| |
| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/suppression_gain.h" |
| |
| #include <math.h> |
| #include <algorithm> |
| #include <functional> |
| #include <numeric> |
| |
| #include "modules/audio_processing/aec3/moving_average.h" |
| #include "modules/audio_processing/aec3/vector_math.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "rtc_base/atomicops.h" |
| #include "rtc_base/checks.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| bool EnableNewSuppression() { |
| return !field_trial::IsEnabled("WebRTC-Aec3NewSuppressionKillSwitch"); |
| } |
| |
| // Adjust the gains according to the presence of known external filters. |
| void AdjustForExternalFilters(std::array<float, kFftLengthBy2Plus1>* gain) { |
| // Limit the low frequency gains to avoid the impact of the high-pass filter |
| // on the lower-frequency gain influencing the overall achieved gain. |
| (*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]); |
| |
| // Limit the high frequency gains to avoid the impact of the anti-aliasing |
| // filter on the upper-frequency gains influencing the overall achieved |
| // gain. TODO(peah): Update this when new anti-aliasing filters are |
| // implemented. |
| constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000; |
| const float min_upper_gain = (*gain)[kAntiAliasingImpactLimit]; |
| std::for_each( |
| gain->begin() + kAntiAliasingImpactLimit, gain->end() - 1, |
| [min_upper_gain](float& a) { a = std::min(a, min_upper_gain); }); |
| (*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1]; |
| } |
| |
| // Computes the gain to apply for the bands beyond the first band. |
| float UpperBandsGain( |
| const absl::optional<int>& narrow_peak_band, |
| bool saturated_echo, |
| const std::vector<std::vector<float>>& render, |
| const std::array<float, kFftLengthBy2Plus1>& low_band_gain) { |
| RTC_DCHECK_LT(0, render.size()); |
| if (render.size() == 1) { |
| return 1.f; |
| } |
| |
| if (narrow_peak_band && |
| (*narrow_peak_band > static_cast<int>(kFftLengthBy2Plus1 - 10))) { |
| return 0.001f; |
| } |
| |
| constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2; |
| const float gain_below_8_khz = *std::min_element( |
| low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end()); |
| |
| // Always attenuate the upper bands when there is saturated echo. |
| if (saturated_echo) { |
| return std::min(0.001f, gain_below_8_khz); |
| } |
| |
| // Compute the upper and lower band energies. |
| const auto sum_of_squares = [](float a, float b) { return a + b * b; }; |
| const float low_band_energy = |
| std::accumulate(render[0].begin(), render[0].end(), 0.f, sum_of_squares); |
| float high_band_energy = 0.f; |
| for (size_t k = 1; k < render.size(); ++k) { |
| const float energy = std::accumulate(render[k].begin(), render[k].end(), |
| 0.f, sum_of_squares); |
| high_band_energy = std::max(high_band_energy, energy); |
| } |
| |
| // If there is more power in the lower frequencies than the upper frequencies, |
| // or if the power in upper frequencies is low, do not bound the gain in the |
| // upper bands. |
| float anti_howling_gain; |
| constexpr float kThreshold = kBlockSize * 10.f * 10.f / 4.f; |
| if (high_band_energy < std::max(low_band_energy, kThreshold)) { |
| anti_howling_gain = 1.f; |
| } else { |
| // In all other cases, bound the gain for upper frequencies. |
| RTC_DCHECK_LE(low_band_energy, high_band_energy); |
| RTC_DCHECK_NE(0.f, high_band_energy); |
| anti_howling_gain = 0.01f * sqrtf(low_band_energy / high_band_energy); |
