|  | /* | 
|  | *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | // Handling of certificates and keypairs for SSLStreamAdapter's peer mode. | 
|  | #if HAVE_CONFIG_H | 
|  | #include "config.h" | 
|  | #endif  // HAVE_CONFIG_H | 
|  |  | 
|  | #include "webrtc/base/sslidentity.h" | 
|  |  | 
|  | #include <ctime> | 
|  | #include <string> | 
|  |  | 
|  | #include "webrtc/base/base64.h" | 
|  | #include "webrtc/base/checks.h" | 
|  | #include "webrtc/base/logging.h" | 
|  | #include "webrtc/base/sslconfig.h" | 
|  |  | 
|  | #if SSL_USE_OPENSSL | 
|  |  | 
|  | #include "webrtc/base/opensslidentity.h" | 
|  |  | 
|  | #endif  // SSL_USE_OPENSSL | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | const char kPemTypeCertificate[] = "CERTIFICATE"; | 
|  | const char kPemTypeRsaPrivateKey[] = "RSA PRIVATE KEY"; | 
|  | const char kPemTypeEcPrivateKey[] = "EC PRIVATE KEY"; | 
|  |  | 
|  | KeyParams::KeyParams(KeyType key_type) { | 
|  | if (key_type == KT_ECDSA) { | 
|  | type_ = KT_ECDSA; | 
|  | params_.curve = EC_NIST_P256; | 
|  | } else if (key_type == KT_RSA) { | 
|  | type_ = KT_RSA; | 
|  | params_.rsa.mod_size = kRsaDefaultModSize; | 
|  | params_.rsa.pub_exp = kRsaDefaultExponent; | 
|  | } else { | 
|  | RTC_NOTREACHED(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // static | 
|  | KeyParams KeyParams::RSA(int mod_size, int pub_exp) { | 
|  | KeyParams kt(KT_RSA); | 
|  | kt.params_.rsa.mod_size = mod_size; | 
|  | kt.params_.rsa.pub_exp = pub_exp; | 
|  | return kt; | 
|  | } | 
|  |  | 
|  | // static | 
|  | KeyParams KeyParams::ECDSA(ECCurve curve) { | 
|  | KeyParams kt(KT_ECDSA); | 
|  | kt.params_.curve = curve; | 
|  | return kt; | 
|  | } | 
|  |  | 
|  | bool KeyParams::IsValid() const { | 
|  | if (type_ == KT_RSA) { | 
|  | return (params_.rsa.mod_size >= kRsaMinModSize && | 
|  | params_.rsa.mod_size <= kRsaMaxModSize && | 
|  | params_.rsa.pub_exp > params_.rsa.mod_size); | 
|  | } else if (type_ == KT_ECDSA) { | 
|  | return (params_.curve == EC_NIST_P256); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RSAParams KeyParams::rsa_params() const { | 
|  | RTC_DCHECK(type_ == KT_RSA); | 
|  | return params_.rsa; | 
|  | } | 
|  |  | 
|  | ECCurve KeyParams::ec_curve() const { | 
|  | RTC_DCHECK(type_ == KT_ECDSA); | 
|  | return params_.curve; | 
|  | } | 
|  |  | 
|  | KeyType IntKeyTypeFamilyToKeyType(int key_type_family) { | 
|  | return static_cast<KeyType>(key_type_family); | 
|  | } | 
|  |  | 
|  | bool SSLIdentity::PemToDer(const std::string& pem_type, | 
|  | const std::string& pem_string, | 
|  | std::string* der) { | 
|  | // Find the inner body. We need this to fulfill the contract of | 
|  | // returning pem_length. | 
|  | size_t header = pem_string.find("-----BEGIN " + pem_type + "-----"); | 
|  | if (header == std::string::npos) | 
|  | return false; | 
|  |  | 
|  | size_t body = pem_string.find("\n", header); | 
|  | if (body == std::string::npos) | 
|  | return false; | 
