|  | /* | 
|  | *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "rtc_base/numerics/running_statistics.h" | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include <random> | 
|  | #include <vector> | 
|  |  | 
|  | #include "absl/algorithm/container.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | // Tests were copied from samples_stats_counter_unittest.cc. | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  |  | 
|  | RunningStatistics<double> CreateStatsFilledWithIntsFrom1ToN(int n) { | 
|  | std::vector<double> data; | 
|  | for (int i = 1; i <= n; i++) { | 
|  | data.push_back(i); | 
|  | } | 
|  | absl::c_shuffle(data, std::mt19937(std::random_device()())); | 
|  |  | 
|  | RunningStatistics<double> stats; | 
|  | for (double v : data) { | 
|  | stats.AddSample(v); | 
|  | } | 
|  | return stats; | 
|  | } | 
|  |  | 
|  | // Add n samples drawn from uniform distribution in [a;b]. | 
|  | RunningStatistics<double> CreateStatsFromUniformDistribution(int n, | 
|  | double a, | 
|  | double b) { | 
|  | std::mt19937 gen{std::random_device()()}; | 
|  | std::uniform_real_distribution<> dis(a, b); | 
|  |  | 
|  | RunningStatistics<double> stats; | 
|  | for (int i = 1; i <= n; i++) { | 
|  | stats.AddSample(dis(gen)); | 
|  | } | 
|  | return stats; | 
|  | } | 
|  |  | 
|  | class RunningStatisticsTest : public ::testing::TestWithParam<int> {}; | 
|  |  | 
|  | constexpr int SIZE_FOR_MERGE = 5; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | TEST(RunningStatistics, FullSimpleTest) { | 
|  | auto stats = CreateStatsFilledWithIntsFrom1ToN(100); | 
|  |  | 
|  | EXPECT_DOUBLE_EQ(*stats.GetMin(), 1.0); | 
|  | EXPECT_DOUBLE_EQ(*stats.GetMax(), 100.0); | 
|  | // EXPECT_DOUBLE_EQ is too strict (max 4 ULP) for this one. | 
|  | ASSERT_NEAR(*stats.GetMean(), 50.5, 1e-10); | 
|  | } | 
|  |  | 
|  | TEST(RunningStatistics, VarianceAndDeviation) { | 
|  | RunningStatistics<int> stats; | 
|  | stats.AddSample(2); | 
|  | stats.AddSample(2); | 
|  | stats.AddSample(-1); | 
|  | stats.AddSample(5); | 
|  |  | 
|  | EXPECT_DOUBLE_EQ(*stats.GetMean(), 2.0); | 
|  | EXPECT_DOUBLE_EQ(*stats.GetVariance(), 4.5); | 
|  | EXPECT_DOUBLE_EQ(*stats.GetStandardDeviation(), sqrt(4.5)); | 
|  | } | 
|  |  | 
|  | TEST(RunningStatistics, RemoveSample) { | 
|  | // We check that adding then removing sample is no-op, | 
|  | // or so (due to loss of precision). | 
|  | RunningStatistics<int> stats; | 
|  | stats.AddSample(2); | 
|  | stats.AddSample(2); | 
|  | stats.AddSample(-1); | 
|  | stats.AddSample(5); | 
|  |  | 
|  | constexpr int iterations = 1e5; | 
|  | for (int i = 0; i < iterations; ++i) { | 
|  | stats.AddSample(i); | 
|  | stats.RemoveSample(i); | 
|  |  | 
|  | EXPECT_NEAR(*stats.GetMean(), 2.0, 1e-8); | 
|  | EXPECT_NEAR(*stats.GetVariance(), 4.5, 1e-3); | 
|  | EXPECT_NEAR(*stats.GetStandardDeviation(), sqrt(4.5), 1e-4); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(RunningStatistics, RemoveSamplesSequence) { | 
|  | // We check that adding then removing a sequence of samples is no-op, | 
|  | // or so (due to loss of precision). | 
|  | RunningStatistics<int> stats; | 
|  | stats.AddSample(2); | 
|  | stats.AddSample(2); | 
|  | stats.AddSample(-1); | 
|  | stats.AddSample(5); | 
|  |  | 
|  | constexpr int iterations = 1e4; | 
|  | for (int i = 0; i < iterations; ++i) { | 
