|  | /* | 
|  | *  Copyright 2006 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <time.h> | 
|  | #if defined(WEBRTC_POSIX) | 
|  | #include <netinet/in.h> | 
|  | #endif | 
|  |  | 
|  | #include "webrtc/base/logging.h" | 
|  | #include "webrtc/base/gunit.h" | 
|  | #include "webrtc/base/testclient.h" | 
|  | #include "webrtc/base/testutils.h" | 
|  | #include "webrtc/base/thread.h" | 
|  | #include "webrtc/base/timeutils.h" | 
|  | #include "webrtc/base/virtualsocketserver.h" | 
|  |  | 
|  | using namespace rtc; | 
|  |  | 
|  | // Sends at a constant rate but with random packet sizes. | 
|  | struct Sender : public MessageHandler { | 
|  | Sender(Thread* th, AsyncSocket* s, uint32 rt) | 
|  | : thread(th), socket(new AsyncUDPSocket(s)), | 
|  | done(false), rate(rt), count(0) { | 
|  | last_send = rtc::Time(); | 
|  | thread->PostDelayed(NextDelay(), this, 1); | 
|  | } | 
|  |  | 
|  | uint32 NextDelay() { | 
|  | uint32 size = (rand() % 4096) + 1; | 
|  | return 1000 * size / rate; | 
|  | } | 
|  |  | 
|  | void OnMessage(Message* pmsg) { | 
|  | ASSERT_EQ(1u, pmsg->message_id); | 
|  |  | 
|  | if (done) | 
|  | return; | 
|  |  | 
|  | uint32 cur_time = rtc::Time(); | 
|  | uint32 delay = cur_time - last_send; | 
|  | uint32 size = rate * delay / 1000; | 
|  | size = std::min<uint32>(size, 4096); | 
|  | size = std::max<uint32>(size, sizeof(uint32)); | 
|  |  | 
|  | count += size; | 
|  | memcpy(dummy, &cur_time, sizeof(cur_time)); | 
|  | socket->Send(dummy, size, options); | 
|  |  | 
|  | last_send = cur_time; | 
|  | thread->PostDelayed(NextDelay(), this, 1); | 
|  | } | 
|  |  | 
|  | Thread* thread; | 
|  | scoped_ptr<AsyncUDPSocket> socket; | 
|  | rtc::PacketOptions options; | 
|  | bool done; | 
|  | uint32 rate;  // bytes per second | 
|  | uint32 count; | 
|  | uint32 last_send; | 
|  | char dummy[4096]; | 
|  | }; | 
|  |  | 
|  | struct Receiver : public MessageHandler, public sigslot::has_slots<> { | 
|  | Receiver(Thread* th, AsyncSocket* s, uint32 bw) | 
|  | : thread(th), socket(new AsyncUDPSocket(s)), bandwidth(bw), done(false), | 
|  | count(0), sec_count(0), sum(0), sum_sq(0), samples(0) { | 
|  | socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket); | 
|  | thread->PostDelayed(1000, this, 1); | 
|  | } | 
|  |  | 
|  | ~Receiver() { | 
|  | thread->Clear(this); | 
|  | } | 
|  |  | 
|  | void OnReadPacket(AsyncPacketSocket* s, const char* data, size_t size, | 
|  | const SocketAddress& remote_addr, | 
|  | const PacketTime& packet_time) { | 
|  | ASSERT_EQ(socket.get(), s); | 
|  | ASSERT_GE(size, 4U); | 
|  |  | 
|  | count += size; | 
|  | sec_count += size; | 
|  |  | 
|  | uint32 send_time = *reinterpret_cast<const uint32*>(data); | 
|  | uint32 recv_time = rtc::Time(); | 
|  | uint32 delay = recv_time - send_time; | 
|  | sum += delay; | 
|  | sum_sq += delay * delay; | 
|  | samples += 1; | 
|  | } | 
|  |  | 
|  | void OnMessage(Message* pmsg) { | 
|  | ASSERT_EQ(1u, pmsg->message_id); | 
|  |  | 
|  | if (done) | 
|  | return; | 
|  |  | 
|  | // It is always possible for us to receive more than expected because | 
|  | // packets can be further delayed in delivery. | 
|  | if (bandwidth > 0) | 
|  | ASSERT_TRUE(sec_count <= 5 * bandwidth / 4); | 
|  | sec_count = 0; | 
|  | thread->PostDelayed(1000, this, 1); | 
|  | } | 
|  |  | 
|  | Thread* thread; | 
|  | scoped_ptr<AsyncUDPSocket> socket; | 
|  | uint32 bandwidth; | 
|  | bool done; | 
|  | size_t count; | 
|  | size_t sec_count; | 
|  | double sum; | 
|  | double sum_sq; | 
|  | uint32 samples; | 
|  | }; | 
|  |  | 
|  | class VirtualSocketServerTest : public testing::Test { | 
|  | public: | 
|  | VirtualSocketServerTest() : ss_(new VirtualSocketServer(NULL)), | 
|  | kIPv4AnyAddress(IPAddress(INADDR_ANY), 0), | 
|  | kIPv6AnyAddress(IPAddress(in6addr_any), 0) { | 
|  | } | 
|  |  | 
|  | void CheckAddressIncrementalization(const SocketAddress& post, | 
|  | const SocketAddress& pre) { | 
|  | EXPECT_EQ(post.port(), pre.port() + 1); | 
|  | IPAddress post_ip = post.ipaddr(); | 
|  | IPAddress pre_ip = pre.ipaddr(); | 
|  | EXPECT_EQ(pre_ip.family(), post_ip.family()); | 
|  | if (post_ip.family() == AF_INET) { | 
|  | in_addr pre_ipv4 = pre_ip.ipv4_address(); | 
|  | in_addr post_ipv4 = post_ip.ipv4_address(); | 
|  | int difference = ntohl(post_ipv4.s_addr) - ntohl(pre_ipv4.s_addr); | 
|  | EXPECT_EQ(1, difference); | 
|  | } else if (post_ip.family() == AF_INET6) { | 
|  | in6_addr post_ip6 = post_ip.ipv6_address(); | 
|  | in6_addr pre_ip6 = pre_ip.ipv6_address(); | 
|  | uint32* post_as_ints = reinterpret_cast<uint32*>(&post_ip6.s6_addr); | 
