| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "rtc_base/openssl_stream_adapter.h" |
| |
| #include <openssl/bio.h> |
| #include <openssl/err.h> |
| #include <openssl/ssl.h> |
| #include <openssl/stack.h> |
| #include <openssl/tls1.h> |
| |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/functional/any_invocable.h" |
| #include "absl/strings/string_view.h" |
| #include "api/array_view.h" |
| #include "api/sequence_checker.h" |
| #include "api/task_queue/pending_task_safety_flag.h" |
| #include "api/units/time_delta.h" |
| #include "rtc_base/buffer.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "rtc_base/openssl_adapter.h" |
| #include "rtc_base/openssl_digest.h" |
| #include "rtc_base/ssl_identity.h" |
| #include "rtc_base/ssl_stream_adapter.h" |
| #include "rtc_base/task_utils/repeating_task.h" |
| #ifdef OPENSSL_IS_BORINGSSL |
| #include <openssl/base.h> |
| #include <openssl/digest.h> |
| #include <openssl/dtls1.h> |
| #include <openssl/pool.h> |
| #include <openssl/ssl.h> |
| |
| #include "rtc_base/boringssl_certificate.h" |
| #include "rtc_base/boringssl_identity.h" |
| #else |
| #include "rtc_base/openssl_identity.h" |
| #endif |
| #include "rtc_base/openssl_utility.h" |
| #include "rtc_base/ssl_certificate.h" |
| #include "rtc_base/stream.h" |
| #include "rtc_base/string_encode.h" |
| #include "rtc_base/thread.h" |
| #include "rtc_base/time_utils.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| #if (OPENSSL_VERSION_NUMBER < 0x10100000L) |
| #error "webrtc requires at least OpenSSL version 1.1.0, to support DTLS-SRTP" |
| #endif |
| |
| // Defines for the TLS Cipher Suite Map. |
| #define DEFINE_CIPHER_ENTRY_SSL3(name) \ |
| { SSL3_CK_##name, "TLS_" #name } |
| #define DEFINE_CIPHER_ENTRY_TLS1(name) \ |
| { TLS1_CK_##name, "TLS_" #name } |
| |
| namespace rtc { |
| namespace { |
| using ::webrtc::SafeTask; |
| // SRTP cipher suite table. `internal_name` is used to construct a |
| // colon-separated profile strings which is needed by |
| // SSL_CTX_set_tlsext_use_srtp(). |
| struct SrtpCipherMapEntry { |
| const char* internal_name; |
| const int id; |
| }; |
| |
| // Cipher name table. Maps internal OpenSSL cipher ids to the RFC name. |
| struct SslCipherMapEntry { |
| uint32_t openssl_id; |
| const char* rfc_name; |
| }; |
| |
| // This isn't elegant, but it's better than an external reference |
| constexpr SrtpCipherMapEntry kSrtpCipherMap[] = { |
| {"SRTP_AES128_CM_SHA1_80", kSrtpAes128CmSha1_80}, |
| {"SRTP_AES128_CM_SHA1_32", kSrtpAes128CmSha1_32}, |
| {"SRTP_AEAD_AES_128_GCM", kSrtpAeadAes128Gcm}, |
| {"SRTP_AEAD_AES_256_GCM", kSrtpAeadAes256Gcm}}; |
| |
| #ifndef OPENSSL_IS_BORINGSSL |
| // The "SSL_CIPHER_standard_name" function is only available in OpenSSL when |
| // compiled with tracing, so we need to define the mapping manually here. |
| constexpr SslCipherMapEntry kSslCipherMap[] = { |
| // TLS v1.0 ciphersuites from RFC2246. |
| DEFINE_CIPHER_ENTRY_SSL3(RSA_RC4_128_SHA), |
| {SSL3_CK_RSA_DES_192_CBC3_SHA, "TLS_RSA_WITH_3DES_EDE_CBC_SHA"}, |
| |
| // AES ciphersuites from RFC3268. |
| {TLS1_CK_RSA_WITH_AES_128_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA"}, |
| {TLS1_CK_DHE_RSA_WITH_AES_128_SHA, "TLS_DHE_RSA_WITH_AES_128_CBC_SHA"}, |
| {TLS1_CK_RSA_WITH_AES_256_SHA, "TLS_RSA_WITH_AES_256_CBC_SHA"}, |
| {TLS1_CK_DHE_RSA_WITH_AES_256_SHA, "TLS_DHE_RSA_WITH_AES_256_CBC_SHA"}, |
| |
| // ECC ciphersuites from RFC4492. |
| DEFINE_CIPHER_ENTRY_TLS1(ECDHE_ECDSA_WITH_RC4_128_SHA), |
| {TLS1_CK_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA, |
| "TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA"}, |
| DEFINE_CIPHER_ENTRY_TLS1(ECDHE_ECDSA_WITH_AES_128_CBC_SHA), |
| DEFINE_CIPHER_ENTRY_TLS1(ECDHE_ECDSA_WITH_AES_256_CBC_SHA), |
| |
| DEFINE_CIPHER_ENTRY_TLS1(ECDHE_RSA_WITH_RC4_128_SHA), |
| {TLS1_CK_ECDHE_RSA_WITH_DES_192_CBC3_SHA, |
| "TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA"}, |
| DEFINE_CIPHER_ENTRY_TLS1(ECDHE_RSA_WITH_AES_128_CBC_SHA), |
| DEFINE_CIPHER_ENTRY_TLS1(ECDHE_RSA_WITH_AES_256_CBC_SHA), |
| |
| // TLS v1.2 ciphersuites. |
| {TLS1_CK_RSA_WITH_AES_128_SHA256, "TLS_RSA_WITH_AES_128_CBC_SHA256"}, |
| {TLS1_CK_RSA_WITH_AES_256_SHA256, "TLS_RSA_WITH_AES_256_CBC_SHA256"}, |
| {TLS1_CK_DHE_RSA_WITH_AES_128_SHA256, |
| "TLS_DHE_RSA_WITH_AES_128_CBC_SHA256"}, |
| {TLS1_CK_DHE_RSA_WITH_AES_256_SHA256, |
| "TLS_DHE_RSA_WITH_AES_256_CBC_SHA256"}, |
| |
| // TLS v1.2 GCM ciphersuites from RFC5288. |
| DEFINE_CIPHER_ENTRY_TLS1(RSA_WITH_AES_128_GCM_SHA256), |
| DEFINE_CIPHER_ENTRY_TLS1(RSA_WITH_AES_256_GCM_SHA384), |
| DEFINE_CIPHER_ENTRY_TLS1(DHE_RSA_WITH_AES_128_GCM_SHA256), |
| DEFINE_CIPHER_ENTRY_TLS1(DHE_RSA_WITH_AES_256_GCM_SHA384), |
| DEFINE_CIPHER_ENTRY_TLS1(DH_RSA_WITH_AES_128_GCM_SHA256), |
| DEFINE_CIPHER_ENTRY_TLS1(DH_RSA_WITH_AES_256_GCM_SHA384), |
| |
| // ECDH HMAC based ciphersuites from RFC5289. |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256, |
