| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aecm/aecm_core.h" |
| |
| #include <stddef.h> |
| #include <stdlib.h> |
| |
| extern "C" { |
| #include "common_audio/ring_buffer.h" |
| #include "common_audio/signal_processing/include/real_fft.h" |
| } |
| #include "modules/audio_processing/aecm/echo_control_mobile.h" |
| #include "modules/audio_processing/utility/delay_estimator_wrapper.h" |
| extern "C" { |
| #include "system_wrappers/include/cpu_features_wrapper.h" |
| } |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "rtc_base/sanitizer.h" |
| #include "typedefs.h" // NOLINT(build/include) |
| |
| // Square root of Hanning window in Q14. |
| static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = { |
| 0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172, |
| 3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224, |
| 6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040, |
| 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514, |
| 11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553, |
| 13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079, |
| 15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034, |
| 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384 |
| }; |
| |
| #ifdef AECM_WITH_ABS_APPROX |
| //Q15 alpha = 0.99439986968132 const Factor for magnitude approximation |
| static const uint16_t kAlpha1 = 32584; |
| //Q15 beta = 0.12967166976970 const Factor for magnitude approximation |
| static const uint16_t kBeta1 = 4249; |
| //Q15 alpha = 0.94234827210087 const Factor for magnitude approximation |
| static const uint16_t kAlpha2 = 30879; |
| //Q15 beta = 0.33787806009150 const Factor for magnitude approximation |
| static const uint16_t kBeta2 = 11072; |
| //Q15 alpha = 0.82247698684306 const Factor for magnitude approximation |
| static const uint16_t kAlpha3 = 26951; |
| //Q15 beta = 0.57762063060713 const Factor for magnitude approximation |
| static const uint16_t kBeta3 = 18927; |
| #endif |
| |
| static const int16_t kNoiseEstQDomain = 15; |
| static const int16_t kNoiseEstIncCount = 5; |
| |
| static void ComfortNoise(AecmCore* aecm, |
| const uint16_t* dfa, |
| ComplexInt16* out, |
| const int16_t* lambda); |
| |
| static void WindowAndFFT(AecmCore* aecm, |
| int16_t* fft, |
| const int16_t* time_signal, |
| ComplexInt16* freq_signal, |
| int time_signal_scaling) { |
| int i = 0; |
| |
| // FFT of signal |
| for (i = 0; i < PART_LEN; i++) { |
| // Window time domain signal and insert into real part of |
| // transformation array |fft| |
| int16_t scaled_time_signal = time_signal[i] * (1 << time_signal_scaling); |
| fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14); |
| scaled_time_signal = time_signal[i + PART_LEN] * (1 << time_signal_scaling); |
| fft[PART_LEN + i] = (int16_t)(( |
| scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14); |
| } |
| |
| // Do forward FFT, then take only the first PART_LEN complex samples, |
| // and change signs of the imaginary parts. |
| WebRtcSpl_RealForwardFFT(aecm->real_fft, fft, (int16_t*)freq_signal); |
| for (i = 0; i < PART_LEN; i++) { |
| freq_signal[i].imag = -freq_signal[i].imag; |
| } |
| } |
| |
| static void InverseFFTAndWindow(AecmCore* aecm, |
| int16_t* fft, |
| ComplexInt16* efw, |
| int16_t* output, |
| const int16_t* nearendClean) { |
| int i, j, outCFFT; |
| int32_t tmp32no1; |
| // Reuse |efw| for the inverse FFT output after transferring |
| // the contents to |fft|. |
| int16_t* ifft_out = (int16_t*)efw; |
| |
| // Synthesis |
| for (i = 1, j = 2; i < PART_LEN; i += 1, j += 2) { |
| fft[j] = efw[i].real; |
| fft[j + 1] = -efw[i].imag; |
| } |
| fft[0] = efw[0].real; |
| fft[1] = -efw[0].imag; |
| |
| fft[PART_LEN2] = efw[PART_LEN].real; |
| fft[PART_LEN2 + 1] = -efw[PART_LEN].imag; |
| |