|  | uint32* pre_as_ints = reinterpret_cast<uint32*>(&pre_ip6.s6_addr); | 
|  | EXPECT_EQ(post_as_ints[3], pre_as_ints[3] + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BasicTest(const SocketAddress& initial_addr) { | 
|  | AsyncSocket* socket = ss_->CreateAsyncSocket(initial_addr.family(), | 
|  | SOCK_DGRAM); | 
|  | socket->Bind(initial_addr); | 
|  | SocketAddress server_addr = socket->GetLocalAddress(); | 
|  | // Make sure VSS didn't switch families on us. | 
|  | EXPECT_EQ(server_addr.family(), initial_addr.family()); | 
|  |  | 
|  | TestClient* client1 = new TestClient(new AsyncUDPSocket(socket)); | 
|  | AsyncSocket* socket2 = | 
|  | ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); | 
|  | TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2)); | 
|  |  | 
|  | SocketAddress client2_addr; | 
|  | EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr)); | 
|  | EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); | 
|  |  | 
|  | SocketAddress client1_addr; | 
|  | EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); | 
|  | EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); | 
|  | EXPECT_EQ(client1_addr, server_addr); | 
|  |  | 
|  | SocketAddress empty = EmptySocketAddressWithFamily(initial_addr.family()); | 
|  | for (int i = 0; i < 10; i++) { | 
|  | client2 = new TestClient(AsyncUDPSocket::Create(ss_, empty)); | 
|  |  | 
|  | SocketAddress next_client2_addr; | 
|  | EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr)); | 
|  | EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr)); | 
|  | CheckAddressIncrementalization(next_client2_addr, client2_addr); | 
|  | // EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1); | 
|  |  | 
|  | SocketAddress server_addr2; | 
|  | EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr)); | 
|  | EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2)); | 
|  | EXPECT_EQ(server_addr2, server_addr); | 
|  |  | 
|  | client2_addr = next_client2_addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // initial_addr should be made from either INADDR_ANY or in6addr_any. | 
|  | void ConnectTest(const SocketAddress& initial_addr) { | 
|  | testing::StreamSink sink; | 
|  | SocketAddress accept_addr; | 
|  | const SocketAddress kEmptyAddr = | 
|  | EmptySocketAddressWithFamily(initial_addr.family()); | 
|  |  | 
|  | // Create client | 
|  | AsyncSocket* client = ss_->CreateAsyncSocket(initial_addr.family(), | 
|  | SOCK_STREAM); | 
|  | sink.Monitor(client); | 
|  | EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); | 
|  | EXPECT_TRUE(client->GetLocalAddress().IsNil()); | 
|  |  | 
|  | // Create server | 
|  | AsyncSocket* server = ss_->CreateAsyncSocket(initial_addr.family(), | 
|  | SOCK_STREAM); | 
|  | sink.Monitor(server); | 
|  | EXPECT_NE(0, server->Listen(5));  // Bind required | 
|  | EXPECT_EQ(0, server->Bind(initial_addr)); | 
|  | EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); | 
|  | EXPECT_EQ(0, server->Listen(5)); | 
|  | EXPECT_EQ(server->GetState(), AsyncSocket::CS_CONNECTING); | 
|  |  | 
|  | // No pending server connections | 
|  | EXPECT_FALSE(sink.Check(server, testing::SSE_READ)); | 
|  | EXPECT_TRUE(NULL == server->Accept(&accept_addr)); | 
|  | EXPECT_EQ(AF_UNSPEC, accept_addr.family()); | 
|  |  | 
|  | // Attempt connect to listening socket | 
|  | EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); | 
|  | EXPECT_NE(client->GetLocalAddress(), kEmptyAddr);  // Implicit Bind | 
|  | EXPECT_NE(AF_UNSPEC, client->GetLocalAddress().family());  // Implicit Bind | 
|  | EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress()); | 
|  |  | 
|  | // Client is connecting | 
|  | EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING); | 
|  | EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN)); | 
|  | EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE)); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | // Client still connecting | 
|  | EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING); | 
|  | EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN)); | 
|  | EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE)); | 
|  |  | 
|  | // Server has pending connection | 
|  | EXPECT_TRUE(sink.Check(server, testing::SSE_READ)); | 
|  | Socket* accepted = server->Accept(&accept_addr); | 
|  | EXPECT_TRUE(NULL != accepted); | 
|  | EXPECT_NE(accept_addr, kEmptyAddr); | 
|  | EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr); | 
|  |  | 
|  | EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED); | 