| "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256"}, |
| {TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384, |
| "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384"}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256, |
| "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256"}, |
| {TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384, |
| "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384"}, |
| |
| // ECDH GCM based ciphersuites from RFC5289. |
| DEFINE_CIPHER_ENTRY_TLS1(ECDHE_ECDSA_WITH_AES_128_GCM_SHA256), |
| DEFINE_CIPHER_ENTRY_TLS1(ECDHE_ECDSA_WITH_AES_256_GCM_SHA384), |
| DEFINE_CIPHER_ENTRY_TLS1(ECDHE_RSA_WITH_AES_128_GCM_SHA256), |
| DEFINE_CIPHER_ENTRY_TLS1(ECDHE_RSA_WITH_AES_256_GCM_SHA384), |
| |
| {0, nullptr}}; |
| #endif // #ifndef OPENSSL_IS_BORINGSSL |
| |
| #ifdef OPENSSL_IS_BORINGSSL |
| // Enabled by EnableTimeCallbackForTesting. Should never be set in production |
| // code. |
| bool g_use_time_callback_for_testing = false; |
| // Not used in production code. Actual time should be relative to Jan 1, 1970. |
| void TimeCallbackForTesting(const SSL* ssl, struct timeval* out_clock) { |
| int64_t time = TimeNanos(); |
| out_clock->tv_sec = time / kNumNanosecsPerSec; |
| out_clock->tv_usec = (time % kNumNanosecsPerSec) / kNumNanosecsPerMicrosec; |
| } |
| #endif |
| |
| } // namespace |
| |
| ////////////////////////////////////////////////////////////////////// |
| // StreamBIO |
| ////////////////////////////////////////////////////////////////////// |
| |
| static int stream_write(BIO* h, const char* buf, int num); |
| static int stream_read(BIO* h, char* buf, int size); |
| static int stream_puts(BIO* h, const char* str); |
| static long stream_ctrl(BIO* h, int cmd, long arg1, void* arg2); |
| static int stream_new(BIO* h); |
| static int stream_free(BIO* data); |
| |
| static BIO_METHOD* BIO_stream_method() { |
| static BIO_METHOD* method = [] { |
| BIO_METHOD* method = BIO_meth_new(BIO_TYPE_BIO, "stream"); |
| BIO_meth_set_write(method, stream_write); |
| BIO_meth_set_read(method, stream_read); |
| BIO_meth_set_puts(method, stream_puts); |
| BIO_meth_set_ctrl(method, stream_ctrl); |
| BIO_meth_set_create(method, stream_new); |
| BIO_meth_set_destroy(method, stream_free); |
| return method; |
| }(); |
| return method; |
| } |
| |
| static BIO* BIO_new_stream(StreamInterface* stream) { |
| BIO* ret = BIO_new(BIO_stream_method()); |
| if (ret == nullptr) { |
| return nullptr; |
| } |
| BIO_set_data(ret, stream); |
| return ret; |
| } |
| |
| // bio methods return 1 (or at least non-zero) on success and 0 on failure. |
| |
| static int stream_new(BIO* b) { |
| BIO_set_shutdown(b, 0); |
| BIO_set_init(b, 1); |
| BIO_set_data(b, 0); |
| return 1; |
| } |
| |
| static int stream_free(BIO* b) { |
| if (b == nullptr) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int stream_read(BIO* b, char* out, int outl) { |
| if (!out) { |
| return -1; |
| } |
| StreamInterface* stream = static_cast<StreamInterface*>(BIO_get_data(b)); |
| BIO_clear_retry_flags(b); |
| size_t read; |
| int error; |
| StreamResult result = stream->Read( |
| rtc::MakeArrayView(reinterpret_cast<uint8_t*>(out), outl), read, error); |
| if (result == SR_SUCCESS) { |
| return checked_cast<int>(read); |
| } else if (result == SR_BLOCK) { |
| BIO_set_retry_read(b); |
| } |
| return -1; |
| } |
| |
| static int stream_write(BIO* b, const char* in, int inl) { |
| if (!in) { |
| return -1; |
| } |
| StreamInterface* stream = static_cast<StreamInterface*>(BIO_get_data(b)); |
| BIO_clear_retry_flags(b); |
| size_t written; |
| int error; |
| StreamResult result = stream->Write( |
| rtc::MakeArrayView(reinterpret_cast<const uint8_t*>(in), inl), written, |
| error); |
| if (result == SR_SUCCESS) { |
| return checked_cast<int>(written); |
| } else if (result == SR_BLOCK) { |
| BIO_set_retry_write(b); |
| } |
| return -1; |
| } |
| |
| static int stream_puts(BIO* b, const char* str) { |
| return stream_write(b, str, checked_cast<int>(strlen(str))); |
| } |
| |
| static long stream_ctrl(BIO* b, int cmd, long num, void* ptr) { |
| switch (cmd) { |
| case BIO_CTRL_RESET: |
| return 0; |
| case BIO_CTRL_EOF: { |
| StreamInterface* stream = static_cast<StreamInterface*>(ptr); |
| // 1 means end-of-stream. |
| return (stream->GetState() == SS_CLOSED) ? 1 : 0; |
| } |
| case BIO_CTRL_WPENDING: |
| case BIO_CTRL_PENDING: |
| return 0; |
| case BIO_CTRL_FLUSH: |
| return 1; |
| case BIO_CTRL_DGRAM_QUERY_MTU: |
| // openssl defaults to mtu=256 unless we return something here. |
| // The handshake doesn't actually need to send packets above 1k, |
| // so this seems like a sensible value that should work in most cases. |
| // Webrtc uses the same value for video packets. |
| return 1200; |
| default: |
| return 0; |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////// |