|  | stats.AddSample(i); | 
|  | } | 
|  | for (int i = 0; i < iterations; ++i) { | 
|  | stats.RemoveSample(i); | 
|  | } | 
|  |  | 
|  | EXPECT_NEAR(*stats.GetMean(), 2.0, 1e-7); | 
|  | EXPECT_NEAR(*stats.GetVariance(), 4.5, 1e-3); | 
|  | EXPECT_NEAR(*stats.GetStandardDeviation(), sqrt(4.5), 1e-4); | 
|  | } | 
|  |  | 
|  | TEST(RunningStatistics, VarianceFromUniformDistribution) { | 
|  | // Check variance converge to 1/12 for [0;1) uniform distribution. | 
|  | // Acts as a sanity check for NumericStabilityForVariance test. | 
|  | auto stats = CreateStatsFromUniformDistribution(1e6, 0, 1); | 
|  |  | 
|  | EXPECT_NEAR(*stats.GetVariance(), 1. / 12, 1e-3); | 
|  | } | 
|  |  | 
|  | TEST(RunningStatistics, NumericStabilityForVariance) { | 
|  | // Same test as VarianceFromUniformDistribution, | 
|  | // except the range is shifted to [1e9;1e9+1). | 
|  | // Variance should also converge to 1/12. | 
|  | // NB: Although we lose precision for the samples themselves, the fractional | 
|  | //     part still enjoys 22 bits of mantissa and errors should even out, | 
|  | //     so that couldn't explain a mismatch. | 
|  | auto stats = CreateStatsFromUniformDistribution(1e6, 1e9, 1e9 + 1); | 
|  |  | 
|  | EXPECT_NEAR(*stats.GetVariance(), 1. / 12, 1e-3); | 
|  | } | 
|  |  | 
|  | TEST(RunningStatistics, MinRemainsUnchangedAfterRemove) { | 
|  | // We don't want to recompute min (that's RollingAccumulator's role), | 
|  | // check we get the overall min. | 
|  | RunningStatistics<int> stats; | 
|  | stats.AddSample(1); | 
|  | stats.AddSample(2); | 
|  | stats.RemoveSample(1); | 
|  | EXPECT_EQ(stats.GetMin(), 1); | 
|  | } | 
|  |  | 
|  | TEST(RunningStatistics, MaxRemainsUnchangedAfterRemove) { | 
|  | // We don't want to recompute max (that's RollingAccumulator's role), | 
|  | // check we get the overall max. | 
|  | RunningStatistics<int> stats; | 
|  | stats.AddSample(1); | 
|  | stats.AddSample(2); | 
|  | stats.RemoveSample(2); | 
|  | EXPECT_EQ(stats.GetMax(), 2); | 
|  | } | 
|  |  | 
|  | TEST_P(RunningStatisticsTest, MergeStatistics) { | 
|  | int data[SIZE_FOR_MERGE] = {2, 2, -1, 5, 10}; | 
|  | // Split the data in different partitions. | 
|  | // We have 6 distinct tests: | 
|  | //   * Empty merged with full sequence. | 
|  | //   * 1 sample merged with 4 last. | 
|  | //   * 2 samples merged with 3 last. | 
|  | //   [...] | 
|  | //   * Full merged with empty sequence. | 
|  | // All must lead to the same result. | 
|  | // I miss QuickCheck so much. | 
|  | RunningStatistics<int> stats0, stats1; | 
|  | for (int i = 0; i < GetParam(); ++i) { | 
|  | stats0.AddSample(data[i]); | 
|  | } | 
|  | for (int i = GetParam(); i < SIZE_FOR_MERGE; ++i) { | 
|  | stats1.AddSample(data[i]); | 
|  | } | 
|  | stats0.MergeStatistics(stats1); | 
|  |  | 
|  | EXPECT_EQ(stats0.Size(), SIZE_FOR_MERGE); | 
|  | EXPECT_DOUBLE_EQ(*stats0.GetMin(), -1); | 
|  | EXPECT_DOUBLE_EQ(*stats0.GetMax(), 10); | 
|  | EXPECT_DOUBLE_EQ(*stats0.GetMean(), 3.6); | 
|  | EXPECT_DOUBLE_EQ(*stats0.GetVariance(), 13.84); | 
|  | EXPECT_DOUBLE_EQ(*stats0.GetStandardDeviation(), sqrt(13.84)); | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(RunningStatisticsTests, | 
|  | RunningStatisticsTest, | 
|  | ::testing::Range(0, SIZE_FOR_MERGE + 1)); | 
|  |  | 
|  | }  // namespace webrtc |