| // Inverse FFT. Keep outCFFT to scale the samples in the next block. |
| outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out); |
| for (i = 0; i < PART_LEN; i++) { |
| ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( |
| ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14); |
| tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i], |
| outCFFT - aecm->dfaCleanQDomain); |
| output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, |
| tmp32no1 + aecm->outBuf[i], |
| WEBRTC_SPL_WORD16_MIN); |
| |
| tmp32no1 = (ifft_out[PART_LEN + i] * |
| WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14; |
| tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, |
| outCFFT - aecm->dfaCleanQDomain); |
| aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, |
| tmp32no1, |
| WEBRTC_SPL_WORD16_MIN); |
| } |
| |
| // Copy the current block to the old position |
| // (aecm->outBuf is shifted elsewhere) |
| memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN); |
| memcpy(aecm->dBufNoisy, |
| aecm->dBufNoisy + PART_LEN, |
| sizeof(int16_t) * PART_LEN); |
| if (nearendClean != NULL) |
| { |
| memcpy(aecm->dBufClean, |
| aecm->dBufClean + PART_LEN, |
| sizeof(int16_t) * PART_LEN); |
| } |
| } |
| |
| // Transforms a time domain signal into the frequency domain, outputting the |
| // complex valued signal, absolute value and sum of absolute values. |
| // |
| // time_signal [in] Pointer to time domain signal |
| // freq_signal_real [out] Pointer to real part of frequency domain array |
| // freq_signal_imag [out] Pointer to imaginary part of frequency domain |
| // array |
| // freq_signal_abs [out] Pointer to absolute value of frequency domain |
| // array |
| // freq_signal_sum_abs [out] Pointer to the sum of all absolute values in |
| // the frequency domain array |
| // return value The Q-domain of current frequency values |
| // |
| static int TimeToFrequencyDomain(AecmCore* aecm, |
| const int16_t* time_signal, |
| ComplexInt16* freq_signal, |
| uint16_t* freq_signal_abs, |
| uint32_t* freq_signal_sum_abs) { |
| int i = 0; |
| int time_signal_scaling = 0; |
| |
| int32_t tmp32no1 = 0; |
| int32_t tmp32no2 = 0; |
| |
| // In fft_buf, +16 for 32-byte alignment. |
| int16_t fft_buf[PART_LEN4 + 16]; |
| int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31); |
| |
| int16_t tmp16no1; |
| #ifndef WEBRTC_ARCH_ARM_V7 |
| int16_t tmp16no2; |
| #endif |
| #ifdef AECM_WITH_ABS_APPROX |
| int16_t max_value = 0; |
| int16_t min_value = 0; |
| uint16_t alpha = 0; |
| uint16_t beta = 0; |
| #endif |
| |
| #ifdef AECM_DYNAMIC_Q |
| tmp16no1 = WebRtcSpl_MaxAbsValueW16(time_signal, PART_LEN2); |
| time_signal_scaling = WebRtcSpl_NormW16(tmp16no1); |
| #endif |
| |
| WindowAndFFT(aecm, fft, time_signal, freq_signal, time_signal_scaling); |
| |
| // Extract imaginary and real part, calculate the magnitude for |
| // all frequency bins |
| freq_signal[0].imag = 0; |
| freq_signal[PART_LEN].imag = 0; |
| freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real); |
| freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16( |
| freq_signal[PART_LEN].real); |
| (*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) + |
| (uint32_t)(freq_signal_abs[PART_LEN]); |
| |
| for (i = 1; i < PART_LEN; i++) |
| { |
| if (freq_signal[i].real == 0) |
| { |
| freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag); |
| } |
| else if (freq_signal[i].imag == 0) |
| { |
| freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real); |
| } |
| else |
| { |
| // Approximation for magnitude of complex fft output |
| // magn = sqrt(real^2 + imag^2) |
| // magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|) |
| // |
| // The parameters alpha and beta are stored in Q15 |
| |
| #ifdef AECM_WITH_ABS_APPROX |
| tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real); |
| tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag); |
| |
| if(tmp16no1 > tmp16no2) |
| { |
| max_value = tmp16no1; |
| min_value = tmp16no2; |
| } else |
| { |
| max_value = tmp16no2; |
| min_value = tmp16no1; |
| } |
| |
| // Magnitude in Q(-6) |
| if ((max_value >> 2) > min_value) |
| { |
| alpha = kAlpha1; |
| beta = kBeta1; |
| } else if ((max_value >> 1) > min_value) |
| { |
| alpha = kAlpha2; |
| beta = kBeta2; |
| } else |
| { |
| alpha = kAlpha3; |
| beta = kBeta3; |
| } |
| tmp16no1 = (int16_t)((max_value * alpha) >> 15); |
| tmp16no2 = (int16_t)((min_value * beta) >> 15); |
| freq_signal_abs[i] = (uint16_t)tmp16no1 + (uint16_t)tmp16no2; |
| #else |
| #ifdef WEBRTC_ARCH_ARM_V7 |
| __asm __volatile( |
| "smulbb %[tmp32no1], %[real], %[real]\n\t" |
| "smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t" |
| :[tmp32no1]"+&r"(tmp32no1), |
| [tmp32no2]"=r"(tmp32no2) |
| :[real]"r"(freq_signal[i].real), |
| [imag]"r"(freq_signal[i].imag) |
| ); |
| #else |
| tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real); |
| tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag); |
| tmp32no1 = tmp16no1 * tmp16no1; |
| tmp32no2 = tmp16no2 * tmp16no2; |
| tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2); |
| #endif // WEBRTC_ARCH_ARM_V7 |
| tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2); |
| |
| freq_signal_abs[i] = (uint16_t)tmp32no1; |
| #endif // AECM_WITH_ABS_APPROX |
| } |
| (*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i]; |
| } |
| |
| return time_signal_scaling; |
| } |
| |
| int RTC_NO_SANITIZE("signed-integer-overflow") // bugs.webrtc.org/8200 |
| WebRtcAecm_ProcessBlock(AecmCore* aecm, |
| const int16_t* farend, |
| const int16_t* nearendNoisy, |
| const int16_t* nearendClean, |
| int16_t* output) { |
| int i; |
| |
| uint32_t xfaSum; |
| uint32_t dfaNoisySum; |
| uint32_t dfaCleanSum; |
| uint32_t echoEst32Gained; |
| uint32_t tmpU32; |
| |
| int32_t tmp32no1; |
| |
| uint16_t xfa[PART_LEN1]; |
| uint16_t dfaNoisy[PART_LEN1]; |
| uint16_t dfaClean[PART_LEN1]; |
| uint16_t* ptrDfaClean = dfaClean; |
| const uint16_t* far_spectrum_ptr = NULL; |
| |
| // 32 byte aligned buffers (with +8 or +16). |
| // TODO(kma): define fft with ComplexInt16. |
| int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe. |
| int32_t echoEst32_buf[PART_LEN1 + 8]; |
| int32_t dfw_buf[PART_LEN2 + 8]; |
| int32_t efw_buf[PART_LEN2 + 8]; |
| |
| int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31); |
| int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31); |
| ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31); |
| ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31); |
| |
| int16_t hnl[PART_LEN1]; |
| int16_t numPosCoef = 0; |
| int16_t nlpGain = ONE_Q14; |
| int delay; |
| int16_t tmp16no1; |
| int16_t tmp16no2; |
| int16_t mu; |
| int16_t supGain; |
| int16_t zeros32, zeros16; |
| int16_t zerosDBufNoisy, zerosDBufClean, zerosXBuf; |
| int far_q; |
| int16_t resolutionDiff, qDomainDiff, dfa_clean_q_domain_diff; |
| |
| const int kMinPrefBand = 4; |
| const int kMaxPrefBand = 24; |
| int32_t avgHnl32 = 0; |
| |
| // Determine startup state. There are three states: |
| // (0) the first CONV_LEN blocks |
| // (1) another CONV_LEN blocks |
| // (2) the rest |
| |
| if (aecm->startupState < 2) |
| { |
| aecm->startupState = (aecm->totCount >= CONV_LEN) + |
| (aecm->totCount >= CONV_LEN2); |
| } |
| // END: Determine startup state |
| |
| // Buffer near and far end signals |
| memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN); |
| memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN); |
| if (nearendClean != NULL) |
| { |
| memcpy(aecm->dBufClean + PART_LEN, |
| nearendClean, |
| sizeof(int16_t) * PART_LEN); |
| } |
| |