| // OpenSSLStreamAdapter |
| ///////////////////////////////////////////////////////////////////////////// |
| |
| OpenSSLStreamAdapter::OpenSSLStreamAdapter( |
| std::unique_ptr<StreamInterface> stream, |
| absl::AnyInvocable<void(SSLHandshakeError)> handshake_error) |
| : stream_(std::move(stream)), |
| handshake_error_(std::move(handshake_error)), |
| owner_(rtc::Thread::Current()), |
| state_(SSL_NONE), |
| role_(SSL_CLIENT), |
| ssl_read_needs_write_(false), |
| ssl_write_needs_read_(false), |
| ssl_(nullptr), |
| ssl_ctx_(nullptr), |
| #ifdef OPENSSL_IS_BORINGSSL |
| permute_extension_( |
| !webrtc::field_trial::IsDisabled("WebRTC-PermuteTlsClientHello")), |
| #endif |
| ssl_mode_(SSL_MODE_DTLS), |
| ssl_max_version_(SSL_PROTOCOL_TLS_12) { |
| stream_->SetEventCallback( |
| [this](int events, int err) { OnEvent(events, err); }); |
| } |
| |
| OpenSSLStreamAdapter::~OpenSSLStreamAdapter() { |
| timeout_task_.Stop(); |
| Cleanup(0); |
| } |
| |
| void OpenSSLStreamAdapter::SetIdentity(std::unique_ptr<SSLIdentity> identity) { |
| RTC_DCHECK(!identity_); |
| #ifdef OPENSSL_IS_BORINGSSL |
| identity_.reset(static_cast<BoringSSLIdentity*>(identity.release())); |
| #else |
| identity_.reset(static_cast<OpenSSLIdentity*>(identity.release())); |
| #endif |
| } |
| |
| SSLIdentity* OpenSSLStreamAdapter::GetIdentityForTesting() const { |
| return identity_.get(); |
| } |
| |
| void OpenSSLStreamAdapter::SetServerRole(SSLRole role) { |
| role_ = role; |
| } |
| |
| bool OpenSSLStreamAdapter::SetPeerCertificateDigest( |
| absl::string_view digest_alg, |
| const unsigned char* digest_val, |
| size_t digest_len, |
| SSLPeerCertificateDigestError* error) { |
| RTC_DCHECK(!peer_certificate_verified_); |
| RTC_DCHECK(!HasPeerCertificateDigest()); |
| size_t expected_len; |
| if (error) { |
| *error = SSLPeerCertificateDigestError::NONE; |
| } |
| |
| if (!OpenSSLDigest::GetDigestSize(digest_alg, &expected_len)) { |
| RTC_LOG(LS_WARNING) << "Unknown digest algorithm: " << digest_alg; |
| if (error) { |
| *error = SSLPeerCertificateDigestError::UNKNOWN_ALGORITHM; |
| } |
| return false; |
| } |
| if (expected_len != digest_len) { |
| if (error) { |
| *error = SSLPeerCertificateDigestError::INVALID_LENGTH; |
| } |
| return false; |
| } |
| |
| peer_certificate_digest_value_.SetData(digest_val, digest_len); |
| peer_certificate_digest_algorithm_ = std::string(digest_alg); |
| |
| if (!peer_cert_chain_) { |
| // Normal case, where the digest is set before we obtain the certificate |
| // from the handshake. |
| return true; |
| } |
| |
| if (!VerifyPeerCertificate()) { |
| Error("SetPeerCertificateDigest", -1, SSL_AD_BAD_CERTIFICATE, false); |
| if (error) { |
| *error = SSLPeerCertificateDigestError::VERIFICATION_FAILED; |
| } |
| return false; |
| } |
| |
| if (state_ == SSL_CONNECTED) { |
| // Post the event asynchronously to unwind the stack. The caller |
| // of ContinueSSL may be the same object listening for these |
| // events and may not be prepared for reentrancy. |
| PostEvent(SE_OPEN | SE_READ | SE_WRITE, 0); |
| } |
| |
| return true; |
| } |
| |
| std::string OpenSSLStreamAdapter::SslCipherSuiteToName(int cipher_suite) { |
| #ifdef OPENSSL_IS_BORINGSSL |
| const SSL_CIPHER* ssl_cipher = SSL_get_cipher_by_value(cipher_suite); |
| if (!ssl_cipher) { |
| return std::string(); |
| } |
| return SSL_CIPHER_standard_name(ssl_cipher); |
| #else |
| const int openssl_cipher_id = 0x03000000L | cipher_suite; |
| for (const SslCipherMapEntry* entry = kSslCipherMap; entry->rfc_name; |
| ++entry) { |
| if (openssl_cipher_id == static_cast<int>(entry->openssl_id)) { |
| return entry->rfc_name; |
| } |
| } |
| return std::string(); |
| #endif |
| } |
| |
| bool OpenSSLStreamAdapter::GetSslCipherSuite(int* cipher_suite) { |
| if (state_ != SSL_CONNECTED) { |
| return false; |
| } |
| |
| const SSL_CIPHER* current_cipher = SSL_get_current_cipher(ssl_); |
| if (current_cipher == nullptr) { |
| return false; |
| } |
| |
| *cipher_suite = static_cast<uint16_t>(SSL_CIPHER_get_id(current_cipher)); |
| return true; |
| } |
| |
| SSLProtocolVersion OpenSSLStreamAdapter::GetSslVersion() const { |
| if (state_ != SSL_CONNECTED) { |
| return SSL_PROTOCOL_NOT_GIVEN; |
| } |
| |
| int ssl_version = SSL_version(ssl_); |
| if (ssl_mode_ == SSL_MODE_DTLS) { |
| if (ssl_version == DTLS1_VERSION) { |
| return SSL_PROTOCOL_DTLS_10; |
| } else if (ssl_version == DTLS1_2_VERSION) { |
| return SSL_PROTOCOL_DTLS_12; |
| } |
| } else { |
| if (ssl_version == TLS1_VERSION) { |
| return SSL_PROTOCOL_TLS_10; |
| } else if (ssl_version == TLS1_1_VERSION) { |
| return SSL_PROTOCOL_TLS_11; |
| } else if (ssl_version == TLS1_2_VERSION) { |
| return SSL_PROTOCOL_TLS_12; |
| } |
| } |
| |
| return SSL_PROTOCOL_NOT_GIVEN; |
| } |
| |
| bool OpenSSLStreamAdapter::GetSslVersionBytes(int* version) const { |
| if (state_ != SSL_CONNECTED) { |
| return false; |