|  | EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress()); | 
|  | EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress()); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | // Client has connected | 
|  | EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTED); | 
|  | EXPECT_TRUE(sink.Check(client, testing::SSE_OPEN)); | 
|  | EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE)); | 
|  | EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress()); | 
|  | EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress()); | 
|  | } | 
|  |  | 
|  | void ConnectToNonListenerTest(const SocketAddress& initial_addr) { | 
|  | testing::StreamSink sink; | 
|  | SocketAddress accept_addr; | 
|  | const SocketAddress nil_addr; | 
|  | const SocketAddress empty_addr = | 
|  | EmptySocketAddressWithFamily(initial_addr.family()); | 
|  |  | 
|  | // Create client | 
|  | AsyncSocket* client = ss_->CreateAsyncSocket(initial_addr.family(), | 
|  | SOCK_STREAM); | 
|  | sink.Monitor(client); | 
|  |  | 
|  | // Create server | 
|  | AsyncSocket* server = ss_->CreateAsyncSocket(initial_addr.family(), | 
|  | SOCK_STREAM); | 
|  | sink.Monitor(server); | 
|  | EXPECT_EQ(0, server->Bind(initial_addr)); | 
|  | EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); | 
|  | // Attempt connect to non-listening socket | 
|  | EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | // No pending server connections | 
|  | EXPECT_FALSE(sink.Check(server, testing::SSE_READ)); | 
|  | EXPECT_TRUE(NULL == server->Accept(&accept_addr)); | 
|  | EXPECT_EQ(accept_addr, nil_addr); | 
|  |  | 
|  | // Connection failed | 
|  | EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); | 
|  | EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN)); | 
|  | EXPECT_TRUE(sink.Check(client, testing::SSE_ERROR)); | 
|  | EXPECT_EQ(client->GetRemoteAddress(), nil_addr); | 
|  | } | 
|  |  | 
|  | void CloseDuringConnectTest(const SocketAddress& initial_addr) { | 
|  | testing::StreamSink sink; | 
|  | SocketAddress accept_addr; | 
|  | const SocketAddress empty_addr = | 
|  | EmptySocketAddressWithFamily(initial_addr.family()); | 
|  |  | 
|  | // Create client and server | 
|  | scoped_ptr<AsyncSocket> client(ss_->CreateAsyncSocket(initial_addr.family(), | 
|  | SOCK_STREAM)); | 
|  | sink.Monitor(client.get()); | 
|  | scoped_ptr<AsyncSocket> server(ss_->CreateAsyncSocket(initial_addr.family(), | 
|  | SOCK_STREAM)); | 
|  | sink.Monitor(server.get()); | 
|  |  | 
|  | // Initiate connect | 
|  | EXPECT_EQ(0, server->Bind(initial_addr)); | 
|  | EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); | 
|  |  | 
|  | EXPECT_EQ(0, server->Listen(5)); | 
|  | EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); | 
|  |  | 
|  | // Server close before socket enters accept queue | 
|  | EXPECT_FALSE(sink.Check(server.get(), testing::SSE_READ)); | 
|  | server->Close(); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | // Result: connection failed | 
|  | EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); | 
|  | EXPECT_TRUE(sink.Check(client.get(), testing::SSE_ERROR)); | 
|  |  | 
|  | server.reset(ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); | 
|  | sink.Monitor(server.get()); | 
|  |  | 
|  | // Initiate connect | 
|  | EXPECT_EQ(0, server->Bind(initial_addr)); | 
|  | EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); | 
|  |  | 
|  | EXPECT_EQ(0, server->Listen(5)); | 
|  | EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | // Server close while socket is in accept queue | 
|  | EXPECT_TRUE(sink.Check(server.get(), testing::SSE_READ)); | 
|  | server->Close(); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | // Result: connection failed | 
|  | EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); | 
|  | EXPECT_TRUE(sink.Check(client.get(), testing::SSE_ERROR)); | 
|  |  | 
|  | // New server | 
|  | server.reset(ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); | 
|  | sink.Monitor(server.get()); | 
|  |  | 
|  | // Initiate connect | 
|  | EXPECT_EQ(0, server->Bind(initial_addr)); | 
|  | EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); | 
|  |  | 
|  | EXPECT_EQ(0, server->Listen(5)); | 
|  | EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | // Server accepts connection | 
|  | EXPECT_TRUE(sink.Check(server.get(), testing::SSE_READ)); | 
|  | scoped_ptr<AsyncSocket> accepted(server->Accept(&accept_addr)); | 
|  | ASSERT_TRUE(NULL != accepted.get()); | 
|  | sink.Monitor(accepted.get()); | 
|  |  | 
|  | // Client closes before connection complets | 
|  | EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED); | 