| // Transform far end signal from time domain to frequency domain. |
| far_q = TimeToFrequencyDomain(aecm, |
| aecm->xBuf, |
| dfw, |
| xfa, |
| &xfaSum); |
| |
| // Transform noisy near end signal from time domain to frequency domain. |
| zerosDBufNoisy = TimeToFrequencyDomain(aecm, |
| aecm->dBufNoisy, |
| dfw, |
| dfaNoisy, |
| &dfaNoisySum); |
| aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain; |
| aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy; |
| |
| |
| if (nearendClean == NULL) |
| { |
| ptrDfaClean = dfaNoisy; |
| aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld; |
| aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain; |
| dfaCleanSum = dfaNoisySum; |
| } else |
| { |
| // Transform clean near end signal from time domain to frequency domain. |
| zerosDBufClean = TimeToFrequencyDomain(aecm, |
| aecm->dBufClean, |
| dfw, |
| dfaClean, |
| &dfaCleanSum); |
| aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain; |
| aecm->dfaCleanQDomain = (int16_t)zerosDBufClean; |
| } |
| |
| // Get the delay |
| // Save far-end history and estimate delay |
| WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q); |
| if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, |
| xfa, |
| PART_LEN1, |
| far_q) == -1) { |
| return -1; |
| } |
| delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator, |
| dfaNoisy, |
| PART_LEN1, |
| zerosDBufNoisy); |
| if (delay == -1) |
| { |
| return -1; |
| } |
| else if (delay == -2) |
| { |
| // If the delay is unknown, we assume zero. |
| // NOTE: this will have to be adjusted if we ever add lookahead. |
| delay = 0; |
| } |
| |
| if (aecm->fixedDelay >= 0) |
| { |
| // Use fixed delay |
| delay = aecm->fixedDelay; |
| } |
| |
| // Get aligned far end spectrum |
| far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay); |
| zerosXBuf = (int16_t) far_q; |
| if (far_spectrum_ptr == NULL) |
| { |
| return -1; |
| } |
| |
| // Calculate log(energy) and update energy threshold levels |
| WebRtcAecm_CalcEnergies(aecm, |
| far_spectrum_ptr, |
| zerosXBuf, |
| dfaNoisySum, |
| echoEst32); |
| |
| // Calculate stepsize |
| mu = WebRtcAecm_CalcStepSize(aecm); |
| |
| // Update counters |
| aecm->totCount++; |
| |
| // This is the channel estimation algorithm. |
| // It is base on NLMS but has a variable step length, |
| // which was calculated above. |
| WebRtcAecm_UpdateChannel(aecm, |
| far_spectrum_ptr, |
| zerosXBuf, |
| dfaNoisy, |
| mu, |
| echoEst32); |
| supGain = WebRtcAecm_CalcSuppressionGain(aecm); |
| |
| |
| // Calculate Wiener filter hnl[] |
| for (i = 0; i < PART_LEN1; i++) |
| { |
| // Far end signal through channel estimate in Q8 |
| // How much can we shift right to preserve resolution |
| tmp32no1 = echoEst32[i] - aecm->echoFilt[i]; |
| aecm->echoFilt[i] += |
| rtc::dchecked_cast<int32_t>((int64_t{tmp32no1} * 50) >> 8); |
| |
| zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1; |
| zeros16 = WebRtcSpl_NormW16(supGain) + 1; |
| if (zeros32 + zeros16 > 16) |
| { |
| // Multiplication is safe |
| // Result in |
| // Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+ |
| // aecm->xfaQDomainBuf[diff]) |
| echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], |
| (uint16_t)supGain); |
| resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN; |
| resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf); |
| } else |
| { |
| tmp16no1 = 17 - zeros32 - zeros16; |
| resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 - |
| RESOLUTION_SUPGAIN; |
| resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf); |
| if (zeros32 > tmp16no1) |
| { |
| echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], |
| supGain >> tmp16no1); |
| } else |
| { |
| // Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16) |
| echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain; |