| } |
| *version = SSL_version(ssl_); |
| return true; |
| } |
| |
| // Key Extractor interface |
| bool OpenSSLStreamAdapter::ExportKeyingMaterial(absl::string_view label, |
| const uint8_t* context, |
| size_t context_len, |
| bool use_context, |
| uint8_t* result, |
| size_t result_len) { |
| if (SSL_export_keying_material(ssl_, result, result_len, label.data(), |
| label.length(), context, context_len, |
| use_context) != 1) { |
| return false; |
| } |
| return true; |
| } |
| |
| uint16_t OpenSSLStreamAdapter::GetPeerSignatureAlgorithm() const { |
| if (state_ != SSL_CONNECTED) { |
| return 0; |
| } |
| #ifdef OPENSSL_IS_BORINGSSL |
| return SSL_get_peer_signature_algorithm(ssl_); |
| #else |
| return kSslSignatureAlgorithmUnknown; |
| #endif |
| } |
| |
| bool OpenSSLStreamAdapter::SetDtlsSrtpCryptoSuites( |
| const std::vector<int>& ciphers) { |
| if (state_ != SSL_NONE) { |
| return false; |
| } |
| |
| std::string internal_ciphers; |
| for (const int cipher : ciphers) { |
| bool found = false; |
| for (const auto& entry : kSrtpCipherMap) { |
| if (cipher == entry.id) { |
| found = true; |
| if (!internal_ciphers.empty()) { |
| internal_ciphers += ":"; |
| } |
| internal_ciphers += entry.internal_name; |
| break; |
| } |
| } |
| |
| if (!found) { |
| RTC_LOG(LS_ERROR) << "Could not find cipher: " << cipher; |
| return false; |
| } |
| } |
| |
| if (internal_ciphers.empty()) { |
| return false; |
| } |
| |
| srtp_ciphers_ = internal_ciphers; |
| return true; |
| } |
| |
| bool OpenSSLStreamAdapter::GetDtlsSrtpCryptoSuite(int* crypto_suite) { |
| RTC_DCHECK(state_ == SSL_CONNECTED); |
| if (state_ != SSL_CONNECTED) { |
| return false; |
| } |
| |
| const SRTP_PROTECTION_PROFILE* srtp_profile = |
| SSL_get_selected_srtp_profile(ssl_); |
| |
| if (!srtp_profile) { |
| return false; |
| } |
| |
| *crypto_suite = srtp_profile->id; |
| RTC_DCHECK(!SrtpCryptoSuiteToName(*crypto_suite).empty()); |
| return true; |
| } |
| |
| bool OpenSSLStreamAdapter::IsTlsConnected() { |
| return state_ == SSL_CONNECTED; |
| } |
| |
| int OpenSSLStreamAdapter::StartSSL() { |
| // Don't allow StartSSL to be called twice. |
| if (state_ != SSL_NONE) { |
| return -1; |
| } |
| |
| if (stream_->GetState() != SS_OPEN) { |
| state_ = SSL_WAIT; |
| return 0; |
| } |
| |
| state_ = SSL_CONNECTING; |
| if (int err = BeginSSL()) { |
| Error("BeginSSL", err, 0, false); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| void OpenSSLStreamAdapter::SetMode(SSLMode mode) { |
| RTC_DCHECK(state_ == SSL_NONE); |
| ssl_mode_ = mode; |
| } |
| |
| void OpenSSLStreamAdapter::SetMaxProtocolVersion(SSLProtocolVersion version) { |
| RTC_DCHECK(ssl_ctx_ == nullptr); |
| ssl_max_version_ = version; |
| } |
| |
| void OpenSSLStreamAdapter::SetInitialRetransmissionTimeout(int timeout_ms) { |
| RTC_DCHECK(ssl_ctx_ == nullptr); |
| dtls_handshake_timeout_ms_ = timeout_ms; |
| } |
| |
| // |
| // StreamInterface Implementation |
| // |
| StreamResult OpenSSLStreamAdapter::Write(rtc::ArrayView<const uint8_t> data, |
| size_t& written, |
| int& error) { |
| RTC_DLOG(LS_VERBOSE) << "OpenSSLStreamAdapter::Write(" << data.size() << ")"; |
| |
| switch (state_) { |
| case SSL_NONE: |
| // pass-through in clear text |
| return stream_->Write(data, written, error); |
| case SSL_WAIT: |
| case SSL_CONNECTING: |
| return SR_BLOCK; |
| case SSL_CONNECTED: |
| if (WaitingToVerifyPeerCertificate()) { |
| return SR_BLOCK; |
| } |
| break; |
| case SSL_ERROR: |
| case SSL_CLOSED: |
| default: |
| error = ssl_error_code_; |
| return SR_ERROR; |
| } |
| |
| // OpenSSL will return an error if we try to write zero bytes |
| if (data.size() == 0) { |
| written = 0; |
| return SR_SUCCESS; |
| } |
| |
| ssl_write_needs_read_ = false; |
| |
| int code = SSL_write(ssl_, data.data(), checked_cast<int>(data.size())); |
| int ssl_error = SSL_get_error(ssl_, code); |
| switch (ssl_error) { |
| case SSL_ERROR_NONE: |
| RTC_DLOG(LS_VERBOSE) << " -- success"; |
| RTC_DCHECK_GT(code, 0); |
| RTC_DCHECK_LE(code, data.size()); |
| written = code; |
| return SR_SUCCESS; |
| case SSL_ERROR_WANT_READ: |
| RTC_DLOG(LS_VERBOSE) << " -- error want read"; |
| ssl_write_needs_read_ = true; |
| return SR_BLOCK; |
| case SSL_ERROR_WANT_WRITE: |
| RTC_DLOG(LS_VERBOSE) << " -- error want write"; |
| return SR_BLOCK; |
| case SSL_ERROR_ZERO_RETURN: |
| default: |
| Error("SSL_write", (ssl_error ? ssl_error : -1), 0, false); |
| error = ssl_error_code_; |
| return SR_ERROR; |
| } |
| // not reached |
| } |
| |
| StreamResult OpenSSLStreamAdapter::Read(rtc::ArrayView<uint8_t> data, |
| size_t& read, |
| int& error) { |
| RTC_DLOG(LS_VERBOSE) << "OpenSSLStreamAdapter::Read(" << data.size() << ")"; |
| switch (state_) { |
| case SSL_NONE: |
| // pass-through in clear text |
| return stream_->Read(data, read, error); |
| case SSL_WAIT: |
| case SSL_CONNECTING: |
| return SR_BLOCK; |
