blob: c50e9f6ef9695c19bd46ffd82f9220a836028f75 [file] [log] [blame]
/*
* Copyright 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "sdk/android/src/jni/videoencoderwrapper.h"
#include <utility>
#include "common_video/h264/h264_common.h"
#include "modules/include/module_common_types.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "modules/video_coding/utility/vp8_header_parser.h"
#include "modules/video_coding/utility/vp9_uncompressed_header_parser.h"
#include "rtc_base/logging.h"
#include "sdk/android/generated_video_jni/jni/VideoEncoderWrapper_jni.h"
#include "sdk/android/generated_video_jni/jni/VideoEncoder_jni.h"
#include "sdk/android/native_api/jni/class_loader.h"
#include "sdk/android/native_api/jni/java_types.h"
#include "sdk/android/src/jni/encodedimage.h"
#include "sdk/android/src/jni/videocodecstatus.h"
namespace webrtc {
namespace jni {
VideoEncoderWrapper::VideoEncoderWrapper(JNIEnv* jni,
const JavaRef<jobject>& j_encoder)
: encoder_(jni, j_encoder), int_array_class_(GetClass(jni, "[I")) {
implementation_name_ = GetImplementationName(jni);
initialized_ = false;
num_resets_ = 0;
}
VideoEncoderWrapper::~VideoEncoderWrapper() = default;
int32_t VideoEncoderWrapper::InitEncode(const VideoCodec* codec_settings,
int32_t number_of_cores,
size_t max_payload_size) {
JNIEnv* jni = AttachCurrentThreadIfNeeded();
number_of_cores_ = number_of_cores;
codec_settings_ = *codec_settings;
num_resets_ = 0;
encoder_queue_ = rtc::TaskQueue::Current();
return InitEncodeInternal(jni);
}
int32_t VideoEncoderWrapper::InitEncodeInternal(JNIEnv* jni) {
bool automatic_resize_on;
switch (codec_settings_.codecType) {
case kVideoCodecVP8:
automatic_resize_on = codec_settings_.VP8()->automaticResizeOn;
break;
case kVideoCodecVP9:
automatic_resize_on = codec_settings_.VP9()->automaticResizeOn;
gof_.SetGofInfoVP9(TemporalStructureMode::kTemporalStructureMode1);
gof_idx_ = 0;
break;
default:
automatic_resize_on = true;
}
ScopedJavaLocalRef<jobject> settings = Java_Settings_Constructor(
jni, number_of_cores_, codec_settings_.width, codec_settings_.height,
static_cast<int>(codec_settings_.startBitrate),
static_cast<int>(codec_settings_.maxFramerate),
static_cast<int>(codec_settings_.numberOfSimulcastStreams),
automatic_resize_on);
ScopedJavaLocalRef<jobject> callback =
Java_VideoEncoderWrapper_createEncoderCallback(jni,
jlongFromPointer(this));
int32_t status = JavaToNativeVideoCodecStatus(
jni, Java_VideoEncoder_initEncode(jni, encoder_, settings, callback));
RTC_LOG(LS_INFO) << "initEncode: " << status;
if (status == WEBRTC_VIDEO_CODEC_OK) {
initialized_ = true;
}
return status;
}
int32_t VideoEncoderWrapper::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t VideoEncoderWrapper::Release() {
JNIEnv* jni = AttachCurrentThreadIfNeeded();
int32_t status = JavaToNativeVideoCodecStatus(
jni, Java_VideoEncoder_release(jni, encoder_));
RTC_LOG(LS_INFO) << "release: " << status;
frame_extra_infos_.clear();
initialized_ = false;
encoder_queue_ = nullptr;
return status;
}
int32_t VideoEncoderWrapper::Encode(
const VideoFrame& frame,
const CodecSpecificInfo* /* codec_specific_info */,
const std::vector<FrameType>* frame_types) {
if (!initialized_) {
// Most likely initializing the codec failed.
return WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE;
}
JNIEnv* jni = AttachCurrentThreadIfNeeded();
// Construct encode info.