| } |
| } |
| |
| zeros16 = WebRtcSpl_NormW16(aecm->nearFilt[i]); |
| RTC_DCHECK_GE(zeros16, 0); // |zeros16| is a norm, hence non-negative. |
| dfa_clean_q_domain_diff = aecm->dfaCleanQDomain - aecm->dfaCleanQDomainOld; |
| if (zeros16 < dfa_clean_q_domain_diff && aecm->nearFilt[i]) { |
| tmp16no1 = aecm->nearFilt[i] * (1 << zeros16); |
| qDomainDiff = zeros16 - dfa_clean_q_domain_diff; |
| tmp16no2 = ptrDfaClean[i] >> -qDomainDiff; |
| } else { |
| tmp16no1 = dfa_clean_q_domain_diff < 0 |
| ? aecm->nearFilt[i] >> -dfa_clean_q_domain_diff |
| : aecm->nearFilt[i] * (1 << dfa_clean_q_domain_diff); |
| qDomainDiff = 0; |
| tmp16no2 = ptrDfaClean[i]; |
| } |
| tmp32no1 = (int32_t)(tmp16no2 - tmp16no1); |
| tmp16no2 = (int16_t)(tmp32no1 >> 4); |
| tmp16no2 += tmp16no1; |
| zeros16 = WebRtcSpl_NormW16(tmp16no2); |
| if ((tmp16no2) & (-qDomainDiff > zeros16)) { |
| aecm->nearFilt[i] = WEBRTC_SPL_WORD16_MAX; |
| } else { |
| aecm->nearFilt[i] = qDomainDiff < 0 ? tmp16no2 * (1 << -qDomainDiff) |
| : tmp16no2 >> qDomainDiff; |
| } |
| |
| // Wiener filter coefficients, resulting hnl in Q14 |
| if (echoEst32Gained == 0) |
| { |
| hnl[i] = ONE_Q14; |
| } else if (aecm->nearFilt[i] == 0) |
| { |
| hnl[i] = 0; |
| } else |
| { |
| // Multiply the suppression gain |
| // Rounding |
| echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1); |
| tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained, |
| (uint16_t)aecm->nearFilt[i]); |
| |
| // Current resolution is |
| // Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32)) |
| // Make sure we are in Q14 |
| tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff); |
| if (tmp32no1 > ONE_Q14) |
| { |
| hnl[i] = 0; |
| } else if (tmp32no1 < 0) |
| { |
| hnl[i] = ONE_Q14; |
| } else |
| { |
| // 1-echoEst/dfa |
| hnl[i] = ONE_Q14 - (int16_t)tmp32no1; |
| if (hnl[i] < 0) |
| { |
| hnl[i] = 0; |
| } |
| } |
| } |
| if (hnl[i]) |
| { |
| numPosCoef++; |
| } |
| } |
| // Only in wideband. Prevent the gain in upper band from being larger than |
| // in lower band. |
| if (aecm->mult == 2) |
| { |
| // TODO(bjornv): Investigate if the scaling of hnl[i] below can cause |
| // speech distortion in double-talk. |
| for (i = 0; i < PART_LEN1; i++) |
| { |
| hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14); |
| } |
| |
| for (i = kMinPrefBand; i <= kMaxPrefBand; i++) |
| { |
| avgHnl32 += (int32_t)hnl[i]; |
| } |
| RTC_DCHECK_GT(kMaxPrefBand - kMinPrefBand + 1, 0); |
| avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1); |
| |
| for (i = kMaxPrefBand; i < PART_LEN1; i++) |
| { |
| if (hnl[i] > (int16_t)avgHnl32) |
| { |
| hnl[i] = (int16_t)avgHnl32; |
| } |
| } |
| } |
| |
| // Calculate NLP gain, result is in Q14 |
| if (aecm->nlpFlag) |
| { |
| for (i = 0; i < PART_LEN1; i++) |
| { |
| // Truncate values close to zero and one. |
| if (hnl[i] > NLP_COMP_HIGH) |
| { |
| hnl[i] = ONE_Q14; |
| } else if (hnl[i] < NLP_COMP_LOW) |
| { |
| hnl[i] = 0; |
| } |
| |
| // Remove outliers |
| if (numPosCoef < 3) |
| { |
| nlpGain = 0; |
| } else |
| { |
| nlpGain = ONE_Q14; |
| } |
| |
| // NLP |
| if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14)) |
| { |
| hnl[i] = ONE_Q14; |
| } else |
| { |
| hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14); |
| } |
| |
| // multiply with Wiener coefficients |
| efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, |
| hnl[i], 14)); |
| efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, |
| hnl[i], 14)); |
| } |
| } |
| else |
| { |
| // multiply with Wiener coefficients |
| for (i = 0; i < PART_LEN1; i++) |
| { |
| efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, |
| hnl[i], 14)); |
| efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, |
| hnl[i], 14)); |
| } |
| } |
| |
| if (aecm->cngMode == AecmTrue) |
