| /* |
| * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/agc2/rnn_vad/lp_residual.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <cmath> |
| #include <numeric> |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/numerics/safe_compare.h" |
| |
| namespace webrtc { |
| namespace rnn_vad { |
| namespace { |
| |
| // Computes auto-correlation coefficients for `x` and writes them in |
| // `auto_corr`. The lag values are in {0, ..., max_lag - 1}, where max_lag |
| // equals the size of `auto_corr`. |
| void ComputeAutoCorrelation( |
| rtc::ArrayView<const float> x, |
| rtc::ArrayView<float, kNumLpcCoefficients> auto_corr) { |
| constexpr int max_lag = auto_corr.size(); |
| RTC_DCHECK_LT(max_lag, x.size()); |
| for (int lag = 0; lag < max_lag; ++lag) { |
| auto_corr[lag] = |
| std::inner_product(x.begin(), x.end() - lag, x.begin() + lag, 0.f); |
| } |
| } |
| |
| // Applies denoising to the auto-correlation coefficients. |
| void DenoiseAutoCorrelation( |
| rtc::ArrayView<float, kNumLpcCoefficients> auto_corr) { |
| // Assume -40 dB white noise floor. |
| auto_corr[0] *= 1.0001f; |
| // Hard-coded values obtained as |
| // [np.float32((0.008*0.008*i*i)) for i in range(1,5)]. |
| auto_corr[1] -= auto_corr[1] * 0.000064f; |
| auto_corr[2] -= auto_corr[2] * 0.000256f; |
| auto_corr[3] -= auto_corr[3] * 0.000576f; |
| auto_corr[4] -= auto_corr[4] * 0.001024f; |
| static_assert(kNumLpcCoefficients == 5, "Update `auto_corr`."); |
| } |
| |
| // Computes the initial inverse filter coefficients given the auto-correlation |
| // coefficients of an input frame. |
| void ComputeInitialInverseFilterCoefficients( |
| rtc::ArrayView<const float, kNumLpcCoefficients> auto_corr, |
| rtc::ArrayView<float, kNumLpcCoefficients - 1> lpc_coeffs) { |
| float error = auto_corr[0]; |
| for (int i = 0; i < kNumLpcCoefficients - 1; ++i) { |
| float reflection_coeff = 0.f; |
| for (int j = 0; j < i; ++j) { |
| reflection_coeff += lpc_coeffs[j] * auto_corr[i - j]; |
| } |
| reflection_coeff += auto_corr[i + 1]; |
| |
| // Avoid division by numbers close to zero. |
| constexpr float kMinErrorMagnitude = 1e-6f; |
| if (std::fabs(error) < kMinErrorMagnitude) { |
| error = std::copysign(kMinErrorMagnitude, error); |
| } |
| |
| reflection_coeff /= -error; |
| // Update LPC coefficients and total error. |
| lpc_coeffs[i] = reflection_coeff; |
| for (int j = 0; j < ((i + 1) >> 1); ++j) { |
| const float tmp1 = lpc_coeffs[j]; |
| const float tmp2 = lpc_coeffs[i - 1 - j]; |
| lpc_coeffs[j] = tmp1 + reflection_coeff * tmp2; |
| lpc_coeffs[i - 1 - j] = tmp2 + reflection_coeff * tmp1; |
| } |
| error -= reflection_coeff * reflection_coeff * error; |
| if (error < 0.001f * auto_corr[0]) { |
| break; |
| } |
| } |
| } |
| |
| } // namespace |
| |
| void ComputeAndPostProcessLpcCoefficients( |
| rtc::ArrayView<const float> x, |
| rtc::ArrayView<float, kNumLpcCoefficients> lpc_coeffs) { |
| std::array<float, kNumLpcCoefficients> auto_corr; |
| ComputeAutoCorrelation(x, auto_corr); |
| if (auto_corr[0] == 0.f) { // Empty frame. |
| std::fill(lpc_coeffs.begin(), lpc_coeffs.end(), 0); |
| return; |
| } |
| DenoiseAutoCorrelation(auto_corr); |
| std::array<float, kNumLpcCoefficients - 1> lpc_coeffs_pre{}; |
| ComputeInitialInverseFilterCoefficients(auto_corr, lpc_coeffs_pre); |
| // LPC coefficients post-processing. |
| // TODO(bugs.webrtc.org/9076): Consider removing these steps. |
| lpc_coeffs_pre[0] *= 0.9f; |
| lpc_coeffs_pre[1] *= 0.9f * 0.9f; |
| lpc_coeffs_pre[2] *= 0.9f * 0.9f * 0.9f; |
| lpc_coeffs_pre[3] *= 0.9f * 0.9f * 0.9f * 0.9f; |
| constexpr float kC = 0.8f; |
| lpc_coeffs[0] = lpc_coeffs_pre[0] + kC; |
| lpc_coeffs[1] = lpc_coeffs_pre[1] + kC * lpc_coeffs_pre[0]; |
| lpc_coeffs[2] = lpc_coeffs_pre[2] + kC * lpc_coeffs_pre[1]; |
| lpc_coeffs[3] = lpc_coeffs_pre[3] + kC * lpc_coeffs_pre[2]; |
| lpc_coeffs[4] = kC * lpc_coeffs_pre[3]; |
| static_assert(kNumLpcCoefficients == 5, "Update `lpc_coeffs(_pre)`."); |
| } |
| |
| void ComputeLpResidual( |
| rtc::ArrayView<const float, kNumLpcCoefficients> lpc_coeffs, |
| rtc::ArrayView<const float> x, |
| rtc::ArrayView<float> y) { |
| RTC_DCHECK_GT(x.size(), kNumLpcCoefficients); |
| RTC_DCHECK_EQ(x.size(), y.size()); |
| // The code below implements the following operation: |
| // y[i] = x[i] + dot_product({x[i], ..., x[i - kNumLpcCoefficients + 1]}, |
| // lpc_coeffs) |
| // Edge case: i < kNumLpcCoefficients. |
| y[0] = x[0]; |
| for (int i = 1; i < kNumLpcCoefficients; ++i) { |
| y[i] = |
| std::inner_product(x.crend() - i, x.crend(), lpc_coeffs.cbegin(), x[i]); |
| } |
| // Regular case. |
| auto last = x.crend(); |
| for (int i = kNumLpcCoefficients; rtc::SafeLt(i, y.size()); ++i, --last) { |
| y[i] = std::inner_product(last - kNumLpcCoefficients, last, |
| lpc_coeffs.cbegin(), x[i]); |
| } |
| } |
| |
| } // namespace rnn_vad |
| } // namespace webrtc |