| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/pacing/paced_sender.h" |
| |
| #include <algorithm> |
| |
| #include "absl/memory/memory.h" |
| #include "logging/rtc_event_log/rtc_event_log.h" |
| #include "modules/congestion_controller/goog_cc/alr_detector.h" |
| #include "modules/pacing/bitrate_prober.h" |
| #include "modules/pacing/interval_budget.h" |
| #include "modules/utility/include/process_thread.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "system_wrappers/include/clock.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| namespace { |
| // Time limit in milliseconds between packet bursts. |
| const int64_t kMinPacketLimitMs = 5; |
| const int64_t kCongestedPacketIntervalMs = 500; |
| const int64_t kPausedProcessIntervalMs = kCongestedPacketIntervalMs; |
| const int64_t kMaxElapsedTimeMs = 2000; |
| |
| // Upper cap on process interval, in case process has not been called in a long |
| // time. |
| const int64_t kMaxIntervalTimeMs = 30; |
| |
| } // namespace |
| |
| namespace webrtc { |
| |
| const int64_t PacedSender::kMaxQueueLengthMs = 2000; |
| const float PacedSender::kDefaultPaceMultiplier = 2.5f; |
| |
| PacedSender::PacedSender(const Clock* clock, |
| PacketSender* packet_sender, |
| RtcEventLog* event_log) |
| : clock_(clock), |
| packet_sender_(packet_sender), |
| alr_detector_(absl::make_unique<AlrDetector>(event_log)), |
| drain_large_queues_(!field_trial::IsDisabled("WebRTC-Pacer-DrainQueue")), |
| send_padding_if_silent_( |
| field_trial::IsEnabled("WebRTC-Pacer-PadInSilence")), |
| video_blocks_audio_(!field_trial::IsDisabled("WebRTC-Pacer-BlockAudio")), |
| last_timestamp_ms_(clock_->TimeInMilliseconds()), |
| paused_(false), |
| media_budget_(0), |
| padding_budget_(0), |
| prober_(event_log), |
| probing_send_failure_(false), |
| estimated_bitrate_bps_(0), |
| min_send_bitrate_kbps_(0u), |
| max_padding_bitrate_kbps_(0u), |
| pacing_bitrate_kbps_(0), |
| time_last_process_us_(clock->TimeInMicroseconds()), |
| last_send_time_us_(clock->TimeInMicroseconds()), |
| first_sent_packet_ms_(-1), |
| packets_(clock->TimeInMicroseconds()), |
| packet_counter_(0), |
| pacing_factor_(kDefaultPaceMultiplier), |
| queue_time_limit(kMaxQueueLengthMs), |
| account_for_audio_(false) { |
| if (!drain_large_queues_) |
| RTC_LOG(LS_WARNING) << "Pacer queues will not be drained," |
| "pushback experiment must be enabled."; |
| UpdateBudgetWithElapsedTime(kMinPacketLimitMs); |
| } |
| |
| PacedSender::~PacedSender() {} |
| |
| void PacedSender::CreateProbeCluster(int bitrate_bps) { |
| rtc::CritScope cs(&critsect_); |
| prober_.CreateProbeCluster(bitrate_bps, TimeMilliseconds()); |
| } |
| |
| void PacedSender::Pause() { |
| { |
| rtc::CritScope cs(&critsect_); |
| if (!paused_) |
| RTC_LOG(LS_INFO) << "PacedSender paused."; |
| paused_ = true; |
| packets_.SetPauseState(true, TimeMilliseconds()); |
| } |
| rtc::CritScope cs(&process_thread_lock_); |
| // Tell the process thread to call our TimeUntilNextProcess() method to get |
| // a new (longer) estimate for when to call Process(). |
| if (process_thread_) |
| process_thread_->WakeUp(this); |
| } |
| |
| void PacedSender::Resume() { |
| { |
| rtc::CritScope cs(&critsect_); |
| if (paused_) |
| RTC_LOG(LS_INFO) << "PacedSender resumed."; |
| paused_ = false; |
| packets_.SetPauseState(false, TimeMilliseconds()); |
| } |
| rtc::CritScope cs(&process_thread_lock_); |
| // Tell the process thread to call our TimeUntilNextProcess() method to |
| // refresh the estimate for when to call Process(). |
| if (process_thread_) |
| process_thread_->WakeUp(this); |
| } |
| |
| void PacedSender::SetCongestionWindow(int64_t congestion_window_bytes) { |
| rtc::CritScope cs(&critsect_); |
| congestion_window_bytes_ = congestion_window_bytes; |
| } |
| |
| void PacedSender::UpdateOutstandingData(int64_t outstanding_bytes) { |