| case SSL_CONNECTED: |
| if (WaitingToVerifyPeerCertificate()) { |
| return SR_BLOCK; |
| } |
| break; |
| case SSL_CLOSED: |
| return SR_EOS; |
| case SSL_ERROR: |
| default: |
| error = ssl_error_code_; |
| return SR_ERROR; |
| } |
| |
| // Don't trust OpenSSL with zero byte reads |
| if (data.size() == 0) { |
| read = 0; |
| return SR_SUCCESS; |
| } |
| |
| ssl_read_needs_write_ = false; |
| |
| const int code = SSL_read(ssl_, data.data(), checked_cast<int>(data.size())); |
| const int ssl_error = SSL_get_error(ssl_, code); |
| |
| switch (ssl_error) { |
| case SSL_ERROR_NONE: |
| RTC_DLOG(LS_VERBOSE) << " -- success"; |
| RTC_DCHECK_GT(code, 0); |
| RTC_DCHECK_LE(code, data.size()); |
| read = code; |
| |
| if (ssl_mode_ == SSL_MODE_DTLS) { |
| // Enforce atomic reads -- this is a short read |
| unsigned int pending = SSL_pending(ssl_); |
| |
| if (pending) { |
| RTC_DLOG(LS_INFO) << " -- short DTLS read. flushing"; |
| FlushInput(pending); |
| error = SSE_MSG_TRUNC; |
| return SR_ERROR; |
| } |
| } |
| return SR_SUCCESS; |
| case SSL_ERROR_WANT_READ: |
| RTC_DLOG(LS_VERBOSE) << " -- error want read"; |
| return SR_BLOCK; |
| case SSL_ERROR_WANT_WRITE: |
| RTC_DLOG(LS_VERBOSE) << " -- error want write"; |
| ssl_read_needs_write_ = true; |
| return SR_BLOCK; |
| case SSL_ERROR_ZERO_RETURN: |
| RTC_DLOG(LS_VERBOSE) << " -- remote side closed"; |
| Close(); |
| return SR_EOS; |
| default: |
| Error("SSL_read", (ssl_error ? ssl_error : -1), 0, false); |
| error = ssl_error_code_; |
| return SR_ERROR; |
| } |
| // not reached |
| } |
| |
| void OpenSSLStreamAdapter::FlushInput(unsigned int left) { |
| unsigned char buf[2048]; |
| |
| while (left) { |
| // This should always succeed |
| const int toread = (sizeof(buf) < left) ? sizeof(buf) : left; |
| const int code = SSL_read(ssl_, buf, toread); |
| |
| const int ssl_error = SSL_get_error(ssl_, code); |
| RTC_DCHECK(ssl_error == SSL_ERROR_NONE); |
| |
| if (ssl_error != SSL_ERROR_NONE) { |
| RTC_DLOG(LS_VERBOSE) << " -- error " << code; |
| Error("SSL_read", (ssl_error ? ssl_error : -1), 0, false); |
| return; |
| } |
| |
| RTC_DLOG(LS_VERBOSE) << " -- flushed " << code << " bytes"; |
| left -= code; |
| } |
| } |
| |
| void OpenSSLStreamAdapter::Close() { |
| Cleanup(0); |
| RTC_DCHECK(state_ == SSL_CLOSED || state_ == SSL_ERROR); |
| // When we're closed at SSL layer, also close the stream level which |
| // performs necessary clean up. Otherwise, a new incoming packet after |
| // this could overflow the stream buffer. |
| stream_->Close(); |
| } |
| |
| StreamState OpenSSLStreamAdapter::GetState() const { |
| switch (state_) { |
| case SSL_WAIT: |
| case SSL_CONNECTING: |
| return SS_OPENING; |
| case SSL_CONNECTED: |
| if (WaitingToVerifyPeerCertificate()) { |
| return SS_OPENING; |
| } |
| return SS_OPEN; |
| default: |
| return SS_CLOSED; |
| } |
| // not reached |
| } |
| |
| void OpenSSLStreamAdapter::OnEvent(int events, int err) { |
| RTC_DCHECK_RUN_ON(&callback_sequence_); |
| int events_to_signal = 0; |
| int signal_error = 0; |
| |
| if ((events & SE_OPEN)) { |
| RTC_DLOG(LS_VERBOSE) << "OpenSSLStreamAdapter::OnEvent SE_OPEN"; |
| if (state_ != SSL_WAIT) { |
| RTC_DCHECK(state_ == SSL_NONE); |
| events_to_signal |= SE_OPEN; |
| } else { |
| state_ = SSL_CONNECTING; |
| if (int err = BeginSSL()) { |
| Error("BeginSSL", err, 0, true); |
| return; |
| } |
| } |
| } |
| |
| if ((events & (SE_READ | SE_WRITE))) { |
| RTC_DLOG(LS_VERBOSE) << "OpenSSLStreamAdapter::OnEvent" |
| << ((events & SE_READ) ? " SE_READ" : "") |
| << ((events & SE_WRITE) ? " SE_WRITE" : ""); |
| if (state_ == SSL_NONE) { |
| events_to_signal |= events & (SE_READ | SE_WRITE); |
| } else if (state_ == SSL_CONNECTING) { |
| if (int err = ContinueSSL()) { |
| Error("ContinueSSL", err, 0, true); |
| return; |
| } |
| } else if (state_ == SSL_CONNECTED) { |
| if (((events & SE_READ) && ssl_write_needs_read_) || |
| (events & SE_WRITE)) { |
| RTC_DLOG(LS_VERBOSE) << " -- onStreamWriteable"; |
| events_to_signal |= SE_WRITE; |
| } |
| if (((events & SE_WRITE) && ssl_read_needs_write_) || |
| (events & SE_READ)) { |
| RTC_DLOG(LS_VERBOSE) << " -- onStreamReadable"; |
| events_to_signal |= SE_READ; |
| } |
| } |
| } |
| |
| if ((events & SE_CLOSE)) { |
| RTC_DLOG(LS_VERBOSE) << "OpenSSLStreamAdapter::OnEvent(SE_CLOSE, " << err |
| << ")"; |
| Cleanup(0); |
| events_to_signal |= SE_CLOSE; |
| // SE_CLOSE is the only event that uses the final parameter to OnEvent(). |
| RTC_DCHECK(signal_error == 0); |
| signal_error = err; |
| } |
| |
| if (events_to_signal) { |
| // Note that the adapter presents itself as the origin of the stream events, |
| // since users of the adapter may not recognize the adapted object. |
| FireEvent(events_to_signal, signal_error); |
| } |
| } |
| |
| void OpenSSLStreamAdapter::PostEvent(int events, int err) { |
| owner_->PostTask(SafeTask(task_safety_.flag(), [this, events, err]() { |
