| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <list> |
| #include <memory> |
| |
| #include "absl/memory/memory.h" |
| #include "p2p/base/basicpacketsocketfactory.h" |
| #include "p2p/base/p2pconstants.h" |
| #include "p2p/base/relayport.h" |
| #include "p2p/base/stunport.h" |
| #include "p2p/base/tcpport.h" |
| #include "p2p/base/testrelayserver.h" |
| #include "p2p/base/teststunserver.h" |
| #include "p2p/base/testturnserver.h" |
| #include "p2p/base/turnport.h" |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/buffer.h" |
| #include "rtc_base/crc32.h" |
| #include "rtc_base/gunit.h" |
| #include "rtc_base/helpers.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/natserver.h" |
| #include "rtc_base/natsocketfactory.h" |
| #include "rtc_base/socketaddress.h" |
| #include "rtc_base/ssladapter.h" |
| #include "rtc_base/stringutils.h" |
| #include "rtc_base/thread.h" |
| #include "rtc_base/virtualsocketserver.h" |
| |
| using rtc::AsyncPacketSocket; |
| using rtc::ByteBufferReader; |
| using rtc::ByteBufferWriter; |
| using rtc::NATType; |
| using rtc::NAT_OPEN_CONE; |
| using rtc::NAT_ADDR_RESTRICTED; |
| using rtc::NAT_PORT_RESTRICTED; |
| using rtc::NAT_SYMMETRIC; |
| using rtc::PacketSocketFactory; |
| using rtc::Socket; |
| using rtc::SocketAddress; |
| |
| namespace cricket { |
| namespace { |
| |
| constexpr int kDefaultTimeout = 3000; |
| constexpr int kShortTimeout = 1000; |
| constexpr int kMaxExpectedSimulatedRtt = 200; |
| const SocketAddress kLocalAddr1("192.168.1.2", 0); |
| const SocketAddress kLocalAddr2("192.168.1.3", 0); |
| const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_UDP_PORT); |
| const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_UDP_PORT); |
| const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT); |
| const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000); |
| const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001); |
| const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002); |
| const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003); |
| const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004); |
| const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005); |
| const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT); |
| const SocketAddress kTurnTcpIntAddr("99.99.99.4", 5010); |
| const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0); |
| const RelayCredentials kRelayCredentials("test", "test"); |
| |
| // TODO(?): Update these when RFC5245 is completely supported. |
| // Magic value of 30 is from RFC3484, for IPv4 addresses. |
| const uint32_t kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 | |
| 30 << 8 | |
| (256 - ICE_CANDIDATE_COMPONENT_DEFAULT); |
| |
| constexpr int kTiebreaker1 = 11111; |
| constexpr int kTiebreaker2 = 22222; |
| |
| const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"; |
| |
| constexpr int kGturnUserNameLength = 16; |
| |
| Candidate GetCandidate(Port* port) { |
| RTC_DCHECK_GE(port->Candidates().size(), 1); |
| return port->Candidates()[0]; |
| } |
| |
| SocketAddress GetAddress(Port* port) { |
| return GetCandidate(port).address(); |
| } |
| |
| std::unique_ptr<IceMessage> CopyStunMessage(const IceMessage& src) { |
| auto dst = absl::make_unique<IceMessage>(); |
| ByteBufferWriter buf; |
| src.Write(&buf); |
| ByteBufferReader read_buf(buf); |
| dst->Read(&read_buf); |
| return dst; |
| } |
| |
| bool WriteStunMessage(const StunMessage& msg, ByteBufferWriter* buf) { |
| buf->Resize(0); // clear out any existing buffer contents |
| return msg.Write(buf); |
| } |
| |
| } // namespace |
| |
| // Stub port class for testing STUN generation and processing. |
