|  | /* | 
|  | *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "common_audio/smoothing_filter.h" | 
|  |  | 
|  | #include <cmath> | 
|  |  | 
|  | #include "rtc_base/timeutils.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | SmoothingFilterImpl::SmoothingFilterImpl(int init_time_ms) | 
|  | : init_time_ms_(init_time_ms), | 
|  | // Duing the initalization time, we use an increasing alpha. Specifically, | 
|  | //   alpha(n) = exp(-powf(init_factor_, n)), | 
|  | // where |init_factor_| is chosen such that | 
|  | //   alpha(init_time_ms_) = exp(-1.0f / init_time_ms_), | 
|  | init_factor_(init_time_ms_ == 0 | 
|  | ? 0.0f | 
|  | : powf(init_time_ms_, -1.0f / init_time_ms_)), | 
|  | // |init_const_| is to a factor to help the calculation during | 
|  | // initialization phase. | 
|  | init_const_(init_time_ms_ == 0 | 
|  | ? 0.0f | 
|  | : init_time_ms_ - | 
|  | powf(init_time_ms_, 1.0f - 1.0f / init_time_ms_)) { | 
|  | UpdateAlpha(init_time_ms_); | 
|  | } | 
|  |  | 
|  | SmoothingFilterImpl::~SmoothingFilterImpl() = default; | 
|  |  | 
|  | void SmoothingFilterImpl::AddSample(float sample) { | 
|  | const int64_t now_ms = rtc::TimeMillis(); | 
|  |  | 
|  | if (!init_end_time_ms_) { | 
|  | // This is equivalent to assuming the filter has been receiving the same | 
|  | // value as the first sample since time -infinity. | 
|  | state_ = last_sample_ = sample; | 
|  | init_end_time_ms_ = now_ms + init_time_ms_; | 
|  | last_state_time_ms_ = now_ms; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ExtrapolateLastSample(now_ms); | 
|  | last_sample_ = sample; | 
|  | } | 
|  |  | 
|  | absl::optional<float> SmoothingFilterImpl::GetAverage() { | 
|  | if (!init_end_time_ms_) { | 
|  | // |init_end_time_ms_| undefined since we have not received any sample. | 
|  | return absl::nullopt; | 
|  | } | 
|  | ExtrapolateLastSample(rtc::TimeMillis()); | 
|  | return state_; | 
|  | } | 
|  |  | 
|  | bool SmoothingFilterImpl::SetTimeConstantMs(int time_constant_ms) { | 
|  | if (!init_end_time_ms_ || last_state_time_ms_ < *init_end_time_ms_) { | 
|  | return false; | 
|  | } | 
|  | UpdateAlpha(time_constant_ms); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SmoothingFilterImpl::UpdateAlpha(int time_constant_ms) { | 
|  | alpha_ = time_constant_ms == 0 ? 0.0f : exp(-1.0f / time_constant_ms); | 
|  | } | 
|  |  | 
|  | void SmoothingFilterImpl::ExtrapolateLastSample(int64_t time_ms) { | 
|  | RTC_DCHECK_GE(time_ms, last_state_time_ms_); | 
|  | RTC_DCHECK(init_end_time_ms_); | 
|  |  | 
|  | float multiplier = 0.0f; | 
|  |  | 
|  | if (time_ms <= *init_end_time_ms_) { | 
|  | // Current update is to be made during initialization phase. | 
|  | // We update the state as if the |alpha| has been increased according | 
|  | //   alpha(n) = exp(-powf(init_factor_, n)), | 
|  | // where n is the time (in millisecond) since the first sample received. | 
|  | // With algebraic derivation as shown in the Appendix, we can find that the | 
|  | // state can be updated in a similar manner as if alpha is a constant, | 
|  | // except for a different multiplier. | 
|  | if (init_time_ms_ == 0) { | 
|  | // This means |init_factor_| = 0. | 
|  | multiplier = 0.0f; | 
|  | } else if (init_time_ms_ == 1) { | 
|  | // This means |init_factor_| = 1. | 
|  | multiplier = exp(last_state_time_ms_ - time_ms); | 
|  | } else { | 
|  | multiplier = | 
|  | exp(-(powf(init_factor_, last_state_time_ms_ - *init_end_time_ms_) - | 
|  | powf(init_factor_, time_ms - *init_end_time_ms_)) / | 
|  | init_const_); | 
|  | } | 
|  | } else { | 
|  | if (last_state_time_ms_ < *init_end_time_ms_) { | 
|  | // The latest state update was made during initialization phase. | 
|  | // We first extrapolate to the initialization time. | 
|  | ExtrapolateLastSample(*init_end_time_ms_); | 
|  | // Then extrapolate the rest by the following. | 
|  | } | 
|  | multiplier = powf(alpha_, time_ms - last_state_time_ms_); | 
|  | } | 
|  |  | 
|  | state_ = multiplier * state_ + (1.0f - multiplier) * last_sample_; | 
|  | last_state_time_ms_ = time_ms; | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc | 
|  |  | 
|  | // Appendix: derivation of extrapolation during initialization phase. | 
|  | // (LaTeX syntax) | 
|  | // Assuming | 
|  | //   \begin{align} | 
|  | //     y(n) &= \alpha_{n-1} y(n-1) + \left(1 - \alpha_{n-1}\right) x(m) \\* | 
|  | //          &= \left(\prod_{i=m}^{n-1} \alpha_i\right) y(m) + | 
|  | //             \left(1 - \prod_{i=m}^{n-1} \alpha_i \right) x(m) | 
|  | //   \end{align} | 
|  | // Taking $\alpha_{n} = \exp(-\gamma^n)$, $\gamma$ denotes init\_factor\_, the | 
|  | // multiplier becomes | 
|  | //   \begin{align} | 
|  | //     \prod_{i=m}^{n-1} \alpha_i | 
|  | //     &= \exp\left(-\sum_{i=m}^{n-1} \gamma^i \right) \\* | 
|  | //     &= \begin{cases} | 
|  | //          \exp\left(-\frac{\gamma^m - \gamma^n}{1 - \gamma} \right) | 
|  | //          & \gamma \neq 1 \\* | 
|  | //          m-n & \gamma = 1 | 
|  | //        \end{cases} | 
|  | //   \end{align} | 
|  | // We know $\gamma = T^{-\frac{1}{T}}$, where $T$ denotes init\_time\_ms\_. Then | 
|  | // $1 - \gamma$ approaches zero when $T$ increases. This can cause numerical | 
|  | // difficulties. We multiply $T$ (if $T > 0$) to both numerator and denominator | 
|  | // in the fraction. See. | 
|  | //   \begin{align} | 
|  | //     \frac{\gamma^m - \gamma^n}{1 - \gamma} | 
|  | //     &= \frac{T^\frac{T-m}{T} - T^\frac{T-n}{T}}{T - T^{1-\frac{1}{T}}} | 
|  | //   \end{align} |