|  |  | 
|  | // Connected message has not been processed yet. | 
|  | EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING); | 
|  | client->Close(); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | // Result: accepted socket closes | 
|  | EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CLOSED); | 
|  | EXPECT_TRUE(sink.Check(accepted.get(), testing::SSE_CLOSE)); | 
|  | EXPECT_FALSE(sink.Check(client.get(), testing::SSE_CLOSE)); | 
|  | } | 
|  |  | 
|  | void CloseTest(const SocketAddress& initial_addr) { | 
|  | testing::StreamSink sink; | 
|  | const SocketAddress kEmptyAddr; | 
|  |  | 
|  | // Create clients | 
|  | AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM); | 
|  | sink.Monitor(a); | 
|  | a->Bind(initial_addr); | 
|  | EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); | 
|  |  | 
|  |  | 
|  | scoped_ptr<AsyncSocket> b(ss_->CreateAsyncSocket(initial_addr.family(), | 
|  | SOCK_STREAM)); | 
|  | sink.Monitor(b.get()); | 
|  | b->Bind(initial_addr); | 
|  | EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); | 
|  |  | 
|  | EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); | 
|  | EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | EXPECT_TRUE(sink.Check(a, testing::SSE_OPEN)); | 
|  | EXPECT_EQ(a->GetState(), AsyncSocket::CS_CONNECTED); | 
|  | EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress()); | 
|  |  | 
|  | EXPECT_TRUE(sink.Check(b.get(), testing::SSE_OPEN)); | 
|  | EXPECT_EQ(b->GetState(), AsyncSocket::CS_CONNECTED); | 
|  | EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress()); | 
|  |  | 
|  | EXPECT_EQ(1, a->Send("a", 1)); | 
|  | b->Close(); | 
|  | EXPECT_EQ(1, a->Send("b", 1)); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | char buffer[10]; | 
|  | EXPECT_FALSE(sink.Check(b.get(), testing::SSE_READ)); | 
|  | EXPECT_EQ(-1, b->Recv(buffer, 10)); | 
|  |  | 
|  | EXPECT_TRUE(sink.Check(a, testing::SSE_CLOSE)); | 
|  | EXPECT_EQ(a->GetState(), AsyncSocket::CS_CLOSED); | 
|  | EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr); | 
|  |  | 
|  | // No signal for Closer | 
|  | EXPECT_FALSE(sink.Check(b.get(), testing::SSE_CLOSE)); | 
|  | EXPECT_EQ(b->GetState(), AsyncSocket::CS_CLOSED); | 
|  | EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr); | 
|  | } | 
|  |  | 
|  | void TcpSendTest(const SocketAddress& initial_addr) { | 
|  | testing::StreamSink sink; | 
|  | const SocketAddress kEmptyAddr; | 
|  |  | 
|  | // Connect two sockets | 
|  | AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM); | 
|  | sink.Monitor(a); | 
|  | a->Bind(initial_addr); | 
|  | EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); | 
|  |  | 
|  | AsyncSocket* b = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM); | 
|  | sink.Monitor(b); | 
|  | b->Bind(initial_addr); | 
|  | EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); | 
|  |  | 
|  | EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); | 
|  | EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | const size_t kBufferSize = 2000; | 
|  | ss_->set_send_buffer_capacity(kBufferSize); | 
|  | ss_->set_recv_buffer_capacity(kBufferSize); | 
|  |  | 
|  | const size_t kDataSize = 5000; | 
|  | char send_buffer[kDataSize], recv_buffer[kDataSize]; | 
|  | for (size_t i = 0; i < kDataSize; ++i) | 
|  | send_buffer[i] = static_cast<char>(i % 256); | 
|  | memset(recv_buffer, 0, sizeof(recv_buffer)); | 
|  | size_t send_pos = 0, recv_pos = 0; | 
|  |  | 
|  | // Can't send more than send buffer in one write | 
|  | int result = a->Send(send_buffer + send_pos, kDataSize - send_pos); | 
|  | EXPECT_EQ(static_cast<int>(kBufferSize), result); | 
|  | send_pos += result; | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  | EXPECT_FALSE(sink.Check(a, testing::SSE_WRITE)); | 
|  | EXPECT_TRUE(sink.Check(b, testing::SSE_READ)); | 
|  |  | 
|  | // Receive buffer is already filled, fill send buffer again | 
|  | result = a->Send(send_buffer + send_pos, kDataSize - send_pos); | 
|  | EXPECT_EQ(static_cast<int>(kBufferSize), result); | 
|  | send_pos += result; | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  | EXPECT_FALSE(sink.Check(a, testing::SSE_WRITE)); | 
|  | EXPECT_FALSE(sink.Check(b, testing::SSE_READ)); | 
|  |  | 
|  | // No more room in send or receive buffer | 
|  | result = a->Send(send_buffer + send_pos, kDataSize - send_pos); | 
|  | EXPECT_EQ(-1, result); | 
|  | EXPECT_TRUE(a->IsBlocking()); | 
|  |  | 
|  | // Read a subset of the data | 
|  | result = b->Recv(recv_buffer + recv_pos, 500); | 
|  | EXPECT_EQ(500, result); | 