| class TestPort : public Port { |
| public: |
| TestPort(rtc::Thread* thread, |
| const std::string& type, |
| rtc::PacketSocketFactory* factory, |
| rtc::Network* network, |
| uint16_t min_port, |
| uint16_t max_port, |
| const std::string& username_fragment, |
| const std::string& password) |
| : Port(thread, |
| type, |
| factory, |
| network, |
| min_port, |
| max_port, |
| username_fragment, |
| password) {} |
| ~TestPort() {} |
| |
| // Expose GetStunMessage so that we can test it. |
| using cricket::Port::GetStunMessage; |
| |
| // The last StunMessage that was sent on this Port. |
| // TODO(?): Make these const; requires changes to SendXXXXResponse. |
| rtc::BufferT<uint8_t>* last_stun_buf() { return last_stun_buf_.get(); } |
| IceMessage* last_stun_msg() { return last_stun_msg_.get(); } |
| int last_stun_error_code() { |
| int code = 0; |
| if (last_stun_msg_) { |
| const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode(); |
| if (error_attr) { |
| code = error_attr->code(); |
| } |
| } |
| return code; |
| } |
| |
| virtual void PrepareAddress() { |
| // Act as if the socket was bound to the best IP on the network, to the |
| // first port in the allowed range. |
| rtc::SocketAddress addr(Network()->GetBestIP(), min_port()); |
| AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(), |
| ICE_TYPE_PREFERENCE_HOST, 0, "", true); |
| } |
| |
| virtual bool SupportsProtocol(const std::string& protocol) const { |
| return true; |
| } |
| |
| virtual ProtocolType GetProtocol() const { return PROTO_UDP; } |
| |
| // Exposed for testing candidate building. |
| void AddCandidateAddress(const rtc::SocketAddress& addr) { |
| AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(), |
| type_preference_, 0, "", false); |
| } |
| void AddCandidateAddress(const rtc::SocketAddress& addr, |
| const rtc::SocketAddress& base_address, |
| const std::string& type, |
| int type_preference, |
| bool final) { |
| AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", "", type, |
| type_preference, 0, "", final); |
| } |
| |
| virtual Connection* CreateConnection(const Candidate& remote_candidate, |
| CandidateOrigin origin) { |
| Connection* conn = new ProxyConnection(this, 0, remote_candidate); |
| AddOrReplaceConnection(conn); |
| // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute |
| // in STUN binding requests. |
| conn->set_use_candidate_attr(true); |
| return conn; |
| } |
| virtual int SendTo(const void* data, |
| size_t size, |
| const rtc::SocketAddress& addr, |
| const rtc::PacketOptions& options, |
| bool payload) { |
| if (!payload) { |
| auto msg = absl::make_unique<IceMessage>(); |
| auto buf = absl::make_unique<rtc::BufferT<uint8_t>>( |
| static_cast<const char*>(data), size); |
| ByteBufferReader read_buf(*buf); |
| if (!msg->Read(&read_buf)) { |
| return -1; |
| } |
| last_stun_buf_ = std::move(buf); |
| last_stun_msg_ = std::move(msg); |
| } |
| return static_cast<int>(size); |
| } |
| virtual int SetOption(rtc::Socket::Option opt, int value) { return 0; } |
| virtual int GetOption(rtc::Socket::Option opt, int* value) { return -1; } |
| virtual int GetError() { return 0; } |
| void Reset() { |
| last_stun_buf_.reset(); |
| last_stun_msg_.reset(); |
| } |
| void set_type_preference(int type_preference) { |
| type_preference_ = type_preference; |
| } |
| |
| private: |
| void OnSentPacket(rtc::AsyncPacketSocket* socket, |
| const rtc::SentPacket& sent_packet) { |
| PortInterface::SignalSentPacket(sent_packet); |
| } |
| std::unique_ptr<rtc::BufferT<uint8_t>> last_stun_buf_; |
| std::unique_ptr<IceMessage> last_stun_msg_; |
| int type_preference_ = 0; |
| }; |
| |