| } |
| |
| // Choose the gain as the minimum of the lower and upper gains. |
| return std::min(gain_below_8_khz, anti_howling_gain); |
| } |
| |
| // Scales the echo according to assessed audibility at the other end. |
| void WeightEchoForAudibility(const EchoCanceller3Config& config, |
| rtc::ArrayView<const float> echo, |
| rtc::ArrayView<float> weighted_echo, |
| rtc::ArrayView<float> one_by_weighted_echo) { |
| RTC_DCHECK_EQ(kFftLengthBy2Plus1, echo.size()); |
| RTC_DCHECK_EQ(kFftLengthBy2Plus1, weighted_echo.size()); |
| RTC_DCHECK_EQ(kFftLengthBy2Plus1, one_by_weighted_echo.size()); |
| |
| auto weigh = [](float threshold, float normalizer, size_t begin, size_t end, |
| rtc::ArrayView<const float> echo, |
| rtc::ArrayView<float> weighted_echo, |
| rtc::ArrayView<float> one_by_weighted_echo) { |
| for (size_t k = begin; k < end; ++k) { |
| if (echo[k] < threshold) { |
| float tmp = (threshold - echo[k]) * normalizer; |
| weighted_echo[k] = echo[k] * std::max(0.f, 1.f - tmp * tmp); |
| } else { |
| weighted_echo[k] = echo[k]; |
| } |
| one_by_weighted_echo[k] = |
| weighted_echo[k] > 0.f ? 1.f / weighted_echo[k] : 1.f; |
| } |
| }; |
| |
| float threshold = config.echo_audibility.floor_power * |
| config.echo_audibility.audibility_threshold_lf; |
| float normalizer = 1.f / (threshold - config.echo_audibility.floor_power); |
| weigh(threshold, normalizer, 0, 3, echo, weighted_echo, one_by_weighted_echo); |
| |
| threshold = config.echo_audibility.floor_power * |
| config.echo_audibility.audibility_threshold_mf; |
| normalizer = 1.f / (threshold - config.echo_audibility.floor_power); |
| weigh(threshold, normalizer, 3, 7, echo, weighted_echo, one_by_weighted_echo); |
| |
| threshold = config.echo_audibility.floor_power * |
| config.echo_audibility.audibility_threshold_hf; |
| normalizer = 1.f / (threshold - config.echo_audibility.floor_power); |
| weigh(threshold, normalizer, 7, kFftLengthBy2Plus1, echo, weighted_echo, |
| one_by_weighted_echo); |
| } |
| |
| // Computes the gain to reduce the echo to a non audible level. |
| void GainToNoAudibleEchoFallback( |
| const EchoCanceller3Config& config, |
| bool low_noise_render, |
| bool saturated_echo, |
| bool linear_echo_estimate, |
| const std::array<float, kFftLengthBy2Plus1>& nearend, |
| const std::array<float, kFftLengthBy2Plus1>& weighted_echo, |
| const std::array<float, kFftLengthBy2Plus1>& masker, |
| const std::array<float, kFftLengthBy2Plus1>& min_gain, |
| const std::array<float, kFftLengthBy2Plus1>& max_gain, |
| const std::array<float, kFftLengthBy2Plus1>& one_by_weighted_echo, |
| std::array<float, kFftLengthBy2Plus1>* gain) { |
| float nearend_masking_margin = 0.f; |
| if (linear_echo_estimate) { |
| nearend_masking_margin = |
| low_noise_render |
| ? config.gain_mask.m9 |
| : (saturated_echo ? config.gain_mask.m2 : config.gain_mask.m3); |
| } else { |
| nearend_masking_margin = config.gain_mask.m7; |
| } |
| |
| RTC_DCHECK_LE(0.f, nearend_masking_margin); |
| RTC_DCHECK_GT(1.f, nearend_masking_margin); |
| |
| const float masker_margin = |
| linear_echo_estimate ? config.gain_mask.m0 : config.gain_mask.m8; |
| |
| for (size_t k = 0; k < gain->size(); ++k) { |
| // TODO(devicentepena): Experiment by removing the reverberation estimation |
| // from the nearend signal before computing the gains. |
| const float unity_gain_masker = std::max(nearend[k], masker[k]); |
| RTC_DCHECK_LE(0.f, nearend_masking_margin * unity_gain_masker); |