| rtc::CritScope cs(&critsect_); |
| outstanding_bytes_ = outstanding_bytes; |
| } |
| |
| bool PacedSender::Congested() const { |
| if (congestion_window_bytes_ == kNoCongestionWindow) |
| return false; |
| return outstanding_bytes_ >= congestion_window_bytes_; |
| } |
| |
| int64_t PacedSender::TimeMilliseconds() const { |
| int64_t time_ms = clock_->TimeInMilliseconds(); |
| if (time_ms < last_timestamp_ms_) { |
| RTC_LOG(LS_WARNING) |
| << "Non-monotonic clock behavior observed. Previous timestamp: " |
| << last_timestamp_ms_ << ", new timestamp: " << time_ms; |
| RTC_DCHECK_GE(time_ms, last_timestamp_ms_); |
| time_ms = last_timestamp_ms_; |
| } |
| last_timestamp_ms_ = time_ms; |
| return time_ms; |
| } |
| |
| void PacedSender::SetProbingEnabled(bool enabled) { |
| rtc::CritScope cs(&critsect_); |
| RTC_CHECK_EQ(0, packet_counter_); |
| prober_.SetEnabled(enabled); |
| } |
| |
| void PacedSender::SetEstimatedBitrate(uint32_t bitrate_bps) { |
| if (bitrate_bps == 0) |
| RTC_LOG(LS_ERROR) << "PacedSender is not designed to handle 0 bitrate."; |
| rtc::CritScope cs(&critsect_); |
| estimated_bitrate_bps_ = bitrate_bps; |
| padding_budget_.set_target_rate_kbps( |
| std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_)); |
| pacing_bitrate_kbps_ = |
| std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) * |
| pacing_factor_; |
| alr_detector_->SetEstimatedBitrate(bitrate_bps); |
| } |
| |
| void PacedSender::SetSendBitrateLimits(int min_send_bitrate_bps, |
| int padding_bitrate) { |
| rtc::CritScope cs(&critsect_); |
| min_send_bitrate_kbps_ = min_send_bitrate_bps / 1000; |
| pacing_bitrate_kbps_ = |
| std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) * |
| pacing_factor_; |
| max_padding_bitrate_kbps_ = padding_bitrate / 1000; |
| padding_budget_.set_target_rate_kbps( |
| std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_)); |
| } |
| |
| void PacedSender::SetPacingRates(uint32_t pacing_rate_bps, |
| uint32_t padding_rate_bps) { |
| rtc::CritScope cs(&critsect_); |
| RTC_DCHECK(pacing_rate_bps > 0); |
| pacing_bitrate_kbps_ = pacing_rate_bps / 1000; |
| padding_budget_.set_target_rate_kbps(padding_rate_bps / 1000); |
| } |
| |
| void PacedSender::InsertPacket(RtpPacketSender::Priority priority, |
| uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| size_t bytes, |
| bool retransmission) { |
| rtc::CritScope cs(&critsect_); |
| RTC_DCHECK(pacing_bitrate_kbps_ > 0) |
| << "SetPacingRate must be called before InsertPacket."; |
| |
| int64_t now_ms = TimeMilliseconds(); |
| prober_.OnIncomingPacket(bytes); |
| |
| if (capture_time_ms < 0) |
| capture_time_ms = now_ms; |
| |
| packets_.Push(RoundRobinPacketQueue::Packet( |
| priority, ssrc, sequence_number, capture_time_ms, now_ms, bytes, |
| retransmission, packet_counter_++)); |
| } |
| |
| void PacedSender::SetAccountForAudioPackets(bool account_for_audio) { |
| rtc::CritScope cs(&critsect_); |
| account_for_audio_ = account_for_audio; |
| } |
| |
| int64_t PacedSender::ExpectedQueueTimeMs() const { |
| rtc::CritScope cs(&critsect_); |
| RTC_DCHECK_GT(pacing_bitrate_kbps_, 0); |
| return static_cast<int64_t>(packets_.SizeInBytes() * 8 / |
| pacing_bitrate_kbps_); |
| } |
| |
| absl::optional<int64_t> PacedSender::GetApplicationLimitedRegionStartTime() |
| const { |
| rtc::CritScope cs(&critsect_); |
| return alr_detector_->GetApplicationLimitedRegionStartTime(); |
| } |
| |
| size_t PacedSender::QueueSizePackets() const { |
| rtc::CritScope cs(&critsect_); |
| return packets_.SizeInPackets(); |
| } |
| |
| int64_t PacedSender::FirstSentPacketTimeMs() const { |
| rtc::CritScope cs(&critsect_); |
| return first_sent_packet_ms_; |
| } |
| |
| int64_t PacedSender::QueueInMs() const { |
| rtc::CritScope cs(&critsect_); |
| |
| int64_t oldest_packet = packets_.OldestEnqueueTimeMs(); |
