blob: 2f6d13f92e1fb0603ac104542aacf5c1ddb66034 [file] [log] [blame]
/*
* Copyright 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "pc/quicdatatransport.h"
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#include "p2p/base/faketransportcontroller.h"
#include "p2p/quic/quictransportchannel.h"
#include "p2p/quic/reliablequicstream.h"
#include "pc/quicdatachannel.h"
#include "rtc_base/bytebuffer.h"
#include "rtc_base/gunit.h"
using webrtc::DataBuffer;
using webrtc::DataChannelInit;
using webrtc::DataChannelInterface;
using webrtc::DataChannelObserver;
using webrtc::QuicDataChannel;
using webrtc::QuicDataTransport;
using cricket::FakeTransportChannel;
using cricket::FakeTransportController;
using cricket::QuicTransportChannel;
using cricket::ReliableQuicStream;
namespace {
// Timeout for asynchronous operations.
static const int kTimeoutMs = 1000; // milliseconds
static const char kTransportName[] = "data";
// FakeObserver receives messages from the data channel.
class FakeObserver : public DataChannelObserver {
public:
FakeObserver() {}
void OnStateChange() override {}
void OnBufferedAmountChange(uint64_t previous_amount) override {}
void OnMessage(const webrtc::DataBuffer& buffer) override {
messages_.push_back(std::string(buffer.data.data<char>(), buffer.size()));
}
const std::vector<std::string>& messages() const { return messages_; }
size_t messages_received() const { return messages_.size(); }
private:
std::vector<std::string> messages_;
};
// A peer who uses a QUIC transport channel and fake ICE transport channel to
// send or receive data.
class QuicDataTransportPeer {
public:
QuicDataTransportPeer()
: fake_transport_controller_(new FakeTransportController()),
quic_data_transport_(rtc::Thread::Current(),
rtc::Thread::Current(),
rtc::Thread::Current(),
fake_transport_controller_.get()) {
fake_transport_controller_->use_quic();
quic_data_transport_.set_content_name("data");
quic_data_transport_.SetTransport(kTransportName);
ice_transport_channel_ = static_cast<FakeTransportChannel*>(
quic_data_transport_.quic_transport_channel()->ice_transport_channel());
ice_transport_channel_->SetAsync(true);
}
void GenerateCertificateAndFingerprint() {
rtc::scoped_refptr<rtc::RTCCertificate> local_cert =
rtc::RTCCertificate::Create(std::unique_ptr<rtc::SSLIdentity>(
rtc::SSLIdentity::Generate("cert_name", rtc::KT_DEFAULT)));
quic_data_transport_.quic_transport_channel()->SetLocalCertificate(
local_cert);
local_fingerprint_.reset(CreateFingerprint(local_cert.get()));
}
// Connects |ice_transport_channel_| to that of the other peer.
void Connect(QuicDataTransportPeer* other_peer) {
ice_transport_channel_->SetDestination(other_peer->ice_transport_channel_);
}
std::unique_ptr<rtc::SSLFingerprint>& local_fingerprint() {
return local_fingerprint_;
}
QuicTransportChannel* quic_transport_channel() {
return quic_data_transport_.quic_transport_channel();
}
// Write a messge directly to the ReliableQuicStream.
void WriteMessage(int data_channel_id,
uint64_t message_id,
const std::string& message) {
ReliableQuicStream* stream =
quic_data_transport_.quic_transport_channel()->CreateQuicStream();
rtc::CopyOnWriteBuffer payload;
webrtc::WriteQuicDataChannelMessageHeader(data_channel_id, message_id,
&payload);
stream->Write(payload.data<char>(), payload.size(), false);
stream->Write(message.data(), message.size(), true);
}
rtc::scoped_refptr<DataChannelInterface> CreateDataChannel(
const DataChannelInit* config) {
return quic_data_transport_.CreateDataChannel("testing", config);
}
QuicDataTransport* quic_data_transport() { return &quic_data_transport_; }
private:
// Creates a fingerprint from a certificate.
rtc::SSLFingerprint* CreateFingerprint(rtc::RTCCertificate* cert) {
std::string digest_algorithm;
cert->ssl_certificate().GetSignatureDigestAlgorithm(&digest_algorithm);
std::unique_ptr<rtc::SSLFingerprint> fingerprint(
rtc::SSLFingerprint::Create(digest_algorithm, cert->identity()));
return fingerprint.release();
}
std::unique_ptr<FakeTransportController> fake_transport_controller_;
QuicDataTransport quic_data_transport_;
FakeTransportChannel* ice_transport_channel_;
std::unique_ptr<rtc::SSLFingerprint> local_fingerprint_;
};
class QuicDataTransportTest : public testing::Test {
public:
QuicDataTransportTest() {}
void ConnectTransportChannels() {
SetCryptoParameters();
peer1_.Connect(&peer2_);
ASSERT_TRUE_WAIT(peer1_.quic_transport_channel()->writable() &&
peer2_.quic_transport_channel()->writable(),
kTimeoutMs);
}
// Sets crypto parameters required for the QUIC handshake.