| if (weighted_echo[k] <= nearend_masking_margin * unity_gain_masker || |
| unity_gain_masker <= 0.f) { |
| (*gain)[k] = 1.f; |
| } else { |
| RTC_DCHECK_LT(0.f, unity_gain_masker); |
| (*gain)[k] = |
| std::max(0.f, (1.f - config.gain_mask.gain_curve_slope * |
| weighted_echo[k] / unity_gain_masker) * |
| config.gain_mask.gain_curve_offset); |
| (*gain)[k] = std::max(masker_margin * masker[k] * one_by_weighted_echo[k], |
| (*gain)[k]); |
| } |
| |
| (*gain)[k] = std::min(std::max((*gain)[k], min_gain[k]), max_gain[k]); |
| } |
| } |
| |
| // TODO(peah): Make adaptive to take the actual filter error into account. |
| constexpr size_t kUpperAccurateBandPlus1 = 29; |
| |
| // Limits the gain in the frequencies for which the adaptive filter has not |
| // converged. Currently, these frequencies are not hardcoded to the frequencies |
| // which are typically not excited by speech. |
| // TODO(peah): Make adaptive to take the actual filter error into account. |
| void AdjustNonConvergedFrequencies( |
| std::array<float, kFftLengthBy2Plus1>* gain) { |
| constexpr float oneByBandsInSum = |
| 1 / static_cast<float>(kUpperAccurateBandPlus1 - 20); |
| const float hf_gain_bound = |
| std::accumulate(gain->begin() + 20, |
| gain->begin() + kUpperAccurateBandPlus1, 0.f) * |
| oneByBandsInSum; |
| |
| std::for_each(gain->begin() + kUpperAccurateBandPlus1, gain->end(), |
| [hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); }); |
| } |
| |
| } // namespace |
| |
| int SuppressionGain::instance_count_ = 0; |
| |
| // Computes the gain to reduce the echo to a non audible level. |
| void SuppressionGain::GainToNoAudibleEcho( |
| const std::array<float, kFftLengthBy2Plus1>& nearend, |
| const std::array<float, kFftLengthBy2Plus1>& echo, |
| const std::array<float, kFftLengthBy2Plus1>& masker, |
| const std::array<float, kFftLengthBy2Plus1>& min_gain, |
| const std::array<float, kFftLengthBy2Plus1>& max_gain, |
| std::array<float, kFftLengthBy2Plus1>* gain) const { |
| for (size_t k = 0; k < gain->size(); ++k) { |
| float enr = echo[k] / (nearend[k] + 1.f); // Echo-to-nearend ratio. |
| float emr = echo[k] / (masker[k] + 1.f); // Echo-to-masker (noise) ratio. |
| float g = 1.0f; |
| if (enr > enr_transparent_[k] && emr > emr_transparent_[k]) { |
| g = (enr_suppress_[k] - enr) / (enr_suppress_[k] - enr_transparent_[k]); |
| g = std::max(g, emr_transparent_[k] / emr); |
| } |
| (*gain)[k] = std::max(std::min(g, max_gain[k]), min_gain[k]); |
| } |
| } |
| |
| // TODO(peah): Add further optimizations, in particular for the divisions. |
| void SuppressionGain::LowerBandGain( |
| bool low_noise_render, |
| const AecState& aec_state, |
| const std::array<float, kFftLengthBy2Plus1>& nearend, |
| const std::array<float, kFftLengthBy2Plus1>& echo, |
| const std::array<float, kFftLengthBy2Plus1>& comfort_noise, |
| std::array<float, kFftLengthBy2Plus1>* gain) { |
| const bool saturated_echo = aec_state.SaturatedEcho(); |
| const bool linear_echo_estimate = aec_state.UsableLinearEstimate(); |
| |
| // Weight echo power in terms of audibility. // Precompute 1/weighted echo |
| // (note that when the echo is zero, the precomputed value is never used). |
| std::array<float, kFftLengthBy2Plus1> weighted_echo; |
| std::array<float, kFftLengthBy2Plus1> one_by_weighted_echo; |
| WeightEchoForAudibility(config_, echo, weighted_echo, one_by_weighted_echo); |
| |
| // Compute the minimum gain as the attenuating gain to put the signal just |
| // above the zero sample values. |
