|  | /* | 
|  | *  Copyright 2011 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "rtc_base/rolling_accumulator.h" | 
|  |  | 
|  | #include <random> | 
|  |  | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | const double kLearningRate = 0.5; | 
|  |  | 
|  | // Add |n| samples drawn from uniform distribution in [a;b]. | 
|  | void FillStatsFromUniformDistribution(RollingAccumulator<double>& stats, | 
|  | int n, | 
|  | double a, | 
|  | double b) { | 
|  | std::mt19937 gen{std::random_device()()}; | 
|  | std::uniform_real_distribution<> dis(a, b); | 
|  |  | 
|  | for (int i = 1; i <= n; i++) { | 
|  | stats.AddSample(dis(gen)); | 
|  | } | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | TEST(RollingAccumulatorTest, ZeroSamples) { | 
|  | RollingAccumulator<int> accum(10); | 
|  |  | 
|  | EXPECT_EQ(0U, accum.count()); | 
|  | EXPECT_DOUBLE_EQ(0.0, accum.ComputeMean()); | 
|  | EXPECT_DOUBLE_EQ(0.0, accum.ComputeVariance()); | 
|  | EXPECT_EQ(0, accum.ComputeMin()); | 
|  | EXPECT_EQ(0, accum.ComputeMax()); | 
|  | } | 
|  |  | 
|  | TEST(RollingAccumulatorTest, SomeSamples) { | 
|  | RollingAccumulator<int> accum(10); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | accum.AddSample(i); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(4U, accum.count()); | 
|  | EXPECT_DOUBLE_EQ(1.5, accum.ComputeMean()); | 
|  | EXPECT_NEAR(2.26666, accum.ComputeWeightedMean(kLearningRate), 0.01); | 
|  | EXPECT_DOUBLE_EQ(1.25, accum.ComputeVariance()); | 
|  | EXPECT_EQ(0, accum.ComputeMin()); | 
|  | EXPECT_EQ(3, accum.ComputeMax()); | 
|  | } | 
|  |  | 
|  | TEST(RollingAccumulatorTest, RollingSamples) { | 
|  | RollingAccumulator<int> accum(10); | 
|  | for (int i = 0; i < 12; ++i) { | 
|  | accum.AddSample(i); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(10U, accum.count()); | 
|  | EXPECT_DOUBLE_EQ(6.5, accum.ComputeMean()); | 
|  | EXPECT_NEAR(10.0, accum.ComputeWeightedMean(kLearningRate), 0.01); | 
|  | EXPECT_NEAR(9.0, accum.ComputeVariance(), 1.0); | 
|  | EXPECT_EQ(2, accum.ComputeMin()); | 
|  | EXPECT_EQ(11, accum.ComputeMax()); | 
|  | } | 
|  |  | 
|  | TEST(RollingAccumulatorTest, ResetSamples) { | 
|  | RollingAccumulator<int> accum(10); | 
|  |  | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | accum.AddSample(100); | 
|  | } | 
|  | EXPECT_EQ(10U, accum.count()); | 
|  | EXPECT_DOUBLE_EQ(100.0, accum.ComputeMean()); | 
|  | EXPECT_EQ(100, accum.ComputeMin()); | 
|  | EXPECT_EQ(100, accum.ComputeMax()); | 
|  |  | 
|  | accum.Reset(); | 
|  | EXPECT_EQ(0U, accum.count()); | 
|  |  | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | accum.AddSample(i); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(5U, accum.count()); | 
|  | EXPECT_DOUBLE_EQ(2.0, accum.ComputeMean()); | 
|  | EXPECT_EQ(0, accum.ComputeMin()); | 
|  | EXPECT_EQ(4, accum.ComputeMax()); | 
|  | } | 
|  |  | 
|  | TEST(RollingAccumulatorTest, RollingSamplesDouble) { | 
|  | RollingAccumulator<double> accum(10); | 
|  | for (int i = 0; i < 23; ++i) { | 
|  | accum.AddSample(5 * i); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(10u, accum.count()); | 
|  | EXPECT_DOUBLE_EQ(87.5, accum.ComputeMean()); | 
|  | EXPECT_NEAR(105.049, accum.ComputeWeightedMean(kLearningRate), 0.1); | 
|  | EXPECT_NEAR(229.166667, accum.ComputeVariance(), 25); | 
|  | EXPECT_DOUBLE_EQ(65.0, accum.ComputeMin()); | 
|  | EXPECT_DOUBLE_EQ(110.0, accum.ComputeMax()); | 
|  | } | 
|  |  | 
|  | TEST(RollingAccumulatorTest, ComputeWeightedMeanCornerCases) { | 
|  | RollingAccumulator<int> accum(10); | 
|  | EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(kLearningRate)); | 
|  | EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(0.0)); | 
|  | EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(1.1)); | 
|  |  | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | accum.AddSample(i); | 
|  | } | 
|  |  | 
|  | EXPECT_DOUBLE_EQ(3.5, accum.ComputeMean()); | 
|  | EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(0)); | 
|  | EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(1.1)); | 
|  | EXPECT_NEAR(6.0, accum.ComputeWeightedMean(kLearningRate), 0.1); | 
|  | } | 
|  |  | 
|  | TEST(RollingAccumulatorTest, VarianceFromUniformDistribution) { | 
|  | // Check variance converge to 1/12 for [0;1) uniform distribution. | 
|  | // Acts as a sanity check for NumericStabilityForVariance test. | 
|  | RollingAccumulator<double> stats(/*max_count=*/0.5e6); | 
|  | FillStatsFromUniformDistribution(stats, 1e6, 0, 1); | 
|  |  | 
|  | EXPECT_NEAR(stats.ComputeVariance(), 1. / 12, 1e-3); | 
|  | } | 
|  |  | 
|  | TEST(RollingAccumulatorTest, NumericStabilityForVariance) { | 
|  | // Same test as VarianceFromUniformDistribution, | 
|  | // except the range is shifted to [1e9;1e9+1). | 
|  | // Variance should also converge to 1/12. | 
|  | // NB: Although we lose precision for the samples themselves, the fractional | 
|  | //     part still enjoys 22 bits of mantissa and errors should even out, | 
|  | //     so that couldn't explain a mismatch. | 
|  | RollingAccumulator<double> stats(/*max_count=*/0.5e6); | 
|  | FillStatsFromUniformDistribution(stats, 1e6, 1e9, 1e9 + 1); | 
|  |  | 
|  | EXPECT_NEAR(stats.ComputeVariance(), 1. / 12, 1e-3); | 
|  | } | 
|  | }  // namespace rtc |