| RTC_DCHECK_RUN_ON(&callback_sequence_); |
| FireEvent(events, err); |
| })); |
| } |
| |
| void OpenSSLStreamAdapter::SetTimeout(int delay_ms) { |
| // We need to accept 0 delay here as well as >0 delay, because |
| // DTLSv1_get_timeout seems to frequently return 0 ms. |
| RTC_DCHECK_GE(delay_ms, 0); |
| RTC_DCHECK(!timeout_task_.Running()); |
| |
| timeout_task_ = webrtc::RepeatingTaskHandle::DelayedStart( |
| owner_, webrtc::TimeDelta::Millis(delay_ms), |
| [flag = task_safety_.flag(), this]() { |
| if (flag->alive()) { |
| RTC_DLOG(LS_INFO) << "DTLS timeout expired"; |
| timeout_task_.Stop(); |
| int res = DTLSv1_handle_timeout(ssl_); |
| if (res > 0) { |
| RTC_LOG(LS_INFO) << "DTLS retransmission"; |
| } else if (res < 0) { |
| RTC_LOG(LS_INFO) << "DTLSv1_handle_timeout() return -1"; |
| Error("DTLSv1_handle_timeout", res, -1, true); |
| return webrtc::TimeDelta::PlusInfinity(); |
| } |
| ContinueSSL(); |
| } else { |
| RTC_DCHECK_NOTREACHED(); |
| } |
| // This callback will never run again (stopped above). |
| return webrtc::TimeDelta::PlusInfinity(); |
| }); |
| } |
| |
| int OpenSSLStreamAdapter::BeginSSL() { |
| RTC_DCHECK(state_ == SSL_CONNECTING); |
| // The underlying stream has opened. |
| RTC_DLOG(LS_INFO) << "BeginSSL with peer."; |
| |
| BIO* bio = nullptr; |
| |
| // First set up the context. |
| RTC_DCHECK(ssl_ctx_ == nullptr); |
| ssl_ctx_ = SetupSSLContext(); |
| if (!ssl_ctx_) { |
| return -1; |
| } |
| |
| bio = BIO_new_stream(stream_.get()); |
| if (!bio) { |
| return -1; |
| } |
| |
| ssl_ = SSL_new(ssl_ctx_); |
| if (!ssl_) { |
| BIO_free(bio); |
| return -1; |
| } |
| |
| SSL_set_app_data(ssl_, this); |
| |
| SSL_set_bio(ssl_, bio, bio); // the SSL object owns the bio now. |
| if (ssl_mode_ == SSL_MODE_DTLS) { |
| #ifdef OPENSSL_IS_BORINGSSL |
| DTLSv1_set_initial_timeout_duration(ssl_, dtls_handshake_timeout_ms_); |
| #else |
| // Enable read-ahead for DTLS so whole packets are read from internal BIO |
| // before parsing. This is done internally by BoringSSL for DTLS. |
| SSL_set_read_ahead(ssl_, 1); |
| #endif |
| } |
| |
| SSL_set_mode(ssl_, SSL_MODE_ENABLE_PARTIAL_WRITE | |
| SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER); |
| |
| // Do the connect |
| return ContinueSSL(); |
| } |
| |
| int OpenSSLStreamAdapter::ContinueSSL() { |
| RTC_DCHECK_RUN_ON(&callback_sequence_); |
| RTC_DLOG(LS_VERBOSE) << "ContinueSSL"; |
| RTC_DCHECK_EQ(state_, SSL_CONNECTING); |
| |
| // Clear the DTLS timer |
| timeout_task_.Stop(); |
| |
| const int code = (role_ == SSL_CLIENT) ? SSL_connect(ssl_) : SSL_accept(ssl_); |
| const int ssl_error = SSL_get_error(ssl_, code); |
| |
| switch (ssl_error) { |
| case SSL_ERROR_NONE: |
| RTC_DLOG(LS_VERBOSE) << " -- success"; |
| // By this point, OpenSSL should have given us a certificate, or errored |
| // out if one was missing. |
| RTC_DCHECK(peer_cert_chain_ || !GetClientAuthEnabled()); |
| |
| state_ = SSL_CONNECTED; |
| if (!WaitingToVerifyPeerCertificate()) { |
| // We have everything we need to start the connection, so signal |
| // SE_OPEN. If we need a client certificate fingerprint and don't have |
| // it yet, we'll instead signal SE_OPEN in SetPeerCertificateDigest. |
| // |
| // TODO(deadbeef): Post this event asynchronously to unwind the stack. |
| // The caller of ContinueSSL may be the same object listening for these |
| // events and may not be prepared for reentrancy. |
| // PostEvent(SE_OPEN | SE_READ | SE_WRITE, 0); |
| FireEvent(SE_OPEN | SE_READ | SE_WRITE, 0); |
| } |
| break; |
| case SSL_ERROR_WANT_READ: { |
| RTC_DLOG(LS_VERBOSE) << " -- error want read"; |
| struct timeval timeout; |
| if (DTLSv1_get_timeout(ssl_, &timeout)) { |
| int delay = timeout.tv_sec * 1000 + timeout.tv_usec / 1000; |
| SetTimeout(delay); |
| } |
| } break; |
| case SSL_ERROR_WANT_WRITE: |
| RTC_DLOG(LS_VERBOSE) << " -- error want write"; |
| break; |
| case SSL_ERROR_ZERO_RETURN: |
| default: { |
| SSLHandshakeError ssl_handshake_err = SSLHandshakeError::UNKNOWN; |
| int err_code = ERR_peek_last_error(); |
| if (err_code != 0 && ERR_GET_REASON(err_code) == SSL_R_NO_SHARED_CIPHER) { |
| ssl_handshake_err = SSLHandshakeError::INCOMPATIBLE_CIPHERSUITE; |
| } |
| RTC_DLOG(LS_VERBOSE) << " -- error " << code << ", " << err_code << ", " |
| << ERR_GET_REASON(err_code); |
| if (handshake_error_) { |
| handshake_error_(ssl_handshake_err); |
| } |
| return (ssl_error != 0) ? ssl_error : -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void OpenSSLStreamAdapter::Error(absl::string_view context, |
| int err, |
| uint8_t alert, |
| bool signal) { |
| RTC_DCHECK_RUN_ON(&callback_sequence_); |
| RTC_LOG(LS_WARNING) << "OpenSSLStreamAdapter::Error(" << context << ", " |
| << err << ", " << static_cast<int>(alert) << ")"; |
| state_ = SSL_ERROR; |
| ssl_error_code_ = err; |
| Cleanup(alert); |
| if (signal) { |
| FireEvent(SE_CLOSE, err); |