| static void SendPingAndReceiveResponse(Connection* lconn, |
| TestPort* lport, |
| Connection* rconn, |
| TestPort* rport, |
| rtc::ScopedFakeClock* clock, |
| int64_t ms) { |
| lconn->Ping(rtc::TimeMillis()); |
| ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout); |
| ASSERT_TRUE(lport->last_stun_buf()); |
| rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), |
| lport->last_stun_buf()->size(), rtc::PacketTime()); |
| clock->AdvanceTime(webrtc::TimeDelta::ms(ms)); |
| ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout); |
| ASSERT_TRUE(rport->last_stun_buf()); |
| lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), |
| rport->last_stun_buf()->size(), rtc::PacketTime()); |
| } |
| |
| class TestChannel : public sigslot::has_slots<> { |
| public: |
| // Takes ownership of |p1| (but not |p2|). |
| explicit TestChannel(std::unique_ptr<Port> p1) : port_(std::move(p1)) { |
| port_->SignalPortComplete.connect(this, &TestChannel::OnPortComplete); |
| port_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress); |
| port_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed); |
| } |
| |
| int complete_count() { return complete_count_; } |
| Connection* conn() { return conn_; } |
| const SocketAddress& remote_address() { return remote_address_; } |
| const std::string remote_fragment() { return remote_frag_; } |
| |
| void Start() { port_->PrepareAddress(); } |
| void CreateConnection(const Candidate& remote_candidate) { |
| conn_ = port_->CreateConnection(remote_candidate, Port::ORIGIN_MESSAGE); |
| IceMode remote_ice_mode = |
| (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL; |
| conn_->set_remote_ice_mode(remote_ice_mode); |
| conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL); |
| conn_->SignalStateChange.connect(this, |
| &TestChannel::OnConnectionStateChange); |
| conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed); |
| conn_->SignalReadyToSend.connect(this, |
| &TestChannel::OnConnectionReadyToSend); |
| connection_ready_to_send_ = false; |
| } |
| void OnConnectionStateChange(Connection* conn) { |
| if (conn->write_state() == Connection::STATE_WRITABLE) { |
| conn->set_use_candidate_attr(true); |
| nominated_ = true; |
| } |
| } |
| void AcceptConnection(const Candidate& remote_candidate) { |
| ASSERT_TRUE(remote_request_.get() != NULL); |
| Candidate c = remote_candidate; |
| c.set_address(remote_address_); |
| conn_ = port_->CreateConnection(c, Port::ORIGIN_MESSAGE); |
| conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed); |
| port_->SendBindingResponse(remote_request_.get(), remote_address_); |
| remote_request_.reset(); |
| } |
| void Ping() { Ping(0); } |
| void Ping(int64_t now) { conn_->Ping(now); } |
| void Stop() { |
| if (conn_) { |
| conn_->Destroy(); |
| } |
| } |
| |
| void OnPortComplete(Port* port) { complete_count_++; } |
| void SetIceMode(IceMode ice_mode) { ice_mode_ = ice_mode; } |
| |
| int SendData(const char* data, size_t len) { |
| rtc::PacketOptions options; |
| return conn_->Send(data, len, options); |
| } |
| |
| void OnUnknownAddress(PortInterface* port, |
| const SocketAddress& addr, |
| ProtocolType proto, |
| IceMessage* msg, |
| const std::string& rf, |
| bool /*port_muxed*/) { |
| ASSERT_EQ(port_.get(), port); |
| if (!remote_address_.IsNil()) { |
| ASSERT_EQ(remote_address_, addr); |
| } |
| const cricket::StunUInt32Attribute* priority_attr = |
| msg->GetUInt32(STUN_ATTR_PRIORITY); |
| const cricket::StunByteStringAttribute* mi_attr = |
| msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY); |
| const cricket::StunUInt32Attribute* fingerprint_attr = |
| msg->GetUInt32(STUN_ATTR_FINGERPRINT); |
| EXPECT_TRUE(priority_attr != NULL); |
