| /* | 
 |  *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "modules/audio_processing/agc2/noise_level_estimator.h" | 
 |  | 
 | #include <stddef.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <numeric> | 
 |  | 
 | #include "api/array_view.h" | 
 | #include "common_audio/include/audio_util.h" | 
 | #include "modules/audio_processing/logging/apm_data_dumper.h" | 
 | #include "rtc_base/checks.h" | 
 |  | 
 | namespace webrtc { | 
 |  | 
 | namespace { | 
 | constexpr int kFramesPerSecond = 100; | 
 |  | 
 | float FrameEnergy(const AudioFrameView<const float>& audio) { | 
 |   float energy = 0.f; | 
 |   for (size_t k = 0; k < audio.num_channels(); ++k) { | 
 |     float channel_energy = | 
 |         std::accumulate(audio.channel(k).begin(), audio.channel(k).end(), 0.f, | 
 |                         [](float a, float b) -> float { return a + b * b; }); | 
 |     energy = std::max(channel_energy, energy); | 
 |   } | 
 |   return energy; | 
 | } | 
 |  | 
 | float EnergyToDbfs(float signal_energy, size_t num_samples) { | 
 |   const float rms = std::sqrt(signal_energy / num_samples); | 
 |   return FloatS16ToDbfs(rms); | 
 | } | 
 | }  // namespace | 
 |  | 
 | NoiseLevelEstimator::NoiseLevelEstimator(ApmDataDumper* data_dumper) | 
 |     : signal_classifier_(data_dumper) { | 
 |   Initialize(48000); | 
 | } | 
 |  | 
 | NoiseLevelEstimator::~NoiseLevelEstimator() {} | 
 |  | 
 | void NoiseLevelEstimator::Initialize(int sample_rate_hz) { | 
 |   sample_rate_hz_ = sample_rate_hz; | 
 |   noise_energy_ = 1.f; | 
 |   first_update_ = true; | 
 |   min_noise_energy_ = sample_rate_hz * 2.f * 2.f / kFramesPerSecond; | 
 |   noise_energy_hold_counter_ = 0; | 
 |   signal_classifier_.Initialize(sample_rate_hz); | 
 | } | 
 |  | 
 | float NoiseLevelEstimator::Analyze(const AudioFrameView<const float>& frame) { | 
 |   const int rate = | 
 |       static_cast<int>(frame.samples_per_channel() * kFramesPerSecond); | 
 |   if (rate != sample_rate_hz_) { | 
 |     Initialize(rate); | 
 |   } | 
 |   const float frame_energy = FrameEnergy(frame); | 
 |   if (frame_energy <= 0.f) { | 
 |     RTC_DCHECK_GE(frame_energy, 0.f); | 
 |     return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); | 
 |   } | 
 |  | 
 |   if (first_update_) { | 
 |     // Initialize the noise energy to the frame energy. | 
 |     first_update_ = false; | 
 |     return EnergyToDbfs( | 
 |         noise_energy_ = std::max(frame_energy, min_noise_energy_), | 
 |         frame.samples_per_channel()); | 
 |   } | 
 |  | 
 |   const SignalClassifier::SignalType signal_type = | 
 |       signal_classifier_.Analyze(frame.channel(0)); | 
 |  | 
 |   // Update the noise estimate in a minimum statistics-type manner. | 
 |   if (signal_type == SignalClassifier::SignalType::kStationary) { | 
 |     if (frame_energy > noise_energy_) { | 
 |       // Leak the estimate upwards towards the frame energy if no recent | 
 |       // downward update. | 
 |       noise_energy_hold_counter_ = std::max(noise_energy_hold_counter_ - 1, 0); | 
 |  | 
 |       if (noise_energy_hold_counter_ == 0) { | 
 |         noise_energy_ = std::min(noise_energy_ * 1.01f, frame_energy); | 
 |       } | 
 |     } else { | 
 |       // Update smoothly downwards with a limited maximum update magnitude. | 
 |       noise_energy_ = | 
 |           std::max(noise_energy_ * 0.9f, | 
 |                    noise_energy_ + 0.05f * (frame_energy - noise_energy_)); | 
 |       noise_energy_hold_counter_ = 1000; | 
 |     } | 
 |   } else { | 
 |     // For a non-stationary signal, leak the estimate downwards in order to | 
 |     // avoid estimate locking due to incorrect signal classification. | 
 |     noise_energy_ = noise_energy_ * 0.99f; | 
 |   } | 
 |  | 
 |   // Ensure a minimum of the estimate. | 
 |   return EnergyToDbfs( | 
 |       noise_energy_ = std::max(noise_energy_, min_noise_energy_), | 
 |       frame.samples_per_channel()); | 
 | } | 
 |  | 
 | }  // namespace webrtc |