| if (oldest_packet == 0) |
| return 0; |
| |
| return TimeMilliseconds() - oldest_packet; |
| } |
| |
| int64_t PacedSender::TimeUntilNextProcess() { |
| rtc::CritScope cs(&critsect_); |
| int64_t elapsed_time_us = |
| clock_->TimeInMicroseconds() - time_last_process_us_; |
| int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000; |
| // When paused we wake up every 500 ms to send a padding packet to ensure |
| // we won't get stuck in the paused state due to no feedback being received. |
| if (paused_) |
| return std::max<int64_t>(kPausedProcessIntervalMs - elapsed_time_ms, 0); |
| |
| if (prober_.IsProbing()) { |
| int64_t ret = prober_.TimeUntilNextProbe(TimeMilliseconds()); |
| if (ret > 0 || (ret == 0 && !probing_send_failure_)) |
| return ret; |
| } |
| return std::max<int64_t>(kMinPacketLimitMs - elapsed_time_ms, 0); |
| } |
| |
| void PacedSender::Process() { |
| int64_t now_us = clock_->TimeInMicroseconds(); |
| rtc::CritScope cs(&critsect_); |
| int64_t elapsed_time_ms = (now_us - time_last_process_us_ + 500) / 1000; |
| time_last_process_us_ = now_us; |
| if (elapsed_time_ms > kMaxElapsedTimeMs) { |
| RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time_ms |
| << " ms) longer than expected, limiting to " |
| << kMaxElapsedTimeMs << " ms"; |
| elapsed_time_ms = kMaxElapsedTimeMs; |
| } |
| if (send_padding_if_silent_ || paused_ || Congested()) { |
| // We send a padding packet every 500 ms to ensure we won't get stuck in |
| // congested state due to no feedback being received. |
| int64_t elapsed_since_last_send_us = now_us - last_send_time_us_; |
| if (elapsed_since_last_send_us >= kCongestedPacketIntervalMs * 1000) { |
| // We can not send padding unless a normal packet has first been sent. If |
| // we do, timestamps get messed up. |
| if (packet_counter_ > 0) { |
| PacedPacketInfo pacing_info; |
| size_t bytes_sent = SendPadding(1, pacing_info); |
| alr_detector_->OnBytesSent(bytes_sent, now_us / 1000); |
| } |
| } |
| } |
| if (paused_) |
| return; |
| |
| if (elapsed_time_ms > 0) { |
| int target_bitrate_kbps = pacing_bitrate_kbps_; |
| size_t queue_size_bytes = packets_.SizeInBytes(); |
| if (queue_size_bytes > 0) { |
| // Assuming equal size packets and input/output rate, the average packet |
| // has avg_time_left_ms left to get queue_size_bytes out of the queue, if |
| // time constraint shall be met. Determine bitrate needed for that. |
| packets_.UpdateQueueTime(TimeMilliseconds()); |
| if (drain_large_queues_) { |
| int64_t avg_time_left_ms = std::max<int64_t>( |
| 1, queue_time_limit - packets_.AverageQueueTimeMs()); |
| int min_bitrate_needed_kbps = |
| static_cast<int>(queue_size_bytes * 8 / avg_time_left_ms); |
| if (min_bitrate_needed_kbps > target_bitrate_kbps) |
| target_bitrate_kbps = min_bitrate_needed_kbps; |
| } |
| } |
| |
| media_budget_.set_target_rate_kbps(target_bitrate_kbps); |
| UpdateBudgetWithElapsedTime(elapsed_time_ms); |
| } |
| |
| bool is_probing = prober_.IsProbing(); |
| PacedPacketInfo pacing_info; |
| size_t bytes_sent = 0; |
| size_t recommended_probe_size = 0; |
| if (is_probing) { |
| pacing_info = prober_.CurrentCluster(); |
| recommended_probe_size = prober_.RecommendedMinProbeSize(); |
| } |
| // The paused state is checked in the loop since SendPacket leaves the |
| // critical section allowing the paused state to be changed from other code. |
| while (!packets_.Empty() && !paused_) { |
| // Since we need to release the lock in order to send, we first pop the |
| // element from the priority queue but keep it in storage, so that we can |
| // reinsert it if send fails. |
| const RoundRobinPacketQueue::Packet& packet = packets_.BeginPop(); |
| |
| if (SendPacket(packet, pacing_info)) { |
| bytes_sent += packet.bytes; |
| // Send succeeded, remove it from the queue. |