| EXPECT_TRUE(mi_attr != NULL); |
| EXPECT_TRUE(fingerprint_attr != NULL); |
| remote_address_ = addr; |
| remote_request_ = CopyStunMessage(*msg); |
| remote_frag_ = rf; |
| } |
| |
| void OnDestroyed(Connection* conn) { |
| ASSERT_EQ(conn_, conn); |
| RTC_LOG(INFO) << "OnDestroy connection " << conn << " deleted"; |
| conn_ = NULL; |
| // When the connection is destroyed, also clear these fields so future |
| // connections are possible. |
| remote_request_.reset(); |
| remote_address_.Clear(); |
| } |
| |
| void OnSrcPortDestroyed(PortInterface* port) { |
| Port* destroyed_src = port_.release(); |
| ASSERT_EQ(destroyed_src, port); |
| } |
| |
| Port* port() { return port_.get(); } |
| |
| bool nominated() const { return nominated_; } |
| |
| void set_connection_ready_to_send(bool ready) { |
| connection_ready_to_send_ = ready; |
| } |
| bool connection_ready_to_send() const { return connection_ready_to_send_; } |
| |
| private: |
| // ReadyToSend will only issue after a Connection recovers from ENOTCONN |
| void OnConnectionReadyToSend(Connection* conn) { |
| ASSERT_EQ(conn, conn_); |
| connection_ready_to_send_ = true; |
| } |
| |
| IceMode ice_mode_ = ICEMODE_FULL; |
| std::unique_ptr<Port> port_; |
| |
| int complete_count_ = 0; |
| Connection* conn_ = nullptr; |
| SocketAddress remote_address_; |
| std::unique_ptr<StunMessage> remote_request_; |
| std::string remote_frag_; |
| bool nominated_ = false; |
| bool connection_ready_to_send_ = false; |
| }; |
| |
| class PortTest : public testing::Test, public sigslot::has_slots<> { |
| public: |
| PortTest() |
| : ss_(new rtc::VirtualSocketServer()), |
| main_(ss_.get()), |
| socket_factory_(rtc::Thread::Current()), |
| nat_factory1_(ss_.get(), kNatAddr1, SocketAddress()), |
| nat_factory2_(ss_.get(), kNatAddr2, SocketAddress()), |
| nat_socket_factory1_(&nat_factory1_), |
| nat_socket_factory2_(&nat_factory2_), |
| stun_server_(TestStunServer::Create(&main_, kStunAddr)), |
| turn_server_(&main_, kTurnUdpIntAddr, kTurnUdpExtAddr), |
| relay_server_(&main_, |
| kRelayUdpIntAddr, |
| kRelayUdpExtAddr, |
| kRelayTcpIntAddr, |
| kRelayTcpExtAddr, |
| kRelaySslTcpIntAddr, |
| kRelaySslTcpExtAddr), |
| username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)), |
| password_(rtc::CreateRandomString(ICE_PWD_LENGTH)), |
| role_conflict_(false), |
| ports_destroyed_(0) {} |
| |
| protected: |
| void TestLocalToLocal() { |
| auto port1 = CreateUdpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateUdpPort(kLocalAddr2); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| TestConnectivity("udp", std::move(port1), "udp", std::move(port2), true, |
| true, true, true); |
| } |
| void TestLocalToStun(NATType ntype) { |
| auto port1 = CreateUdpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| nat_server2_ = CreateNatServer(kNatAddr2, ntype); |
| auto port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| TestConnectivity("udp", std::move(port1), StunName(ntype), std::move(port2), |
| ntype == NAT_OPEN_CONE, true, ntype != NAT_SYMMETRIC, |
| true); |
| } |
| void TestLocalToRelay(RelayType rtype, ProtocolType proto) { |
| auto port1 = CreateUdpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| TestConnectivity("udp", std::move(port1), RelayName(rtype, proto), |
| std::move(port2), rtype == RELAY_GTURN, true, true, true); |
| } |
| void TestStunToLocal(NATType ntype) { |
| nat_server1_ = CreateNatServer(kNatAddr1, ntype); |
| auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateUdpPort(kLocalAddr2); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| TestConnectivity(StunName(ntype), std::move(port1), "udp", std::move(port2), |