ScopedJavaLocalRef<jobjectArray> j_frame_types =
NativeToJavaFrameTypeArray(jni, *frame_types);
ScopedJavaLocalRef<jobject> encode_info =
Java_EncodeInfo_Constructor(jni, j_frame_types);
FrameExtraInfo info;
info.capture_time_ns = frame.timestamp_us() * rtc::kNumNanosecsPerMicrosec;
info.timestamp_rtp = frame.timestamp();
frame_extra_infos_.push_back(info);
ScopedJavaLocalRef<jobject> j_frame = NativeToJavaVideoFrame(jni, frame);
ScopedJavaLocalRef<jobject> ret =
Java_VideoEncoder_encode(jni, encoder_, j_frame, encode_info);
ReleaseJavaVideoFrame(jni, j_frame);
return HandleReturnCode(jni, ret, "encode");
}
int32_t VideoEncoderWrapper::SetChannelParameters(uint32_t packet_loss,
int64_t rtt) {
JNIEnv* jni = AttachCurrentThreadIfNeeded();
ScopedJavaLocalRef<jobject> ret = Java_VideoEncoder_setChannelParameters(
jni, encoder_, (jshort)packet_loss, (jlong)rtt);
return HandleReturnCode(jni, ret, "setChannelParameters");
}
int32_t VideoEncoderWrapper::SetRateAllocation(
const VideoBitrateAllocation& allocation,
uint32_t framerate) {
JNIEnv* jni = AttachCurrentThreadIfNeeded();
ScopedJavaLocalRef<jobject> j_bitrate_allocation =
ToJavaBitrateAllocation(jni, allocation);
ScopedJavaLocalRef<jobject> ret = Java_VideoEncoder_setRateAllocation(
jni, encoder_, j_bitrate_allocation, (jint)framerate);
return HandleReturnCode(jni, ret, "setRateAllocation");
}
VideoEncoderWrapper::ScalingSettings VideoEncoderWrapper::GetScalingSettings()
const {
JNIEnv* jni = AttachCurrentThreadIfNeeded();
ScopedJavaLocalRef<jobject> j_scaling_settings =
Java_VideoEncoder_getScalingSettings(jni, encoder_);
bool isOn =
Java_VideoEncoderWrapper_getScalingSettingsOn(jni, j_scaling_settings);
if (!isOn)
return ScalingSettings::kOff;
absl::optional<int> low = JavaToNativeOptionalInt(
jni,
Java_VideoEncoderWrapper_getScalingSettingsLow(jni, j_scaling_settings));
absl::optional<int> high = JavaToNativeOptionalInt(
jni,
Java_VideoEncoderWrapper_getScalingSettingsHigh(jni, j_scaling_settings));
if (low && high)
return ScalingSettings(*low, *high);
switch (codec_settings_.codecType) {
case kVideoCodecVP8: {
// Same as in vp8_impl.cc.
static const int kLowVp8QpThreshold = 29;
static const int kHighVp8QpThreshold = 95;
return ScalingSettings(low.value_or(kLowVp8QpThreshold),
high.value_or(kHighVp8QpThreshold));
}
case kVideoCodecVP9: {
// QP is obtained from VP9-bitstream, so the QP corresponds to the
// bitstream range of [0, 255] and not the user-level range of [0,63].
static const int kLowVp9QpThreshold = 96;
static const int kHighVp9QpThreshold = 185;
return VideoEncoder::ScalingSettings(kLowVp9QpThreshold,
kHighVp9QpThreshold);
}
case kVideoCodecH264: {
// Same as in h264_encoder_impl.cc.
static const int kLowH264QpThreshold = 24;
static const int kHighH264QpThreshold = 37;
return ScalingSettings(low.value_or(kLowH264QpThreshold),
high.value_or(kHighH264QpThreshold));
}
default:
return ScalingSettings::kOff;
}
}
bool VideoEncoderWrapper::SupportsNativeHandle() const {
return true;
}
const char* VideoEncoderWrapper::ImplementationName() const {
return implementation_name_.c_str();
}
void VideoEncoderWrapper::OnEncodedFrame(JNIEnv* jni,
const JavaRef<jobject>& j_caller,
const JavaRef<jobject>& j_buffer,
jint encoded_width,
jint encoded_height,
jlong capture_time_ns,
jint frame_type,
jint rotation,
jboolean complete_frame,
const JavaRef<jobject>& j_qp) {
const uint8_t* buffer =
static_cast<uint8_t*>(jni->GetDirectBufferAddress(j_buffer.obj()));
const size_t buffer_size = jni->GetDirectBufferCapacity(j_buffer.obj());
std::vector<uint8_t> buffer_copy(buffer_size);
memcpy(buffer_copy.data(), buffer, buffer_size);
const int qp = JavaToNativeOptionalInt(jni, j_qp).value_or(-1);
struct Lambda {
VideoEncoderWrapper* video_encoder_wrapper;
std::vector<uint8_t> task_buffer;
int qp;
jint encoded_width;
jint encoded_height;
jlong capture_time_ns;
jint frame_type;
jint rotation;
jboolean complete_frame;
std::deque<FrameExtraInfo>* frame_extra_infos;
EncodedImageCallback* callback;
void operator()() const {
// Encoded frames are delivered in the order received, but some of them
// may be dropped, so remove records of frames older than the current one.