| } |
| } |
| |
| void OpenSSLStreamAdapter::Cleanup(uint8_t alert) { |
| RTC_DLOG(LS_INFO) << "Cleanup"; |
| |
| if (state_ != SSL_ERROR) { |
| state_ = SSL_CLOSED; |
| ssl_error_code_ = 0; |
| } |
| |
| if (ssl_) { |
| int ret; |
| // SSL_send_fatal_alert is only available in BoringSSL. |
| #ifdef OPENSSL_IS_BORINGSSL |
| if (alert) { |
| ret = SSL_send_fatal_alert(ssl_, alert); |
| if (ret < 0) { |
| RTC_LOG(LS_WARNING) << "SSL_send_fatal_alert failed, error = " |
| << SSL_get_error(ssl_, ret); |
| } |
| } else { |
| #endif |
| ret = SSL_shutdown(ssl_); |
| if (ret < 0) { |
| RTC_LOG(LS_WARNING) |
| << "SSL_shutdown failed, error = " << SSL_get_error(ssl_, ret); |
| } |
| #ifdef OPENSSL_IS_BORINGSSL |
| } |
| #endif |
| SSL_free(ssl_); |
| ssl_ = nullptr; |
| } |
| if (ssl_ctx_) { |
| SSL_CTX_free(ssl_ctx_); |
| ssl_ctx_ = nullptr; |
| } |
| identity_.reset(); |
| peer_cert_chain_.reset(); |
| |
| // Clear the DTLS timer |
| timeout_task_.Stop(); |
| } |
| |
| SSL_CTX* OpenSSLStreamAdapter::SetupSSLContext() { |
| #ifdef OPENSSL_IS_BORINGSSL |
| // If X509 objects aren't used, we can use these methods to avoid |
| // linking the sizable crypto/x509 code, using CRYPTO_BUFFER instead. |
| SSL_CTX* ctx = |
| SSL_CTX_new(ssl_mode_ == SSL_MODE_DTLS ? DTLS_with_buffers_method() |
| : TLS_with_buffers_method()); |
| #else |
| SSL_CTX* ctx = |
| SSL_CTX_new(ssl_mode_ == SSL_MODE_DTLS ? DTLS_method() : TLS_method()); |
| #endif |
| if (ctx == nullptr) { |
| return nullptr; |
| } |
| |
| SSL_CTX_set_min_proto_version( |
| ctx, ssl_mode_ == SSL_MODE_DTLS ? DTLS1_2_VERSION : TLS1_2_VERSION); |
| SSL_CTX_set_max_proto_version( |
| ctx, ssl_mode_ == SSL_MODE_DTLS ? DTLS1_2_VERSION : TLS1_2_VERSION); |
| |
| #ifdef OPENSSL_IS_BORINGSSL |
| // SSL_CTX_set_current_time_cb is only supported in BoringSSL. |
| if (g_use_time_callback_for_testing) { |
| SSL_CTX_set_current_time_cb(ctx, &TimeCallbackForTesting); |
| } |
| SSL_CTX_set0_buffer_pool(ctx, openssl::GetBufferPool()); |
| #endif |
| |
| if (identity_ && !identity_->ConfigureIdentity(ctx)) { |
| SSL_CTX_free(ctx); |
| return nullptr; |
| } |
| |
| SSL_CTX_set_info_callback(ctx, OpenSSLAdapter::SSLInfoCallback); |
| |
| int mode = SSL_VERIFY_PEER; |
| if (GetClientAuthEnabled()) { |
| // Require a certificate from the client. |
| // Note: Normally this is always true in production, but it may be disabled |
| // for testing purposes (e.g. SSLAdapter unit tests). |
| mode |= SSL_VERIFY_FAIL_IF_NO_PEER_CERT; |
| } |
| |
| // Configure a custom certificate verification callback to check the peer |
| // certificate digest. |
| #ifdef OPENSSL_IS_BORINGSSL |
| // Use CRYPTO_BUFFER version of the callback if building with BoringSSL. |
| SSL_CTX_set_custom_verify(ctx, mode, SSLVerifyCallback); |
| #else |
| // Note the second argument to SSL_CTX_set_verify is to override individual |
| // errors in the default verification logic, which is not what we want here. |
| SSL_CTX_set_verify(ctx, mode, nullptr); |
| SSL_CTX_set_cert_verify_callback(ctx, SSLVerifyCallback, nullptr); |
| #endif |
| |
| // Select list of available ciphers. Note that !SHA256 and !SHA384 only |
| // remove HMAC-SHA256 and HMAC-SHA384 cipher suites, not GCM cipher suites |
| // with SHA256 or SHA384 as the handshake hash. |
| // This matches the list of SSLClientSocketImpl in Chromium. |
| SSL_CTX_set_cipher_list( |
| ctx, |
| "DEFAULT:!NULL:!aNULL:!SHA256:!SHA384:!aECDH:!AESGCM+AES256:!aPSK:!3DES"); |
| |
| if (!srtp_ciphers_.empty()) { |
| if (SSL_CTX_set_tlsext_use_srtp(ctx, srtp_ciphers_.c_str())) { |
| SSL_CTX_free(ctx); |
| return nullptr; |
| } |
| } |
| |
| #ifdef OPENSSL_IS_BORINGSSL |
| SSL_CTX_set_permute_extensions(ctx, permute_extension_); |
| #endif |
| |
| return ctx; |
| } |
| |
| bool OpenSSLStreamAdapter::VerifyPeerCertificate() { |
| if (!HasPeerCertificateDigest() || !peer_cert_chain_ || |
| !peer_cert_chain_->GetSize()) { |
| RTC_LOG(LS_WARNING) << "Missing digest or peer certificate."; |
| return false; |
| } |
| |
| unsigned char digest[EVP_MAX_MD_SIZE]; |
| size_t digest_length; |
| if (!peer_cert_chain_->Get(0).ComputeDigest( |
| peer_certificate_digest_algorithm_, digest, sizeof(digest), |
| &digest_length)) { |
| RTC_LOG(LS_WARNING) << "Failed to compute peer cert digest."; |
| return false; |
| } |
| |
| Buffer computed_digest(digest, digest_length); |
| if (computed_digest != peer_certificate_digest_value_) { |
| RTC_LOG(LS_WARNING) |
| << "Rejected peer certificate due to mismatched digest using " |
| << peer_certificate_digest_algorithm_ << ". Expected " |
| << rtc::hex_encode_with_delimiter(peer_certificate_digest_value_, ':') |
| << " got " << rtc::hex_encode_with_delimiter(computed_digest, ':'); |
| return false; |
| } |
| // Ignore any verification error if the digest matches, since there is no |
| // value in checking the validity of a self-signed cert issued by untrusted |