void SetCryptoParameters() {
peer1_.GenerateCertificateAndFingerprint();
peer2_.GenerateCertificateAndFingerprint();
peer1_.quic_transport_channel()->SetSslRole(rtc::SSL_CLIENT);
peer2_.quic_transport_channel()->SetSslRole(rtc::SSL_SERVER);
std::unique_ptr<rtc::SSLFingerprint>& peer1_fingerprint =
peer1_.local_fingerprint();
std::unique_ptr<rtc::SSLFingerprint>& peer2_fingerprint =
peer2_.local_fingerprint();
peer1_.quic_transport_channel()->SetRemoteFingerprint(
peer2_fingerprint->algorithm,
reinterpret_cast<const uint8_t*>(peer2_fingerprint->digest.data()),
peer2_fingerprint->digest.size());
peer2_.quic_transport_channel()->SetRemoteFingerprint(
peer1_fingerprint->algorithm,
reinterpret_cast<const uint8_t*>(peer1_fingerprint->digest.data()),
peer1_fingerprint->digest.size());
}
protected:
QuicDataTransportPeer peer1_;
QuicDataTransportPeer peer2_;
};
// Tests creation and destruction of data channels.
TEST_F(QuicDataTransportTest, CreateAndDestroyDataChannels) {
QuicDataTransport* quic_data_transport = peer2_.quic_data_transport();
EXPECT_FALSE(quic_data_transport->HasDataChannels());
for (int data_channel_id = 0; data_channel_id < 5; ++data_channel_id) {
EXPECT_FALSE(quic_data_transport->HasDataChannel(data_channel_id));
webrtc::DataChannelInit config;
config.id = data_channel_id;
rtc::scoped_refptr<DataChannelInterface> data_channel =
peer2_.CreateDataChannel(&config);
EXPECT_NE(nullptr, data_channel);
EXPECT_EQ(data_channel_id, data_channel->id());
EXPECT_TRUE(quic_data_transport->HasDataChannel(data_channel_id));
}
EXPECT_TRUE(quic_data_transport->HasDataChannels());
for (int data_channel_id = 0; data_channel_id < 5; ++data_channel_id) {
quic_data_transport->DestroyDataChannel(data_channel_id);
EXPECT_FALSE(quic_data_transport->HasDataChannel(data_channel_id));
}
EXPECT_FALSE(quic_data_transport->HasDataChannels());
}
// Tests that the QuicDataTransport does not allow creating multiple
// QuicDataChannels with the same id.
TEST_F(QuicDataTransportTest, CannotCreateDataChannelsWithSameId) {
webrtc::DataChannelInit config;
config.id = 2;
EXPECT_NE(nullptr, peer2_.CreateDataChannel(&config));
EXPECT_EQ(nullptr, peer2_.CreateDataChannel(&config));
}
// Tests that any data channels created by the QuicDataTransport are in state
// kConnecting before the QuicTransportChannel is set, then transition to state
// kOpen when the transport channel becomes writable.
TEST_F(QuicDataTransportTest, DataChannelsOpenWhenTransportChannelWritable) {
webrtc::DataChannelInit config1;
config1.id = 7;
rtc::scoped_refptr<DataChannelInterface> data_channel1 =
peer2_.CreateDataChannel(&config1);
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel1->state());
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel1->state());
webrtc::DataChannelInit config2;
config2.id = 14;
rtc::scoped_refptr<DataChannelInterface> data_channel2 =
peer2_.CreateDataChannel(&config2);
EXPECT_EQ(webrtc::DataChannelInterface::kConnecting, data_channel2->state());
// Existing data channels should open once the transport channel is writable.
ConnectTransportChannels();
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kOpen, data_channel1->state(),
kTimeoutMs);
EXPECT_EQ_WAIT(webrtc::DataChannelInterface::kOpen, data_channel2->state(),
kTimeoutMs);
// Any data channels created afterwards should start in state kOpen.
webrtc::DataChannelInit config3;
config3.id = 21;
rtc::scoped_refptr<DataChannelInterface> data_channel3 =
peer2_.CreateDataChannel(&config3);
EXPECT_EQ(webrtc::DataChannelInterface::kOpen, data_channel3->state());
}
// Tests that the QuicTransport dispatches messages for one QuicDataChannel.