| std::array<float, kFftLengthBy2Plus1> min_gain; |
| const float min_echo_power = |
| low_noise_render ? config_.echo_audibility.low_render_limit |
| : config_.echo_audibility.normal_render_limit; |
| if (!saturated_echo) { |
| for (size_t k = 0; k < nearend.size(); ++k) { |
| const float denom = std::min(nearend[k], weighted_echo[k]); |
| min_gain[k] = denom > 0.f ? min_echo_power / denom : 1.f; |
| min_gain[k] = std::min(min_gain[k], 1.f); |
| } |
| for (size_t k = 0; k < 6; ++k) { |
| // Make sure the gains of the low frequencies do not decrease too |
| // quickly after strong nearend. |
| if (last_nearend_[k] > last_echo_[k]) { |
| min_gain[k] = |
| std::max(min_gain[k], |
| last_gain_[k] * config_.gain_updates.max_dec_factor_lf); |
| min_gain[k] = std::min(min_gain[k], 1.f); |
| } |
| } |
| } else { |
| min_gain.fill(0.f); |
| } |
| |
| // Compute the maximum gain by limiting the gain increase from the previous |
| // gain. |
| std::array<float, kFftLengthBy2Plus1> max_gain; |
| for (size_t k = 0; k < gain->size(); ++k) { |
| max_gain[k] = |
| std::min(std::max(last_gain_[k] * config_.gain_updates.max_inc_factor, |
| config_.gain_updates.floor_first_increase), |
| 1.f); |
| } |
| |
| // Iteratively compute the gain required to attenuate the echo to a non |
| // noticeable level. |
| std::array<float, kFftLengthBy2Plus1> masker; |
| if (enable_new_suppression_) { |
| GainToNoAudibleEcho(nearend, weighted_echo, comfort_noise, min_gain, |
| max_gain, gain); |
| AdjustForExternalFilters(gain); |
| } else { |
| gain->fill(0.f); |
| for (int k = 0; k < 2; ++k) { |
| std::copy(comfort_noise.begin(), comfort_noise.end(), masker.begin()); |
| GainToNoAudibleEchoFallback(config_, low_noise_render, saturated_echo, |
| linear_echo_estimate, nearend, weighted_echo, |
| masker, min_gain, max_gain, |
| one_by_weighted_echo, gain); |
| AdjustForExternalFilters(gain); |
| } |
| } |
| |
| // Adjust the gain for frequencies which have not yet converged. |
| AdjustNonConvergedFrequencies(gain); |
| |
| // Store data required for the gain computation of the next block. |
| std::copy(nearend.begin(), nearend.end(), last_nearend_.begin()); |
| std::copy(weighted_echo.begin(), weighted_echo.end(), last_echo_.begin()); |
| std::copy(gain->begin(), gain->end(), last_gain_.begin()); |
| aec3::VectorMath(optimization_).Sqrt(*gain); |
| |
| // Debug outputs for the purpose of development and analysis. |
| data_dumper_->DumpRaw("aec3_suppressor_min_gain", min_gain); |
| data_dumper_->DumpRaw("aec3_suppressor_max_gain", max_gain); |
| data_dumper_->DumpRaw("aec3_suppressor_masker", masker); |
| } |
| |
| SuppressionGain::SuppressionGain(const EchoCanceller3Config& config, |
| Aec3Optimization optimization, |
| int sample_rate_hz) |
| : data_dumper_( |
| new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))), |
| optimization_(optimization), |
| config_(config), |
| state_change_duration_blocks_( |
| static_cast<int>(config_.filter.config_change_duration_blocks)), |
| enable_new_suppression_(EnableNewSuppression()), |
| moving_average_(kFftLengthBy2Plus1, |
| config.suppressor.nearend_average_blocks) { |
| RTC_DCHECK_LT(0, state_change_duration_blocks_); |
| one_by_state_change_duration_blocks_ = 1.f / state_change_duration_blocks_; |
| last_gain_.fill(1.f); |
| last_nearend_.fill(0.f); |
| last_echo_.fill(0.f); |
| |
| // Compute per-band masking thresholds. |
| constexpr size_t kLastLfBand = 5; |
| constexpr size_t kFirstHfBand = 8; |
| RTC_DCHECK_LT(kLastLfBand, kFirstHfBand); |