|  | recv_pos += result; | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  | EXPECT_TRUE(sink.Check(a, testing::SSE_WRITE)); | 
|  | EXPECT_TRUE(sink.Check(b, testing::SSE_READ)); | 
|  |  | 
|  | // Room for more on the sending side | 
|  | result = a->Send(send_buffer + send_pos, kDataSize - send_pos); | 
|  | EXPECT_EQ(500, result); | 
|  | send_pos += result; | 
|  |  | 
|  | // Empty the recv buffer | 
|  | while (true) { | 
|  | result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos); | 
|  | if (result < 0) { | 
|  | EXPECT_EQ(-1, result); | 
|  | EXPECT_TRUE(b->IsBlocking()); | 
|  | break; | 
|  | } | 
|  | recv_pos += result; | 
|  | } | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  | EXPECT_TRUE(sink.Check(b, testing::SSE_READ)); | 
|  |  | 
|  | // Continue to empty the recv buffer | 
|  | while (true) { | 
|  | result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos); | 
|  | if (result < 0) { | 
|  | EXPECT_EQ(-1, result); | 
|  | EXPECT_TRUE(b->IsBlocking()); | 
|  | break; | 
|  | } | 
|  | recv_pos += result; | 
|  | } | 
|  |  | 
|  | // Send last of the data | 
|  | result = a->Send(send_buffer + send_pos, kDataSize - send_pos); | 
|  | EXPECT_EQ(500, result); | 
|  | send_pos += result; | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  | EXPECT_TRUE(sink.Check(b, testing::SSE_READ)); | 
|  |  | 
|  | // Receive the last of the data | 
|  | while (true) { | 
|  | result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos); | 
|  | if (result < 0) { | 
|  | EXPECT_EQ(-1, result); | 
|  | EXPECT_TRUE(b->IsBlocking()); | 
|  | break; | 
|  | } | 
|  | recv_pos += result; | 
|  | } | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  | EXPECT_FALSE(sink.Check(b, testing::SSE_READ)); | 
|  |  | 
|  | // The received data matches the sent data | 
|  | EXPECT_EQ(kDataSize, send_pos); | 
|  | EXPECT_EQ(kDataSize, recv_pos); | 
|  | EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize)); | 
|  | } | 
|  |  | 
|  | void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) { | 
|  | const SocketAddress kEmptyAddr; | 
|  |  | 
|  | // Connect two sockets | 
|  | AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(), | 
|  | SOCK_STREAM); | 
|  | AsyncSocket* b = ss_->CreateAsyncSocket(initial_addr.family(), | 
|  | SOCK_STREAM); | 
|  | a->Bind(initial_addr); | 
|  | EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); | 
|  |  | 
|  | b->Bind(initial_addr); | 
|  | EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); | 
|  |  | 
|  | EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); | 
|  | EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | // First, deliver all packets in 0 ms. | 
|  | char buffer[2] = { 0, 0 }; | 
|  | const char cNumPackets = 10; | 
|  | for (char i = 0; i < cNumPackets; ++i) { | 
|  | buffer[0] = '0' + i; | 
|  | EXPECT_EQ(1, a->Send(buffer, 1)); | 
|  | } | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | for (char i = 0; i < cNumPackets; ++i) { | 
|  | EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer))); | 
|  | EXPECT_EQ(static_cast<char>('0' + i), buffer[0]); | 
|  | } | 
|  |  | 
|  | // Next, deliver packets at random intervals | 
|  | const uint32 mean = 50; | 
|  | const uint32 stddev = 50; | 
|  |  | 
|  | ss_->set_delay_mean(mean); | 
|  | ss_->set_delay_stddev(stddev); | 
|  | ss_->UpdateDelayDistribution(); | 
|  |  | 
|  | for (char i = 0; i < cNumPackets; ++i) { | 
|  | buffer[0] = 'A' + i; | 
|  | EXPECT_EQ(1, a->Send(buffer, 1)); | 
|  | } | 
|  |  | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | for (char i = 0; i < cNumPackets; ++i) { | 
|  | EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer))); | 
|  | EXPECT_EQ(static_cast<char>('A' + i), buffer[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BandwidthTest(const SocketAddress& initial_addr) { | 
|  | AsyncSocket* send_socket = | 
|  | ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); | 
|  | AsyncSocket* recv_socket = | 
|  | ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); | 
|  | ASSERT_EQ(0, send_socket->Bind(initial_addr)); | 
|  | ASSERT_EQ(0, recv_socket->Bind(initial_addr)); | 
|  | EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family()); | 
|  | EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family()); | 
|  | ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress())); | 
|  |  | 
|  | uint32 bandwidth = 64 * 1024; | 
|  | ss_->set_bandwidth(bandwidth); | 
|  |  | 
|  | Thread* pthMain = Thread::Current(); | 
|  | Sender sender(pthMain, send_socket, 80 * 1024); | 
