| |
| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/residual_echo_estimator.h" |
| |
| #include <stddef.h> |
| #include <algorithm> |
| #include <vector> |
| |
| #include "api/array_view.h" |
| #include "modules/audio_processing/aec3/reverb_model.h" |
| #include "modules/audio_processing/aec3/reverb_model_fallback.h" |
| #include "rtc_base/checks.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| bool EnableSoftTransparentMode() { |
| return !field_trial::IsEnabled("WebRTC-Aec3SoftTransparentModeKillSwitch"); |
| } |
| |
| bool OverrideEstimatedEchoPathGain() { |
| return !field_trial::IsEnabled("WebRTC-Aec3OverrideEchoPathGainKillSwitch"); |
| } |
| |
| bool UseFixedNonLinearReverbModel() { |
| return field_trial::IsEnabled( |
| "WebRTC-Aec3StandardNonlinearReverbModelKillSwitch"); |
| } |
| |
| // Computes the indexes that will be used for computing spectral power over |
| // the blocks surrounding the delay. |
| void GetRenderIndexesToAnalyze( |
| const VectorBuffer& spectrum_buffer, |
| const EchoCanceller3Config::EchoModel& echo_model, |
| int filter_delay_blocks, |
| bool gain_limiter_running, |
| int headroom, |
| int* idx_start, |
| int* idx_stop) { |
| RTC_DCHECK(idx_start); |
| RTC_DCHECK(idx_stop); |
| if (gain_limiter_running) { |
| if (static_cast<size_t>(headroom) > |
| echo_model.render_post_window_size_init) { |
| *idx_start = spectrum_buffer.OffsetIndex( |
| spectrum_buffer.read, |
| -static_cast<int>(echo_model.render_post_window_size_init)); |
| } else { |
| *idx_start = spectrum_buffer.IncIndex(spectrum_buffer.write); |
| } |
| |
| *idx_stop = spectrum_buffer.OffsetIndex( |
| spectrum_buffer.read, echo_model.render_pre_window_size_init); |
| } else { |
| size_t window_start; |
| size_t window_end; |
| window_start = |
| std::max(0, filter_delay_blocks - |
| static_cast<int>(echo_model.render_pre_window_size)); |
| window_end = filter_delay_blocks + |
| static_cast<int>(echo_model.render_post_window_size); |
| *idx_start = |
| spectrum_buffer.OffsetIndex(spectrum_buffer.read, window_start); |
| *idx_stop = |
| spectrum_buffer.OffsetIndex(spectrum_buffer.read, window_end + 1); |
| } |
| } |
| |
| } // namespace |
| |
| ResidualEchoEstimator::ResidualEchoEstimator(const EchoCanceller3Config& config) |
| : config_(config), |
| soft_transparent_mode_(EnableSoftTransparentMode()), |
| override_estimated_echo_path_gain_(OverrideEstimatedEchoPathGain()), |
| use_fixed_nonlinear_reverb_model_(UseFixedNonLinearReverbModel()) { |
| if (config_.ep_strength.reverb_based_on_render) { |
| echo_reverb_.reset(new ReverbModel()); |
| } else { |
| echo_reverb_fallback.reset( |
| new ReverbModelFallback(config_.filter.main.length_blocks)); |
| } |
| Reset(); |
| } |
| |
| ResidualEchoEstimator::~ResidualEchoEstimator() = default; |
| |
| void ResidualEchoEstimator::Estimate( |
| const AecState& aec_state, |
| const RenderBuffer& render_buffer, |
| const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| const std::array<float, kFftLengthBy2Plus1>& Y2, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| RTC_DCHECK(R2); |
| |
| // Estimate the power of the stationary noise in the render signal. |
| RenderNoisePower(render_buffer, &X2_noise_floor_, &X2_noise_floor_counter_); |
| |
| // Estimate the residual echo power. |
| if (aec_state.UsableLinearEstimate()) { |
| LinearEstimate(S2_linear, aec_state.Erle(), aec_state.ErleUncertainty(), |
| R2); |
| |
| // When there is saturated echo, assume the same spectral content as is |
| // present in the micropone signal. |
| if (aec_state.SaturatedEcho()) { |