| { |
| ComfortNoise(aecm, ptrDfaClean, efw, hnl); |
| } |
| |
| InverseFFTAndWindow(aecm, fft, efw, output, nearendClean); |
| |
| return 0; |
| } |
| |
| static void ComfortNoise(AecmCore* aecm, |
| const uint16_t* dfa, |
| ComplexInt16* out, |
| const int16_t* lambda) { |
| int16_t i; |
| int16_t tmp16; |
| int32_t tmp32; |
| |
| int16_t randW16[PART_LEN]; |
| int16_t uReal[PART_LEN1]; |
| int16_t uImag[PART_LEN1]; |
| int32_t outLShift32; |
| int16_t noiseRShift16[PART_LEN1]; |
| |
| int16_t shiftFromNearToNoise = kNoiseEstQDomain - aecm->dfaCleanQDomain; |
| int16_t minTrackShift; |
| |
| RTC_DCHECK_GE(shiftFromNearToNoise, 0); |
| RTC_DCHECK_LT(shiftFromNearToNoise, 16); |
| |
| if (aecm->noiseEstCtr < 100) |
| { |
| // Track the minimum more quickly initially. |
| aecm->noiseEstCtr++; |
| minTrackShift = 6; |
| } else |
| { |
| minTrackShift = 9; |
| } |
| |
| // Estimate noise power. |
| for (i = 0; i < PART_LEN1; i++) |
| { |
| // Shift to the noise domain. |
| tmp32 = (int32_t)dfa[i]; |
| outLShift32 = tmp32 << shiftFromNearToNoise; |
| |
| if (outLShift32 < aecm->noiseEst[i]) |
| { |
| // Reset "too low" counter |
| aecm->noiseEstTooLowCtr[i] = 0; |
| // Track the minimum. |
| if (aecm->noiseEst[i] < (1 << minTrackShift)) |
| { |
| // For small values, decrease noiseEst[i] every |
| // |kNoiseEstIncCount| block. The regular approach below can not |
| // go further down due to truncation. |
| aecm->noiseEstTooHighCtr[i]++; |
| if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) |
| { |
| aecm->noiseEst[i]--; |
| aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter |
| } |
| } |
| else |
| { |
| aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32) |
| >> minTrackShift); |
| } |
| } else |
| { |
| // Reset "too high" counter |
| aecm->noiseEstTooHighCtr[i] = 0; |
| // Ramp slowly upwards until we hit the minimum again. |
| if ((aecm->noiseEst[i] >> 19) > 0) |
| { |
| // Avoid overflow. |
| // Multiplication with 2049 will cause wrap around. Scale |
| // down first and then multiply |
| aecm->noiseEst[i] >>= 11; |
| aecm->noiseEst[i] *= 2049; |
| } |
| else if ((aecm->noiseEst[i] >> 11) > 0) |
| { |
| // Large enough for relative increase |
| aecm->noiseEst[i] *= 2049; |
| aecm->noiseEst[i] >>= 11; |
| } |
| else |
| { |
| // Make incremental increases based on size every |
| // |kNoiseEstIncCount| block |
| aecm->noiseEstTooLowCtr[i]++; |
| if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) |
| { |
| aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1; |
| aecm->noiseEstTooLowCtr[i] = 0; // Reset counter |
| } |
| } |
| } |
| } |
| |
| for (i = 0; i < PART_LEN1; i++) |
| { |
| tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise; |
| if (tmp32 > 32767) |
| { |
| tmp32 = 32767; |
| aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise; |
| } |
| noiseRShift16[i] = (int16_t)tmp32; |
| |
| tmp16 = ONE_Q14 - lambda[i]; |
| noiseRShift16[i] = (int16_t)((tmp16 * noiseRShift16[i]) >> 14); |
| } |
| |
| // Generate a uniform random array on [0 2^15-1]. |
| WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed); |
| |
| // Generate noise according to estimated energy. |
| uReal[0] = 0; // Reject LF noise. |
| uImag[0] = 0; |
| for (i = 1; i < PART_LEN1; i++) |
| { |
| // Get a random index for the cos and sin tables over [0 359]. |
| tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15); |
| |
| // Tables are in Q13. |
| uReal[i] = (int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >> |
| 13); |
| uImag[i] = (int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >> |
| 13); |
| } |
| uImag[PART_LEN] = 0; |
| |
| for (i = 0; i < PART_LEN1; i++) |
| { |
| out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]); |
| out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]); |
| } |
| } |