|  | Receiver receiver(pthMain, recv_socket, bandwidth); | 
|  |  | 
|  | pthMain->ProcessMessages(5000); | 
|  | sender.done = true; | 
|  | pthMain->ProcessMessages(5000); | 
|  |  | 
|  | ASSERT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4); | 
|  | ASSERT_TRUE(receiver.count <= 6 * bandwidth);  // queue could drain for 1s | 
|  |  | 
|  | ss_->set_bandwidth(0); | 
|  | } | 
|  |  | 
|  | void DelayTest(const SocketAddress& initial_addr) { | 
|  | time_t seed = ::time(NULL); | 
|  | LOG(LS_VERBOSE) << "seed = " << seed; | 
|  | srand(static_cast<unsigned int>(seed)); | 
|  |  | 
|  | const uint32 mean = 2000; | 
|  | const uint32 stddev = 500; | 
|  |  | 
|  | ss_->set_delay_mean(mean); | 
|  | ss_->set_delay_stddev(stddev); | 
|  | ss_->UpdateDelayDistribution(); | 
|  |  | 
|  | AsyncSocket* send_socket = | 
|  | ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); | 
|  | AsyncSocket* recv_socket = | 
|  | ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); | 
|  | ASSERT_EQ(0, send_socket->Bind(initial_addr)); | 
|  | ASSERT_EQ(0, recv_socket->Bind(initial_addr)); | 
|  | EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family()); | 
|  | EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family()); | 
|  | ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress())); | 
|  |  | 
|  | Thread* pthMain = Thread::Current(); | 
|  | // Avg packet size is 2K, so at 200KB/s for 10s, we should see about | 
|  | // 1000 packets, which is necessary to get a good distribution. | 
|  | Sender sender(pthMain, send_socket, 100 * 2 * 1024); | 
|  | Receiver receiver(pthMain, recv_socket, 0); | 
|  |  | 
|  | pthMain->ProcessMessages(10000); | 
|  | sender.done = receiver.done = true; | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | const double sample_mean = receiver.sum / receiver.samples; | 
|  | double num = | 
|  | receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum; | 
|  | double den = receiver.samples * (receiver.samples - 1); | 
|  | const double sample_stddev = sqrt(num / den); | 
|  | LOG(LS_VERBOSE) << "mean=" << sample_mean << " stddev=" << sample_stddev; | 
|  |  | 
|  | EXPECT_LE(500u, receiver.samples); | 
|  | // We initially used a 0.1 fudge factor, but on the build machine, we | 
|  | // have seen the value differ by as much as 0.13. | 
|  | EXPECT_NEAR(mean, sample_mean, 0.15 * mean); | 
|  | EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev); | 
|  |  | 
|  | ss_->set_delay_mean(0); | 
|  | ss_->set_delay_stddev(0); | 
|  | ss_->UpdateDelayDistribution(); | 
|  | } | 
|  |  | 
|  | // Test cross-family communication between a client bound to client_addr and a | 
|  | // server bound to server_addr. shouldSucceed indicates if communication is | 
|  | // expected to work or not. | 
|  | void CrossFamilyConnectionTest(const SocketAddress& client_addr, | 
|  | const SocketAddress& server_addr, | 
|  | bool shouldSucceed) { | 
|  | testing::StreamSink sink; | 
|  | SocketAddress accept_address; | 
|  | const SocketAddress kEmptyAddr; | 
|  |  | 
|  | // Client gets a IPv4 address | 
|  | AsyncSocket* client = ss_->CreateAsyncSocket(client_addr.family(), | 
|  | SOCK_STREAM); | 
|  | sink.Monitor(client); | 
|  | EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); | 
|  | EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr); | 
|  | client->Bind(client_addr); | 
|  |  | 
|  | // Server gets a non-mapped non-any IPv6 address. | 
|  | // IPv4 sockets should not be able to connect to this. | 
|  | AsyncSocket* server = ss_->CreateAsyncSocket(server_addr.family(), | 
|  | SOCK_STREAM); | 
|  | sink.Monitor(server); | 
|  | server->Bind(server_addr); | 
|  | server->Listen(5); | 
|  |  | 
|  | if (shouldSucceed) { | 
|  | EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  | EXPECT_TRUE(sink.Check(server, testing::SSE_READ)); | 
|  | Socket* accepted = server->Accept(&accept_address); | 
|  | EXPECT_TRUE(NULL != accepted); | 
|  | EXPECT_NE(kEmptyAddr, accept_address); | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  | EXPECT_TRUE(sink.Check(client, testing::SSE_OPEN)); | 
|  | EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress()); | 
|  | } else { | 
|  | // Check that the connection failed. | 
|  | EXPECT_EQ(-1, client->Connect(server->GetLocalAddress())); | 
|  | ss_->ProcessMessagesUntilIdle(); | 
|  |  | 
|  | EXPECT_FALSE(sink.Check(server, testing::SSE_READ)); | 
|  | EXPECT_TRUE(NULL == server->Accept(&accept_address)); | 
|  | EXPECT_EQ(accept_address, kEmptyAddr); | 
|  | EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); | 