| auto& lf = config.suppressor.mask_lf; |
| auto& hf = config.suppressor.mask_hf; |
| RTC_DCHECK_LT(lf.enr_transparent, lf.enr_suppress); |
| RTC_DCHECK_LT(hf.enr_transparent, hf.enr_suppress); |
| for (size_t k = 0; k < kFftLengthBy2Plus1; k++) { |
| float a; |
| if (k <= kLastLfBand) { |
| a = 0.f; |
| } else if (k < kFirstHfBand) { |
| a = (k - kLastLfBand) / static_cast<float>(kFirstHfBand - kLastLfBand); |
| } else { |
| a = 1.f; |
| } |
| enr_transparent_[k] = (1 - a) * lf.enr_transparent + a * hf.enr_transparent; |
| enr_suppress_[k] = (1 - a) * lf.enr_suppress + a * hf.enr_suppress; |
| emr_transparent_[k] = (1 - a) * lf.emr_transparent + a * hf.emr_transparent; |
| } |
| } |
| |
| SuppressionGain::~SuppressionGain() = default; |
| |
| void SuppressionGain::GetGain( |
| const std::array<float, kFftLengthBy2Plus1>& nearend_spectrum, |
| const std::array<float, kFftLengthBy2Plus1>& echo_spectrum, |
| const std::array<float, kFftLengthBy2Plus1>& comfort_noise_spectrum, |
| const FftData& linear_aec_fft, |
| const FftData& capture_fft, |
| const RenderSignalAnalyzer& render_signal_analyzer, |
| const AecState& aec_state, |
| const std::vector<std::vector<float>>& render, |
| float* high_bands_gain, |
| std::array<float, kFftLengthBy2Plus1>* low_band_gain) { |
| RTC_DCHECK(high_bands_gain); |
| RTC_DCHECK(low_band_gain); |
| const auto& cfg = config_.suppressor; |
| |
| if (cfg.enforce_transparent) { |
| low_band_gain->fill(1.f); |
| *high_bands_gain = cfg.enforce_empty_higher_bands ? 0.f : 1.f; |
| return; |
| } |
| |
| std::array<float, kFftLengthBy2Plus1> nearend_average; |
| moving_average_.Average(nearend_spectrum, nearend_average); |
| |
| // Compute gain for the lower band. |
| bool low_noise_render = low_render_detector_.Detect(render); |
| const absl::optional<int> narrow_peak_band = |
| render_signal_analyzer.NarrowPeakBand(); |
| LowerBandGain(low_noise_render, aec_state, nearend_average, echo_spectrum, |
| comfort_noise_spectrum, low_band_gain); |
| |
| // Limit the gain of the lower bands during start up and after resets. |
| const float gain_upper_bound = aec_state.SuppressionGainLimit(); |
| if (gain_upper_bound < 1.f) { |
| for (size_t k = 0; k < low_band_gain->size(); ++k) { |
| (*low_band_gain)[k] = std::min((*low_band_gain)[k], gain_upper_bound); |
| } |
| } |
| |
| // Compute the gain for the upper bands. |
| *high_bands_gain = UpperBandsGain(narrow_peak_band, aec_state.SaturatedEcho(), |
| render, *low_band_gain); |
| if (cfg.enforce_empty_higher_bands) { |
| *high_bands_gain = 0.f; |
| } |
| } |
| |
| void SuppressionGain::SetInitialState(bool state) { |
| initial_state_ = state; |
| if (state) { |
| initial_state_change_counter_ = state_change_duration_blocks_; |
| } else { |
| initial_state_change_counter_ = 0; |
| } |
| } |
| |
| // Detects when the render signal can be considered to have low power and |
| // consist of stationary noise. |
| bool SuppressionGain::LowNoiseRenderDetector::Detect( |
| const std::vector<std::vector<float>>& render) { |
| float x2_sum = 0.f; |
| float x2_max = 0.f; |
| for (auto x_k : render[0]) { |
| const float x2 = x_k * x_k; |
| x2_sum += x2; |
| x2_max = std::max(x2_max, x2); |
| } |
| |
| constexpr float kThreshold = 50.f * 50.f * 64.f; |
| const bool low_noise_render = |
| average_power_ < kThreshold && x2_max < 3 * average_power_; |
| average_power_ = average_power_ * 0.9f + x2_sum * 0.1f; |
| return low_noise_render; |
| } |
| |
| } // namespace webrtc |