|  |  | 
|  | size_t trailer = pem_string.find("-----END " + pem_type + "-----"); | 
|  | if (trailer == std::string::npos) | 
|  | return false; | 
|  |  | 
|  | std::string inner = pem_string.substr(body + 1, trailer - (body + 1)); | 
|  |  | 
|  | *der = Base64::Decode(inner, Base64::DO_PARSE_WHITE | | 
|  | Base64::DO_PAD_ANY | | 
|  | Base64::DO_TERM_BUFFER); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::string SSLIdentity::DerToPem(const std::string& pem_type, | 
|  | const unsigned char* data, | 
|  | size_t length) { | 
|  | std::stringstream result; | 
|  |  | 
|  | result << "-----BEGIN " << pem_type << "-----\n"; | 
|  |  | 
|  | std::string b64_encoded; | 
|  | Base64::EncodeFromArray(data, length, &b64_encoded); | 
|  |  | 
|  | // Divide the Base-64 encoded data into 64-character chunks, as per | 
|  | // 4.3.2.4 of RFC 1421. | 
|  | static const size_t kChunkSize = 64; | 
|  | size_t chunks = (b64_encoded.size() + (kChunkSize - 1)) / kChunkSize; | 
|  | for (size_t i = 0, chunk_offset = 0; i < chunks; | 
|  | ++i, chunk_offset += kChunkSize) { | 
|  | result << b64_encoded.substr(chunk_offset, kChunkSize); | 
|  | result << "\n"; | 
|  | } | 
|  |  | 
|  | result << "-----END " << pem_type << "-----\n"; | 
|  |  | 
|  | return result.str(); | 
|  | } | 
|  |  | 
|  | SSLCertChain::SSLCertChain(const std::vector<SSLCertificate*>& certs) { | 
|  | ASSERT(!certs.empty()); | 
|  | certs_.resize(certs.size()); | 
|  | std::transform(certs.begin(), certs.end(), certs_.begin(), DupCert); | 
|  | } | 
|  |  | 
|  | SSLCertChain::SSLCertChain(const SSLCertificate* cert) { | 
|  | certs_.push_back(cert->GetReference()); | 
|  | } | 
|  |  | 
|  | SSLCertChain::~SSLCertChain() { | 
|  | std::for_each(certs_.begin(), certs_.end(), DeleteCert); | 
|  | } | 
|  |  | 
|  | #if SSL_USE_OPENSSL | 
|  |  | 
|  | // static | 
|  | SSLCertificate* SSLCertificate::FromPEMString(const std::string& pem_string) { | 
|  | return OpenSSLCertificate::FromPEMString(pem_string); | 
|  | } | 
|  |  | 
|  | // static | 
|  | SSLIdentity* SSLIdentity::Generate(const std::string& common_name, | 
|  | const KeyParams& key_params, | 
|  | time_t certificate_lifetime) { | 
|  | return OpenSSLIdentity::Generate(common_name, key_params, | 
|  | certificate_lifetime); | 
|  | } | 
|  |  | 
|  | // static | 
|  | SSLIdentity* SSLIdentity::Generate(const std::string& common_name, | 
|  | const KeyParams& key_params) { | 
|  | return OpenSSLIdentity::Generate(common_name, key_params, | 
|  | kDefaultCertificateLifetime); | 
|  | } | 
|  |  | 
|  | // static | 
|  | SSLIdentity* SSLIdentity::Generate(const std::string& common_name, | 
|  | KeyType key_type) { | 
|  | return OpenSSLIdentity::Generate(common_name, KeyParams(key_type), | 
|  | kDefaultCertificateLifetime); | 
|  | } | 
|  |  | 
|  | SSLIdentity* SSLIdentity::GenerateForTest(const SSLIdentityParams& params) { | 
|  | return OpenSSLIdentity::GenerateForTest(params); | 
|  | } | 