|  | EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN)); | 
|  | EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test cross-family datagram sending between a client bound to client_addr | 
|  | // and a server bound to server_addr. shouldSucceed indicates if sending is | 
|  | // expected to succed or not. | 
|  | void CrossFamilyDatagramTest(const SocketAddress& client_addr, | 
|  | const SocketAddress& server_addr, | 
|  | bool shouldSucceed) { | 
|  | AsyncSocket* socket = ss_->CreateAsyncSocket(SOCK_DGRAM); | 
|  | socket->Bind(server_addr); | 
|  | SocketAddress bound_server_addr = socket->GetLocalAddress(); | 
|  | TestClient* client1 = new TestClient(new AsyncUDPSocket(socket)); | 
|  |  | 
|  | AsyncSocket* socket2 = ss_->CreateAsyncSocket(SOCK_DGRAM); | 
|  | socket2->Bind(client_addr); | 
|  | TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2)); | 
|  | SocketAddress client2_addr; | 
|  |  | 
|  | if (shouldSucceed) { | 
|  | EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr)); | 
|  | EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); | 
|  | SocketAddress client1_addr; | 
|  | EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); | 
|  | EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); | 
|  | EXPECT_EQ(client1_addr, bound_server_addr); | 
|  | } else { | 
|  | EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr)); | 
|  | EXPECT_FALSE(client1->CheckNextPacket("foo", 3, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | protected: | 
|  | virtual void SetUp() { | 
|  | Thread::Current()->set_socketserver(ss_); | 
|  | } | 
|  | virtual void TearDown() { | 
|  | Thread::Current()->set_socketserver(NULL); | 
|  | } | 
|  |  | 
|  | VirtualSocketServer* ss_; | 
|  | const SocketAddress kIPv4AnyAddress; | 
|  | const SocketAddress kIPv6AnyAddress; | 
|  | }; | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, basic_v4) { | 
|  | SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000); | 
|  | BasicTest(ipv4_test_addr); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, basic_v6) { | 
|  | SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000); | 
|  | BasicTest(ipv6_test_addr); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, connect_v4) { | 
|  | ConnectTest(kIPv4AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, connect_v6) { | 
|  | ConnectTest(kIPv6AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) { | 
|  | ConnectToNonListenerTest(kIPv4AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) { | 
|  | ConnectToNonListenerTest(kIPv6AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, close_during_connect_v4) { | 
|  | CloseDuringConnectTest(kIPv4AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, close_during_connect_v6) { | 
|  | CloseDuringConnectTest(kIPv6AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, close_v4) { | 
|  | CloseTest(kIPv4AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, close_v6) { | 
|  | CloseTest(kIPv6AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, tcp_send_v4) { | 
|  | TcpSendTest(kIPv4AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, tcp_send_v6) { | 
|  | TcpSendTest(kIPv6AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) { | 
|  | TcpSendsPacketsInOrderTest(kIPv4AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) { | 
|  | TcpSendsPacketsInOrderTest(kIPv6AnyAddress); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, bandwidth_v4) { | 
|  | SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 1000); | 
|  | BandwidthTest(ipv4_test_addr); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, bandwidth_v6) { | 
|  | SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 1000); | 
|  | BandwidthTest(ipv6_test_addr); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, delay_v4) { | 
|  | SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 1000); | 
|  | DelayTest(ipv4_test_addr); | 
|  | } | 
|  |  | 
|  | // See: https://code.google.com/p/webrtc/issues/detail?id=2409 | 
|  | TEST_F(VirtualSocketServerTest, DISABLED_delay_v6) { | 
|  | SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 1000); | 
|  | DelayTest(ipv6_test_addr); | 
|  | } | 
|  |  | 
|  | // Works, receiving socket sees 127.0.0.2. | 
|  | TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) { | 
|  | CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0), | 
|  | SocketAddress("0.0.0.0", 5000), | 
|  | true); | 
|  | } | 
|  |  | 
|  | // Fails. | 
|  | TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) { | 
|  | CrossFamilyConnectionTest(SocketAddress("::2", 0), | 
|  | SocketAddress("0.0.0.0", 5000), | 
|  | false); | 