| std::copy(Y2.begin(), Y2.end(), R2->begin()); |
| } |
| |
| // Adds the estimated unmodelled echo power to the residual echo power |
| // estimate. |
| if (echo_reverb_) { |
| echo_reverb_->AddReverb( |
| render_buffer.Spectrum(aec_state.FilterLengthBlocks() + 1), |
| aec_state.GetReverbFrequencyResponse(), aec_state.ReverbDecay(), *R2); |
| |
| } else { |
| RTC_DCHECK(echo_reverb_fallback); |
| echo_reverb_fallback->AddEchoReverb(S2_linear, |
| aec_state.FilterDelayBlocks(), |
| aec_state.ReverbDecay(), R2); |
| } |
| |
| } else { |
| // Estimate the echo generating signal power. |
| std::array<float, kFftLengthBy2Plus1> X2; |
| |
| EchoGeneratingPower(render_buffer.GetSpectrumBuffer(), config_.echo_model, |
| render_buffer.Headroom(), aec_state.FilterDelayBlocks(), |
| aec_state.IsSuppressionGainLimitActive(), |
| !aec_state.UseStationaryProperties(), &X2); |
| |
| // Subtract the stationary noise power to avoid stationary noise causing |
| // excessive echo suppression. |
| std::transform(X2.begin(), X2.end(), X2_noise_floor_.begin(), X2.begin(), |
| [&](float a, float b) { |
| return std::max( |
| 0.f, a - config_.echo_model.stationary_gate_slope * b); |
| }); |
| |
| float echo_path_gain; |
| if (override_estimated_echo_path_gain_) { |
| echo_path_gain = aec_state.TransparentMode() && soft_transparent_mode_ |
| ? 0.01f |
| : config_.ep_strength.lf; |
| } else { |
| echo_path_gain = aec_state.TransparentMode() && soft_transparent_mode_ |
| ? 0.01f |
| : aec_state.EchoPathGain(); |
| } |
| NonLinearEstimate(echo_path_gain, X2, Y2, R2); |
| |
| // When there is saturated echo, assume the same spectral content as is |
| // present in the micropone signal. |
| if (aec_state.SaturatedEcho()) { |
| std::copy(Y2.begin(), Y2.end(), R2->begin()); |
| } |
| |
| if (!(aec_state.TransparentMode() && soft_transparent_mode_)) { |
| if (echo_reverb_) { |
| echo_reverb_->AddReverbNoFreqShaping( |
| render_buffer.Spectrum(aec_state.FilterDelayBlocks() + 1), |
| echo_path_gain * echo_path_gain, aec_state.ReverbDecay(), *R2); |
| } else { |
| RTC_DCHECK(echo_reverb_fallback); |
| echo_reverb_fallback->AddEchoReverb(*R2, |
| config_.filter.main.length_blocks, |
| aec_state.ReverbDecay(), R2); |
| } |
| } |
| } |
| |
| if (aec_state.UseStationaryProperties()) { |
| // Scale the echo according to echo audibility. |
| std::array<float, kFftLengthBy2Plus1> residual_scaling; |
| aec_state.GetResidualEchoScaling(residual_scaling); |
| for (size_t k = 0; k < R2->size(); ++k) { |
| (*R2)[k] *= residual_scaling[k]; |
| if (residual_scaling[k] == 0.f) { |
| R2_hold_counter_[k] = 0; |
| } |
| } |
| } |
| if (!soft_transparent_mode_) { |
| // If the echo is deemed inaudible, set the residual echo to zero. |
| if (aec_state.TransparentMode()) { |
| R2->fill(0.f); |
| R2_old_.fill(0.f); |
| R2_hold_counter_.fill(0.f); |
| } |
| } |
| |
| std::copy(R2->begin(), R2->end(), R2_old_.begin()); |
| } |
| |
| void ResidualEchoEstimator::Reset() { |
| if (echo_reverb_) { |
| echo_reverb_->Reset(); |
| } else { |
| RTC_DCHECK(echo_reverb_fallback); |
| echo_reverb_fallback->Reset(); |
| } |
| X2_noise_floor_counter_.fill(config_.echo_model.noise_floor_hold); |
| X2_noise_floor_.fill(config_.echo_model.min_noise_floor_power); |
| R2_old_.fill(0.f); |
| R2_hold_counter_.fill(0.f); |
| } |
| |
| void ResidualEchoEstimator::LinearEstimate( |
| const std::array<float, kFftLengthBy2Plus1>& S2_linear, |
| const std::array<float, kFftLengthBy2Plus1>& erle, |
| absl::optional<float> erle_uncertainty, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| std::fill(R2_hold_counter_.begin(), R2_hold_counter_.end(), 10.f); |