|  |  | 
|  | // static | 
|  | SSLIdentity* SSLIdentity::FromPEMStrings(const std::string& private_key, | 
|  | const std::string& certificate) { | 
|  | return OpenSSLIdentity::FromPEMStrings(private_key, certificate); | 
|  | } | 
|  |  | 
|  | #else  // !SSL_USE_OPENSSL | 
|  |  | 
|  | #error "No SSL implementation" | 
|  |  | 
|  | #endif  // SSL_USE_OPENSSL | 
|  |  | 
|  | // Read |n| bytes from ASN1 number string at *|pp| and return the numeric value. | 
|  | // Update *|pp| and *|np| to reflect number of read bytes. | 
|  | static inline int ASN1ReadInt(const unsigned char** pp, size_t* np, size_t n) { | 
|  | const unsigned char* p = *pp; | 
|  | int x = 0; | 
|  | for (size_t i = 0; i < n; i++) | 
|  | x = 10 * x + p[i] - '0'; | 
|  | *pp = p + n; | 
|  | *np = *np - n; | 
|  | return x; | 
|  | } | 
|  |  | 
|  | int64_t ASN1TimeToSec(const unsigned char* s, size_t length, bool long_format) { | 
|  | size_t bytes_left = length; | 
|  |  | 
|  | // Make sure the string ends with Z.  Doing it here protects the strspn call | 
|  | // from running off the end of the string in Z's absense. | 
|  | if (length == 0 || s[length - 1] != 'Z') | 
|  | return -1; | 
|  |  | 
|  | // Make sure we only have ASCII digits so that we don't need to clutter the | 
|  | // code below and ASN1ReadInt with error checking. | 
|  | size_t n = strspn(reinterpret_cast<const char*>(s), "0123456789"); | 
|  | if (n + 1 != length) | 
|  | return -1; | 
|  |  | 
|  | int year; | 
|  |  | 
|  | // Read out ASN1 year, in either 2-char "UTCTIME" or 4-char "GENERALIZEDTIME" | 
|  | // format.  Both format use UTC in this context. | 
|  | if (long_format) { | 
|  | // ASN1 format: yyyymmddhh[mm[ss[.fff]]]Z where the Z is literal, but | 
|  | // RFC 5280 requires us to only support exactly yyyymmddhhmmssZ. | 
|  |  | 
|  | if (bytes_left < 11) | 
|  | return -1; | 
|  |  | 
|  | year = ASN1ReadInt(&s, &bytes_left, 4); | 
|  | year -= 1900; | 
|  | } else { | 
|  | // ASN1 format: yymmddhhmm[ss]Z where the Z is literal, but RFC 5280 | 
|  | // requires us to only support exactly yymmddhhmmssZ. | 
|  |  | 
|  | if (bytes_left < 9) | 
|  | return -1; | 
|  |  | 
|  | year = ASN1ReadInt(&s, &bytes_left, 2); | 
|  | if (year < 50)  // Per RFC 5280 4.1.2.5.1 | 
|  | year += 100; | 
|  | } | 
|  |  | 
|  | std::tm tm; | 
|  | tm.tm_year = year; | 
|  |  | 
|  | // Read out remaining ASN1 time data and store it in |tm| in documented | 
|  | // std::tm format. | 
|  | tm.tm_mon = ASN1ReadInt(&s, &bytes_left, 2) - 1; | 
|  | tm.tm_mday = ASN1ReadInt(&s, &bytes_left, 2); | 
|  | tm.tm_hour = ASN1ReadInt(&s, &bytes_left, 2); | 
|  | tm.tm_min = ASN1ReadInt(&s, &bytes_left, 2); | 
|  | tm.tm_sec = ASN1ReadInt(&s, &bytes_left, 2); | 
|  |  | 
|  | if (bytes_left != 1) { | 
|  | // Now just Z should remain.  Its existence was asserted above. | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return TmToSeconds(tm); | 
|  | } | 
|  |  | 
|  | }  // namespace rtc |