|  | } | 
|  |  | 
|  | // Fails. | 
|  | TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) { | 
|  | CrossFamilyConnectionTest(SocketAddress("::2", 0), | 
|  | SocketAddress("::ffff:127.0.0.1", 5000), | 
|  | false); | 
|  | } | 
|  |  | 
|  | // Works. receiving socket sees ::ffff:127.0.0.2. | 
|  | TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) { | 
|  | CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0), | 
|  | SocketAddress("::", 5000), | 
|  | true); | 
|  | } | 
|  |  | 
|  | // Fails. | 
|  | TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) { | 
|  | CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0), | 
|  | SocketAddress("::1", 5000), | 
|  | false); | 
|  | } | 
|  |  | 
|  | // Works. Receiving socket sees ::ffff:127.0.0.1. | 
|  | TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) { | 
|  | CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0), | 
|  | SocketAddress("::ffff:127.0.0.2", 5000), | 
|  | true); | 
|  | } | 
|  |  | 
|  | // Works, receiving socket sees a result from GetNextIP. | 
|  | TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) { | 
|  | CrossFamilyConnectionTest(SocketAddress("::", 0), | 
|  | SocketAddress("0.0.0.0", 5000), | 
|  | true); | 
|  | } | 
|  |  | 
|  | // Works, receiving socket sees whatever GetNextIP gave the client. | 
|  | TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) { | 
|  | CrossFamilyConnectionTest(SocketAddress("0.0.0.0", 0), | 
|  | SocketAddress("::", 5000), | 
|  | true); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) { | 
|  | CrossFamilyDatagramTest(SocketAddress("0.0.0.0", 0), | 
|  | SocketAddress("::", 5000), | 
|  | true); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) { | 
|  | CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0), | 
|  | SocketAddress("0.0.0.0", 5000), | 
|  | true); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) { | 
|  | CrossFamilyDatagramTest(SocketAddress("::2", 0), | 
|  | SocketAddress("0.0.0.0", 5000), | 
|  | false); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) { | 
|  | CrossFamilyDatagramTest(SocketAddress("::2", 0), | 
|  | SocketAddress("::ffff:127.0.0.1", 5000), | 
|  | false); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) { | 
|  | CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0), | 
|  | SocketAddress("::", 5000), | 
|  | true); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) { | 
|  | CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0), | 
|  | SocketAddress("::1", 5000), | 
|  | false); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) { | 
|  | CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0), | 
|  | SocketAddress("::ffff:127.0.0.2", 5000), | 
|  | true); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) { | 
|  | CrossFamilyDatagramTest(SocketAddress("::", 0), | 
|  | SocketAddress("0.0.0.0", 5000), | 
|  | true); | 
|  | } | 
|  |  | 
|  | TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) { | 
|  | const uint32 kTestMean[] = { 10, 100, 333, 1000 }; | 
|  | const double kTestDev[] = { 0.25, 0.1, 0.01 }; | 
|  | // TODO: The current code only works for 1000 data points or more. | 
|  | const uint32 kTestSamples[] = { /*10, 100,*/ 1000 }; | 
|  | for (size_t midx = 0; midx < ARRAY_SIZE(kTestMean); ++midx) { | 
|  | for (size_t didx = 0; didx < ARRAY_SIZE(kTestDev); ++didx) { | 
|  | for (size_t sidx = 0; sidx < ARRAY_SIZE(kTestSamples); ++sidx) { | 
|  | ASSERT_LT(0u, kTestSamples[sidx]); | 
|  | const uint32 kStdDev = | 
|  | static_cast<uint32>(kTestDev[didx] * kTestMean[midx]); | 
|  | VirtualSocketServer::Function* f = | 
|  | VirtualSocketServer::CreateDistribution(kTestMean[midx], | 
|  | kStdDev, | 
|  | kTestSamples[sidx]); | 
|  | ASSERT_TRUE(NULL != f); | 
|  | ASSERT_EQ(kTestSamples[sidx], f->size()); | 
|  | double sum = 0; | 
|  | for (uint32 i = 0; i < f->size(); ++i) { | 
|  | sum += (*f)[i].second; | 
|  | } | 
|  | const double mean = sum / f->size(); | 
|  | double sum_sq_dev = 0; | 
|  | for (uint32 i = 0; i < f->size(); ++i) { | 
|  | double dev = (*f)[i].second - mean; | 
|  | sum_sq_dev += dev * dev; | 
|  | } | 
|  | const double stddev = sqrt(sum_sq_dev / f->size()); | 
|  | EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx]) | 
|  | << "M=" << kTestMean[midx] | 
|  | << " SD=" << kStdDev | 
|  | << " N=" << kTestSamples[sidx]; | 
|  | EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev) | 
|  | << "M=" << kTestMean[midx] | 
|  | << " SD=" << kStdDev | 
|  | << " N=" << kTestSamples[sidx]; | 
|  | delete f; | 
|  | } | 
|  | } | 
|  | } | 
|  | } |