| // sources. |
| RTC_DLOG(LS_INFO) << "Accepted peer certificate."; |
| peer_certificate_verified_ = true; |
| return true; |
| } |
| |
| std::unique_ptr<SSLCertChain> OpenSSLStreamAdapter::GetPeerSSLCertChain() |
| const { |
| return peer_cert_chain_ ? peer_cert_chain_->Clone() : nullptr; |
| } |
| |
| #ifdef OPENSSL_IS_BORINGSSL |
| enum ssl_verify_result_t OpenSSLStreamAdapter::SSLVerifyCallback( |
| SSL* ssl, |
| uint8_t* out_alert) { |
| // Get our OpenSSLStreamAdapter from the context. |
| OpenSSLStreamAdapter* stream = |
| reinterpret_cast<OpenSSLStreamAdapter*>(SSL_get_app_data(ssl)); |
| const STACK_OF(CRYPTO_BUFFER)* chain = SSL_get0_peer_certificates(ssl); |
| // Creates certificate chain. |
| std::vector<std::unique_ptr<SSLCertificate>> cert_chain; |
| for (CRYPTO_BUFFER* cert : chain) { |
| cert_chain.emplace_back(new BoringSSLCertificate(bssl::UpRef(cert))); |
| } |
| stream->peer_cert_chain_.reset(new SSLCertChain(std::move(cert_chain))); |
| |
| // If the peer certificate digest isn't known yet, we'll wait to verify |
| // until it's known, and for now just return a success status. |
| if (stream->peer_certificate_digest_algorithm_.empty()) { |
| RTC_LOG(LS_INFO) << "Waiting to verify certificate until digest is known."; |
| // TODO(deadbeef): Use ssl_verify_retry? |
| return ssl_verify_ok; |
| } |
| |
| if (!stream->VerifyPeerCertificate()) { |
| return ssl_verify_invalid; |
| } |
| |
| return ssl_verify_ok; |
| } |
| #else // OPENSSL_IS_BORINGSSL |
| int OpenSSLStreamAdapter::SSLVerifyCallback(X509_STORE_CTX* store, void* arg) { |
| // Get our SSL structure and OpenSSLStreamAdapter from the store. |
| SSL* ssl = reinterpret_cast<SSL*>( |
| X509_STORE_CTX_get_ex_data(store, SSL_get_ex_data_X509_STORE_CTX_idx())); |
| OpenSSLStreamAdapter* stream = |
| reinterpret_cast<OpenSSLStreamAdapter*>(SSL_get_app_data(ssl)); |
| |
| // Record the peer's certificate. |
| X509* cert = X509_STORE_CTX_get0_cert(store); |
| stream->peer_cert_chain_.reset( |
| new SSLCertChain(std::make_unique<OpenSSLCertificate>(cert))); |
| |
| // If the peer certificate digest isn't known yet, we'll wait to verify |
| // until it's known, and for now just return a success status. |
| if (stream->peer_certificate_digest_algorithm_.empty()) { |
| RTC_DLOG(LS_INFO) << "Waiting to verify certificate until digest is known."; |
| return 1; |
| } |
| |
| if (!stream->VerifyPeerCertificate()) { |
| X509_STORE_CTX_set_error(store, X509_V_ERR_CERT_REJECTED); |
| return 0; |
| } |
| |
| return 1; |
| } |
| #endif // !OPENSSL_IS_BORINGSSL |
| |
| bool OpenSSLStreamAdapter::IsBoringSsl() { |
| #ifdef OPENSSL_IS_BORINGSSL |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| #define CDEF(X) \ |
| { static_cast<uint16_t>(TLS1_CK_##X & 0xffff), "TLS_" #X } |
| |
| struct cipher_list { |
| uint16_t cipher; |
| const char* cipher_str; |
| }; |
| |
| // TODO(torbjorng): Perhaps add more cipher suites to these lists. |
| static const cipher_list OK_RSA_ciphers[] = { |
| CDEF(ECDHE_RSA_WITH_AES_128_CBC_SHA), |
| CDEF(ECDHE_RSA_WITH_AES_256_CBC_SHA), |
| CDEF(ECDHE_RSA_WITH_AES_128_GCM_SHA256), |
| #ifdef TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA256 |
| CDEF(ECDHE_RSA_WITH_AES_256_GCM_SHA256), |
| #endif |
| #ifdef TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 |
| CDEF(ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256), |
| #endif |
| }; |
| |
| static const cipher_list OK_ECDSA_ciphers[] = { |
| CDEF(ECDHE_ECDSA_WITH_AES_128_CBC_SHA), |
| CDEF(ECDHE_ECDSA_WITH_AES_256_CBC_SHA), |
| CDEF(ECDHE_ECDSA_WITH_AES_128_GCM_SHA256), |
| #ifdef TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA256 |
| CDEF(ECDHE_ECDSA_WITH_AES_256_GCM_SHA256), |
| #endif |
| #ifdef TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 |
| CDEF(ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256), |
| #endif |
| }; |
| #undef CDEF |
| |
| bool OpenSSLStreamAdapter::IsAcceptableCipher(int cipher, KeyType key_type) { |
| if (key_type == KT_RSA) { |
| for (const cipher_list& c : OK_RSA_ciphers) { |
| if (cipher == c.cipher) { |
| return true; |
| } |
| } |
| } |
| |
| if (key_type == KT_ECDSA) { |
| for (const cipher_list& c : OK_ECDSA_ciphers) { |
| if (cipher == c.cipher) { |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool OpenSSLStreamAdapter::IsAcceptableCipher(absl::string_view cipher, |
| KeyType key_type) { |
| if (key_type == KT_RSA) { |
| for (const cipher_list& c : OK_RSA_ciphers) { |
| if (cipher == c.cipher_str) { |
| return true; |
| } |
| } |
| } |
| |
| if (key_type == KT_ECDSA) { |
| for (const cipher_list& c : OK_ECDSA_ciphers) { |
| if (cipher == c.cipher_str) { |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| void OpenSSLStreamAdapter::EnableTimeCallbackForTesting() { |
| #ifdef OPENSSL_IS_BORINGSSL |
| g_use_time_callback_for_testing = true; |
| #endif |
| } |
| |
| } // namespace rtc |