//
// NOTE: if the current frame is associated with Encoder A, in the time
// since this frame was received, Encoder A could have been Release()'ed,
// Encoder B InitEncode()'ed (due to reuse of Encoder A), and frames
// received by Encoder B. Thus there may be frame_extra_infos entries that
// don't belong to us, and we need to be careful not to remove them.
// Removing only those entries older than the current frame provides this
// guarantee.
while (!frame_extra_infos->empty() &&
frame_extra_infos->front().capture_time_ns < capture_time_ns) {
frame_extra_infos->pop_front();
}
if (frame_extra_infos->empty() ||
frame_extra_infos->front().capture_time_ns != capture_time_ns) {
RTC_LOG(LS_WARNING)
<< "Java encoder produced an unexpected frame with timestamp: "
<< capture_time_ns;
return;
}
FrameExtraInfo frame_extra_info = std::move(frame_extra_infos->front());
frame_extra_infos->pop_front();
RTPFragmentationHeader header =
video_encoder_wrapper->ParseFragmentationHeader(task_buffer);
EncodedImage frame(const_cast<uint8_t*>(task_buffer.data()),
task_buffer.size(), task_buffer.size());
frame._encodedWidth = encoded_width;
frame._encodedHeight = encoded_height;
frame.SetTimestamp(frame_extra_info.timestamp_rtp);
frame.capture_time_ms_ = capture_time_ns / rtc::kNumNanosecsPerMillisec;
frame._frameType = (FrameType)frame_type;
frame.rotation_ = (VideoRotation)rotation;
frame._completeFrame = complete_frame;
if (qp == -1) {
frame.qp_ = video_encoder_wrapper->ParseQp(task_buffer);
} else {
frame.qp_ = qp;
}
CodecSpecificInfo info(
video_encoder_wrapper->ParseCodecSpecificInfo(frame));
callback->OnEncodedImage(frame, &info, &header);
}
};
encoder_queue_->PostTask(
Lambda{this, std::move(buffer_copy), qp, encoded_width, encoded_height,
capture_time_ns, frame_type, rotation, complete_frame,
&frame_extra_infos_, callback_});
}
int32_t VideoEncoderWrapper::HandleReturnCode(JNIEnv* jni,
const JavaRef<jobject>& j_value,
const char* method_name) {
int32_t value = JavaToNativeVideoCodecStatus(jni, j_value);
if (value >= 0) { // OK or NO_OUTPUT
return value;
}
RTC_LOG(LS_WARNING) << method_name << ": " << value;
if (value == WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE ||
value == WEBRTC_VIDEO_CODEC_UNINITIALIZED) { // Critical error.
RTC_LOG(LS_WARNING) << "Java encoder requested software fallback.";
return WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE;
}
// Try resetting the codec.
if (Release() == WEBRTC_VIDEO_CODEC_OK &&
InitEncodeInternal(jni) == WEBRTC_VIDEO_CODEC_OK) {
RTC_LOG(LS_WARNING) << "Reset Java encoder.";
return WEBRTC_VIDEO_CODEC_ERROR;
}
RTC_LOG(LS_WARNING) << "Unable to reset Java encoder.";
return WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE;
}
RTPFragmentationHeader VideoEncoderWrapper::ParseFragmentationHeader(
const std::vector<uint8_t>& buffer) {
RTPFragmentationHeader header;
if (codec_settings_.codecType == kVideoCodecH264) {
h264_bitstream_parser_.ParseBitstream(buffer.data(), buffer.size());
// For H.264 search for start codes.
const std::vector<H264::NaluIndex> nalu_idxs =
H264::FindNaluIndices(buffer.data(), buffer.size());
if (nalu_idxs.empty()) {
RTC_LOG(LS_ERROR) << "Start code is not found!";
RTC_LOG(LS_ERROR) << "Data:" << buffer[0] << " " << buffer[1] << " "
<< buffer[2] << " " << buffer[3] << " " << buffer[4]
<< " " << buffer[5];
}
header.VerifyAndAllocateFragmentationHeader(nalu_idxs.size());
for (size_t i = 0; i < nalu_idxs.size(); i++) {
header.fragmentationOffset[i] = nalu_idxs[i].payload_start_offset;
header.fragmentationLength[i] = nalu_idxs[i].payload_size;
header.fragmentationPlType[i] = 0;
header.fragmentationTimeDiff[i] = 0;
}
} else {
// Generate a header describing a single fragment.
header.VerifyAndAllocateFragmentationHeader(1);
header.fragmentationOffset[0] = 0;
header.fragmentationLength[0] = buffer.size();
header.fragmentationPlType[0] = 0;
header.fragmentationTimeDiff[0] = 0;
}
return header;
}
int VideoEncoderWrapper::ParseQp(const std::vector<uint8_t>& buffer) {
int qp;
bool success;
switch (codec_settings_.codecType) {
case kVideoCodecVP8:
success = vp8::GetQp(buffer.data(), buffer.size(), &qp);
break;
case kVideoCodecVP9:
success = vp9::GetQp(buffer.data(), buffer.size(), &qp);
break;
case kVideoCodecH264:
success = h264_bitstream_parser_.GetLastSliceQp(&qp);
break;
default: // Default is to not provide QP.
success = false;
break;
}
return success ? qp : -1; // -1 means unknown QP.