| if (erle_uncertainty) { |
| for (size_t k = 0; k < R2->size(); ++k) { |
| (*R2)[k] = S2_linear[k] * *erle_uncertainty; |
| } |
| } else { |
| std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(), |
| [](float a, float b) { |
| RTC_DCHECK_LT(0.f, a); |
| return b / a; |
| }); |
| } |
| } |
| |
| void ResidualEchoEstimator::NonLinearEstimate( |
| float echo_path_gain, |
| const std::array<float, kFftLengthBy2Plus1>& X2, |
| const std::array<float, kFftLengthBy2Plus1>& Y2, |
| std::array<float, kFftLengthBy2Plus1>* R2) { |
| // Compute preliminary residual echo. |
| std::transform(X2.begin(), X2.end(), R2->begin(), [echo_path_gain](float a) { |
| return a * echo_path_gain * echo_path_gain; |
| }); |
| |
| if (use_fixed_nonlinear_reverb_model_) { |
| for (size_t k = 0; k < R2->size(); ++k) { |
| // Update hold counter. |
| R2_hold_counter_[k] = R2_old_[k] < (*R2)[k] ? 0 : R2_hold_counter_[k] + 1; |
| |
| // Compute the residual echo by holding a maximum echo powers and an echo |
| // fading corresponding to a room with an RT60 value of about 50 ms. |
| (*R2)[k] = |
| R2_hold_counter_[k] < config_.echo_model.nonlinear_hold |
| ? std::max((*R2)[k], R2_old_[k]) |
| : std::min((*R2)[k] + |
| R2_old_[k] * config_.echo_model.nonlinear_release, |
| Y2[k]); |
| } |
| } |
| } |
| |
| void ResidualEchoEstimator::EchoGeneratingPower( |
| const VectorBuffer& spectrum_buffer, |
| const EchoCanceller3Config::EchoModel& echo_model, |
| int headroom_spectrum_buffer, |
| int filter_delay_blocks, |
| bool gain_limiter_running, |
| bool apply_noise_gating, |
| std::array<float, kFftLengthBy2Plus1>* X2) const { |
| int idx_stop, idx_start; |
| |
| RTC_DCHECK(X2); |
| GetRenderIndexesToAnalyze(spectrum_buffer, config_.echo_model, |
| filter_delay_blocks, gain_limiter_running, |
| headroom_spectrum_buffer, &idx_start, &idx_stop); |
| |
| X2->fill(0.f); |
| for (int k = idx_start; k != idx_stop; k = spectrum_buffer.IncIndex(k)) { |
| std::transform(X2->begin(), X2->end(), spectrum_buffer.buffer[k].begin(), |
| X2->begin(), |
| [](float a, float b) { return std::max(a, b); }); |
| } |
| |
| if (apply_noise_gating) { |
| // Apply soft noise gate. |
| std::for_each(X2->begin(), X2->end(), [&](float& a) { |
| if (config_.echo_model.noise_gate_power > a) { |
| a = std::max(0.f, a - config_.echo_model.noise_gate_slope * |
| (config_.echo_model.noise_gate_power - a)); |
| } |
| }); |
| } |
| } |
| |
| void ResidualEchoEstimator::RenderNoisePower( |
| const RenderBuffer& render_buffer, |
| std::array<float, kFftLengthBy2Plus1>* X2_noise_floor, |
| std::array<int, kFftLengthBy2Plus1>* X2_noise_floor_counter) const { |
| RTC_DCHECK(X2_noise_floor); |
| RTC_DCHECK(X2_noise_floor_counter); |
| |
| const auto render_power = render_buffer.Spectrum(0); |
| RTC_DCHECK_EQ(X2_noise_floor->size(), render_power.size()); |
| RTC_DCHECK_EQ(X2_noise_floor_counter->size(), render_power.size()); |
| |
| // Estimate the stationary noise power in a minimum statistics manner. |
| for (size_t k = 0; k < render_power.size(); ++k) { |
| // Decrease rapidly. |
| if (render_power[k] < (*X2_noise_floor)[k]) { |
| (*X2_noise_floor)[k] = render_power[k]; |
| (*X2_noise_floor_counter)[k] = 0; |
| } else { |
| // Increase in a delayed, leaky manner. |
| if ((*X2_noise_floor_counter)[k] >= |
| static_cast<int>(config_.echo_model.noise_floor_hold)) { |
| (*X2_noise_floor)[k] = |
| std::max((*X2_noise_floor)[k] * 1.1f, |
| config_.echo_model.min_noise_floor_power); |
| } else { |
| ++(*X2_noise_floor_counter)[k]; |
| } |
| } |
| } |
| } |
| |
| } // namespace webrtc |