| EXPECT_EQ(rc_threshold.num_spatial_resizes, |
| num_spatial_resizes[rate_update_index]); |
| |
| EXPECT_LE(actual_.num_frames_to_hit_target, |
| rc_threshold.max_num_frames_to_hit_target); |
| EXPECT_EQ(rc_threshold.num_key_frames, actual_.num_key_frames); |
| EXPECT_LE(actual_.KeyFrameSizeMismatchPercent(), |
| rc_threshold.max_key_framesize_mismatch_percent); |
| EXPECT_LE(actual_.BitrateMismatchPercent(target_.kbps), |
| rc_threshold.max_bitrate_mismatch_percent); |
| |
| const int num_temporal_layers = config_.NumberOfTemporalLayers(); |
| for (int i = 0; i < num_temporal_layers; ++i) { |
| EXPECT_LE(actual_.DeltaFrameSizeMismatchPercent(i), |
| rc_threshold.max_delta_framesize_mismatch_percent); |
| EXPECT_LE(actual_.BitrateMismatchPercent(i, target_.kbps_layer[i]), |
| rc_threshold.max_bitrate_mismatch_percent); |
| } |
| } |
| |
| void VideoProcessorIntegrationTest::PrintRateControlMetrics( |
| int rate_update_index, |
| const std::vector<int>& num_dropped_frames, |
| const std::vector<int>& num_spatial_resizes) const { |
| if (rate_update_index == 0) { |
| printf("Rate control statistics\n==\n"); |
| } |
| |
| printf("Rate update #%d:\n", rate_update_index); |
| printf(" Target bitrate : %d\n", target_.kbps); |
| printf(" Encoded bitrate : %f\n", actual_.kbps); |
| printf(" Frame rate : %d\n", target_.fps); |
| printf(" # processed frames : %d\n", actual_.num_frames); |
| printf(" # frames to convergence : %d\n", actual_.num_frames_to_hit_target); |
| printf(" # dropped frames : %d\n", |
| num_dropped_frames[rate_update_index]); |
| printf(" # spatial resizes : %d\n", |
| num_spatial_resizes[rate_update_index]); |
| printf(" # key frames : %d\n", actual_.num_key_frames); |
| printf(" Key frame rate mismatch : %d\n", |
| actual_.KeyFrameSizeMismatchPercent()); |
| |
| const int num_temporal_layers = config_.NumberOfTemporalLayers(); |
| for (int i = 0; i < num_temporal_layers; ++i) { |
| printf(" Temporal layer #%d:\n", i); |
| printf(" TL%d target bitrate : %f\n", i, target_.kbps_layer[i]); |
| printf(" TL%d encoded bitrate : %f\n", i, actual_.kbps_layer[i]); |
| printf(" TL%d frame rate : %f\n", i, target_.fps_layer[i]); |
| printf(" TL%d # processed frames : %d\n", i, |
| actual_.num_frames_layer[i]); |
| printf(" TL%d frame size %% mismatch : %d\n", i, |
| actual_.DeltaFrameSizeMismatchPercent(i)); |
| printf(" TL%d bitrate %% mismatch : %d\n", i, |
| actual_.BitrateMismatchPercent(i, target_.kbps_layer[i])); |
| printf(" TL%d per-frame bitrate : %f\n", i, |
| target_.framesize_kbits_layer[i]); |
| } |
| printf("\n"); |
| } |
| |
| void VideoProcessorIntegrationTest::PrintSettings() const { |
| printf("VideoProcessor settings\n==\n"); |
| printf(" Total # of frames: %d", analysis_frame_reader_->NumberOfFrames()); |
| printf("%s\n", config_.ToString().c_str()); |
| |
| printf("VideoProcessorIntegrationTest settings\n==\n"); |
| const char* encoder_name = encoder_->ImplementationName(); |
| printf(" Encoder implementation name: %s\n", encoder_name); |
| const char* decoder_name = decoder_->ImplementationName(); |
| printf(" Decoder implementation name: %s\n", decoder_name); |
| if (strcmp(encoder_name, decoder_name) == 0) { |
| printf(" Codec implementation name : %s_%s\n", config_.CodecName().c_str(), |
| encoder_name); |
| } |
| printf("\n"); |
| } |
| |
| void VideoProcessorIntegrationTest::VerifyBitstream( |
| int frame_number, |
| const BitstreamThresholds& bs_thresholds) { |
| RTC_CHECK_GE(frame_number, 0); |
| const FrameStatistic* frame_stat = stats_.GetFrame(frame_number); |
| EXPECT_LE(*(frame_stat->max_nalu_length), bs_thresholds.max_nalu_length); |
| } |
| |
| // Reset quantities before each encoder rate update. |
| void VideoProcessorIntegrationTest::ResetRateControlMetrics( |
| int rate_update_index, |
| const std::vector<RateProfile>& rate_profiles) { |
| RTC_DCHECK_GT(rate_profiles.size(), rate_update_index); |
| // Set new rates. |
| target_.kbps = rate_profiles[rate_update_index].target_kbps; |
| target_.fps = rate_profiles[rate_update_index].input_fps; |
| SetRatesPerTemporalLayer(); |
| |
| // Set key frame target sizes. |
| if (rate_update_index == 0) { |
| target_.key_framesize_kbits_initial = |
| 0.5 * kInitialBufferSize * target_.kbps_layer[0]; |
| } |
| |
| // Set maximum size of key frames, following setting in the VP8 wrapper. |
| float max_key_size = kScaleKeyFrameSize * kOptimalBufferSize * target_.fps; |
| // We don't know exact target size of the key frames (except for first one), |
| // but the minimum in libvpx is ~|3 * per_frame_bandwidth| and maximum is |
| // set by |max_key_size_ * per_frame_bandwidth|. Take middle point/average |
| // as reference for mismatch. Note key frames always correspond to base |
| // layer frame in this test. |
| target_.key_framesize_kbits = |
| 0.5 * (3 + max_key_size) * target_.framesize_kbits_layer[0]; |
| |
| // Reset rate control metrics. |
| actual_ = TestResults(); |
| actual_.num_frames_to_hit_target = // Set to max number of frames. |
| rate_profiles[rate_update_index].frame_index_rate_update; |
| } |
| |
| void VideoProcessorIntegrationTest::SetRatesPerTemporalLayer() { |
| const int num_temporal_layers = config_.NumberOfTemporalLayers(); |
| RTC_DCHECK_LE(num_temporal_layers, kMaxNumTemporalLayers); |
| |
| for (int i = 0; i < num_temporal_layers; ++i) { |
| float bitrate_ratio; |
| if (i > 0) { |
| bitrate_ratio = kVp8LayerRateAlloction[num_temporal_layers - 1][i] - |
| kVp8LayerRateAlloction[num_temporal_layers - 1][i - 1]; |
| } else { |
| bitrate_ratio = kVp8LayerRateAlloction[num_temporal_layers - 1][i]; |
| } |
| target_.kbps_layer[i] = target_.kbps * bitrate_ratio; |
| target_.fps_layer[i] = |
| target_.fps / static_cast<float>(1 << (num_temporal_layers - 1)); |
| } |
| if (num_temporal_layers == 3) { |
| target_.fps_layer[2] = target_.fps / 2.0f; |
| } |
| |
| // Update layer per-frame-bandwidth. |
| for (int i = 0; i < num_temporal_layers; ++i) { |
| target_.framesize_kbits_layer[i] = |
| target_.kbps_layer[i] / target_.fps_layer[i]; |
| } |
| } |
| |
| } // namespace test |
| } // namespace webrtc |