}
CodecSpecificInfo VideoEncoderWrapper::ParseCodecSpecificInfo(
const EncodedImage& frame) {
const bool key_frame = frame._frameType == kVideoFrameKey;
CodecSpecificInfo info;
memset(&info, 0, sizeof(info));
info.codecType = codec_settings_.codecType;
info.codec_name = implementation_name_.c_str();
switch (codec_settings_.codecType) {
case kVideoCodecVP8:
info.codecSpecific.VP8.nonReference = false;
info.codecSpecific.VP8.temporalIdx = kNoTemporalIdx;
info.codecSpecific.VP8.layerSync = false;
info.codecSpecific.VP8.keyIdx = kNoKeyIdx;
break;
case kVideoCodecVP9:
if (key_frame) {
gof_idx_ = 0;
}
info.codecSpecific.VP9.inter_pic_predicted = key_frame ? false : true;
info.codecSpecific.VP9.flexible_mode = false;
info.codecSpecific.VP9.ss_data_available = key_frame ? true : false;
info.codecSpecific.VP9.temporal_idx = kNoTemporalIdx;
info.codecSpecific.VP9.temporal_up_switch = true;
info.codecSpecific.VP9.inter_layer_predicted = false;
info.codecSpecific.VP9.gof_idx =
static_cast<uint8_t>(gof_idx_++ % gof_.num_frames_in_gof);
info.codecSpecific.VP9.num_spatial_layers = 1;
info.codecSpecific.VP9.first_frame_in_picture = true;
info.codecSpecific.VP9.end_of_picture = true;
info.codecSpecific.VP9.spatial_layer_resolution_present = false;
if (info.codecSpecific.VP9.ss_data_available) {
info.codecSpecific.VP9.spatial_layer_resolution_present = true;
info.codecSpecific.VP9.width[0] = frame._encodedWidth;
info.codecSpecific.VP9.height[0] = frame._encodedHeight;
info.codecSpecific.VP9.gof.CopyGofInfoVP9(gof_);
}
break;
default:
break;
}
return info;
}
ScopedJavaLocalRef<jobject> VideoEncoderWrapper::ToJavaBitrateAllocation(
JNIEnv* jni,
const VideoBitrateAllocation& allocation) {
ScopedJavaLocalRef<jobjectArray> j_allocation_array(
jni, jni->NewObjectArray(kMaxSpatialLayers, int_array_class_.obj(),
nullptr /* initial */));
for (int spatial_i = 0; spatial_i < kMaxSpatialLayers; ++spatial_i) {
ScopedJavaLocalRef<jintArray> j_array_spatial_layer(
jni, jni->NewIntArray(kMaxTemporalStreams));
jint* array_spatial_layer = jni->GetIntArrayElements(
j_array_spatial_layer.obj(), nullptr /* isCopy */);
for (int temporal_i = 0; temporal_i < kMaxTemporalStreams; ++temporal_i) {
array_spatial_layer[temporal_i] =
allocation.GetBitrate(spatial_i, temporal_i);
}
jni->ReleaseIntArrayElements(j_array_spatial_layer.obj(),
array_spatial_layer, JNI_COMMIT);
jni->SetObjectArrayElement(j_allocation_array.obj(), spatial_i,
j_array_spatial_layer.obj());
}
return Java_BitrateAllocation_Constructor(jni, j_allocation_array);
}
std::string VideoEncoderWrapper::GetImplementationName(JNIEnv* jni) const {
return JavaToStdString(
jni, Java_VideoEncoder_getImplementationName(jni, encoder_));
}
std::unique_ptr<VideoEncoder> JavaToNativeVideoEncoder(
JNIEnv* jni,
const JavaRef<jobject>& j_encoder) {
const jlong native_encoder =
Java_VideoEncoder_createNativeVideoEncoder(jni, j_encoder);
VideoEncoder* encoder;
if (native_encoder == 0) {
encoder = new VideoEncoderWrapper(jni, j_encoder);
} else {
encoder = reinterpret_cast<VideoEncoder*>(native_encoder);
}
return std::unique_ptr<VideoEncoder>(encoder);
}
bool IsHardwareVideoEncoder(JNIEnv* jni, const JavaRef<jobject>& j_encoder) {
return Java_VideoEncoder_isHardwareEncoder(jni, j_encoder);
}
} // namespace jni
} // namespace webrtc