TEST_F(QuicDataTransportTest, ReceiveMessagesForSingleDataChannel) {
ConnectTransportChannels();
int data_channel_id = 1337;
webrtc::DataChannelInit config;
config.id = data_channel_id;
rtc::scoped_refptr<DataChannelInterface> peer2_data_channel =
peer2_.CreateDataChannel(&config);
FakeObserver observer;
peer2_data_channel->RegisterObserver(&observer);
uint64_t message1_id = 26u;
peer1_.WriteMessage(data_channel_id, message1_id, "Testing");
ASSERT_EQ_WAIT(1, observer.messages_received(), kTimeoutMs);
EXPECT_EQ("Testing", observer.messages()[0]);
uint64_t message2_id = 402u;
peer1_.WriteMessage(data_channel_id, message2_id, "Hello, World!");
ASSERT_EQ_WAIT(2, observer.messages_received(), kTimeoutMs);
EXPECT_EQ("Hello, World!", observer.messages()[1]);
uint64_t message3_id = 100260415u;
peer1_.WriteMessage(data_channel_id, message3_id, "Third message");
ASSERT_EQ_WAIT(3, observer.messages_received(), kTimeoutMs);
EXPECT_EQ("Third message", observer.messages()[2]);
}
// Tests that the QuicTransport dispatches messages to the correct data channel
// when multiple are in use.
TEST_F(QuicDataTransportTest, ReceiveMessagesForMultipleDataChannels) {
ConnectTransportChannels();
std::vector<rtc::scoped_refptr<DataChannelInterface>> data_channels;
for (int data_channel_id = 0; data_channel_id < 5; ++data_channel_id) {
webrtc::DataChannelInit config;
config.id = data_channel_id;
data_channels.push_back(peer2_.CreateDataChannel(&config));
}
for (int data_channel_id = 0; data_channel_id < 5; ++data_channel_id) {
uint64_t message1_id = 48023u;
FakeObserver observer;
DataChannelInterface* peer2_data_channel =
data_channels[data_channel_id].get();
peer2_data_channel->RegisterObserver(&observer);
peer1_.WriteMessage(data_channel_id, message1_id, "Testing");
ASSERT_EQ_WAIT(1, observer.messages_received(), kTimeoutMs);
EXPECT_EQ("Testing", observer.messages()[0]);
uint64_t message2_id = 1372643095u;
peer1_.WriteMessage(data_channel_id, message2_id, "Hello, World!");
ASSERT_EQ_WAIT(2, observer.messages_received(), kTimeoutMs);
EXPECT_EQ("Hello, World!", observer.messages()[1]);
}
}
// Tests end-to-end that both peers can use multiple QuicDataChannels to
// send/receive messages using a QuicDataTransport.
TEST_F(QuicDataTransportTest, EndToEndSendReceiveMessages) {
ConnectTransportChannels();
std::vector<rtc::scoped_refptr<DataChannelInterface>> peer1_data_channels;
std::vector<rtc::scoped_refptr<DataChannelInterface>> peer2_data_channels;
for (int data_channel_id = 0; data_channel_id < 5; ++data_channel_id) {
webrtc::DataChannelInit config;
config.id = data_channel_id;
peer1_data_channels.push_back(peer1_.CreateDataChannel(&config));
peer2_data_channels.push_back(peer2_.CreateDataChannel(&config));
}
for (int data_channel_id = 0; data_channel_id < 5; ++data_channel_id) {
DataChannelInterface* peer1_data_channel =
peer1_data_channels[data_channel_id].get();
FakeObserver observer1;
peer1_data_channel->RegisterObserver(&observer1);
DataChannelInterface* peer2_data_channel =
peer2_data_channels[data_channel_id].get();
FakeObserver observer2;
peer2_data_channel->RegisterObserver(&observer2);
peer1_data_channel->Send(webrtc::DataBuffer("Peer 1 message 1"));
ASSERT_EQ_WAIT(1, observer2.messages_received(), kTimeoutMs);
EXPECT_EQ("Peer 1 message 1", observer2.messages()[0]);
peer1_data_channel->Send(webrtc::DataBuffer("Peer 1 message 2"));
ASSERT_EQ_WAIT(2, observer2.messages_received(), kTimeoutMs);
EXPECT_EQ("Peer 1 message 2", observer2.messages()[1]);
peer2_data_channel->Send(webrtc::DataBuffer("Peer 2 message 1"));
ASSERT_EQ_WAIT(1, observer1.messages_received(), kTimeoutMs);
EXPECT_EQ("Peer 2 message 1", observer1.messages()[0]);
peer2_data_channel->Send(webrtc::DataBuffer("Peer 2 message 2"));
ASSERT_EQ_WAIT(2, observer1.messages_received(), kTimeoutMs);
EXPECT_EQ("Peer 2 message 2", observer1.messages()[1]);
}
}
// Tests that SetTransport returns false when setting a transport that is not
// equivalent to the one already set.
TEST_F(QuicDataTransportTest, SetTransportReturnValue) {
QuicDataTransport* quic_data_transport = peer1_.quic_data_transport();
// Ignore the same transport name.
EXPECT_TRUE(quic_data_transport->SetTransport(kTransportName));
// Return false when setting a different transport name.
EXPECT_FALSE(quic_data_transport->SetTransport("another transport name"));
}
} // namespace