| packets_.FinalizePop(packet); |
| if (is_probing && bytes_sent > recommended_probe_size) |
| break; |
| } else { |
| // Send failed, put it back into the queue. |
| packets_.CancelPop(packet); |
| break; |
| } |
| } |
| |
| if (packets_.Empty() && !Congested()) { |
| // We can not send padding unless a normal packet has first been sent. If we |
| // do, timestamps get messed up. |
| if (packet_counter_ > 0) { |
| int padding_needed = |
| static_cast<int>(is_probing ? (recommended_probe_size - bytes_sent) |
| : padding_budget_.bytes_remaining()); |
| if (padding_needed > 0) { |
| bytes_sent += SendPadding(padding_needed, pacing_info); |
| } |
| } |
| } |
| if (is_probing) { |
| probing_send_failure_ = bytes_sent == 0; |
| if (!probing_send_failure_) |
| prober_.ProbeSent(TimeMilliseconds(), bytes_sent); |
| } |
| alr_detector_->OnBytesSent(bytes_sent, now_us / 1000); |
| } |
| |
| void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) { |
| RTC_LOG(LS_INFO) << "ProcessThreadAttached 0x" << process_thread; |
| rtc::CritScope cs(&process_thread_lock_); |
| process_thread_ = process_thread; |
| } |
| |
| bool PacedSender::SendPacket(const RoundRobinPacketQueue::Packet& packet, |
| const PacedPacketInfo& pacing_info) { |
| RTC_DCHECK(!paused_); |
| bool audio_packet = packet.priority == kHighPriority; |
| bool apply_pacing = |
| !audio_packet || account_for_audio_ || video_blocks_audio_; |
| if (apply_pacing && (Congested() || (media_budget_.bytes_remaining() == 0 && |
| pacing_info.probe_cluster_id == |
| PacedPacketInfo::kNotAProbe))) { |
| return false; |
| } |
| |
| critsect_.Leave(); |
| const bool success = packet_sender_->TimeToSendPacket( |
| packet.ssrc, packet.sequence_number, packet.capture_time_ms, |
| packet.retransmission, pacing_info); |
| critsect_.Enter(); |
| |
| if (success) { |
| if (first_sent_packet_ms_ == -1) |
| first_sent_packet_ms_ = TimeMilliseconds(); |
| if (!audio_packet || account_for_audio_) { |
| // Update media bytes sent. |
| // TODO(eladalon): TimeToSendPacket() can also return |true| in some |
| // situations where nothing actually ended up being sent to the network, |
| // and we probably don't want to update the budget in such cases. |
| // https://bugs.chromium.org/p/webrtc/issues/detail?id=8052 |
| UpdateBudgetWithBytesSent(packet.bytes); |
| last_send_time_us_ = clock_->TimeInMicroseconds(); |
| } |
| } |
| |
| return success; |
| } |
| |
| size_t PacedSender::SendPadding(size_t padding_needed, |
| const PacedPacketInfo& pacing_info) { |
| RTC_DCHECK_GT(packet_counter_, 0); |
| critsect_.Leave(); |
| size_t bytes_sent = |
| packet_sender_->TimeToSendPadding(padding_needed, pacing_info); |
| critsect_.Enter(); |
| |
| if (bytes_sent > 0) { |
| UpdateBudgetWithBytesSent(bytes_sent); |
| } |
| last_send_time_us_ = clock_->TimeInMicroseconds(); |
| return bytes_sent; |
| } |
| |
| void PacedSender::UpdateBudgetWithElapsedTime(int64_t delta_time_ms) { |
| delta_time_ms = std::min(kMaxIntervalTimeMs, delta_time_ms); |
| media_budget_.IncreaseBudget(delta_time_ms); |
| padding_budget_.IncreaseBudget(delta_time_ms); |
| } |
| |
| void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) { |
| outstanding_bytes_ += bytes_sent; |
| media_budget_.UseBudget(bytes_sent); |
| padding_budget_.UseBudget(bytes_sent); |
| } |
| |
| void PacedSender::SetPacingFactor(float pacing_factor) { |
| rtc::CritScope cs(&critsect_); |
| pacing_factor_ = pacing_factor; |
| // Make sure new padding factor is applied immediately, otherwise we need to |
| // wait for the send bitrate estimate to be updated before this takes effect. |
| SetEstimatedBitrate(estimated_bitrate_bps_); |
| } |
| |
| void PacedSender::SetQueueTimeLimit(int limit_ms) { |
| rtc::CritScope cs(&critsect_); |
| queue_time_limit = limit_ms; |
| } |
| |
| } // namespace webrtc |