| true, ntype != NAT_SYMMETRIC, true, true); |
| } |
| void TestStunToStun(NATType ntype1, NATType ntype2) { |
| nat_server1_ = CreateNatServer(kNatAddr1, ntype1); |
| auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| nat_server2_ = CreateNatServer(kNatAddr2, ntype2); |
| auto port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| TestConnectivity(StunName(ntype1), std::move(port1), StunName(ntype2), |
| std::move(port2), ntype2 == NAT_OPEN_CONE, |
| ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC, |
| ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC)); |
| } |
| void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) { |
| nat_server1_ = CreateNatServer(kNatAddr1, ntype); |
| auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| TestConnectivity(StunName(ntype), std::move(port1), RelayName(rtype, proto), |
| std::move(port2), rtype == RELAY_GTURN, |
| ntype != NAT_SYMMETRIC, true, true); |
| } |
| void TestTcpToTcp() { |
| auto port1 = CreateTcpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateTcpPort(kLocalAddr2); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| TestConnectivity("tcp", std::move(port1), "tcp", std::move(port2), true, |
| false, true, true); |
| } |
| void TestTcpToRelay(RelayType rtype, ProtocolType proto) { |
| auto port1 = CreateTcpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| TestConnectivity("tcp", std::move(port1), RelayName(rtype, proto), |
| std::move(port2), rtype == RELAY_GTURN, false, true, true); |
| } |
| void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) { |
| auto port1 = CreateTcpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| TestConnectivity("ssltcp", std::move(port1), RelayName(rtype, proto), |
| std::move(port2), rtype == RELAY_GTURN, false, true, true); |
| } |
| |
| rtc::Network* MakeNetwork(const SocketAddress& addr) { |
| networks_.emplace_back("unittest", "unittest", addr.ipaddr(), 32); |
| networks_.back().AddIP(addr.ipaddr()); |
| return &networks_.back(); |
| } |
| |
| // helpers for above functions |
| std::unique_ptr<UDPPort> CreateUdpPort(const SocketAddress& addr) { |
| return CreateUdpPort(addr, &socket_factory_); |
| } |
| std::unique_ptr<UDPPort> CreateUdpPort(const SocketAddress& addr, |
| PacketSocketFactory* socket_factory) { |
| return UDPPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0, |
| username_, password_, std::string(), true, |
| absl::nullopt); |
| } |
| std::unique_ptr<TCPPort> CreateTcpPort(const SocketAddress& addr) { |
| return CreateTcpPort(addr, &socket_factory_); |
| } |
| std::unique_ptr<TCPPort> CreateTcpPort(const SocketAddress& addr, |
| PacketSocketFactory* socket_factory) { |
| return TCPPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0, |
| username_, password_, true); |
| } |
| std::unique_ptr<StunPort> CreateStunPort(const SocketAddress& addr, |
| rtc::PacketSocketFactory* factory) { |
| ServerAddresses stun_servers; |
| stun_servers.insert(kStunAddr); |
| return StunPort::Create(&main_, factory, MakeNetwork(addr), 0, 0, username_, |
| password_, stun_servers, std::string(), |
| absl::nullopt); |
| } |
| std::unique_ptr<Port> CreateRelayPort(const SocketAddress& addr, |
| RelayType rtype, |
| ProtocolType int_proto, |
| ProtocolType ext_proto) { |
| if (rtype == RELAY_TURN) { |
| return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto); |
| } else { |
| return CreateGturnPort(addr, int_proto, ext_proto); |
| } |
| } |
| std::unique_ptr<TurnPort> CreateTurnPort(const SocketAddress& addr, |
| PacketSocketFactory* socket_factory, |
| ProtocolType int_proto, |
| ProtocolType ext_proto) { |
| SocketAddress server_addr = |
| int_proto == PROTO_TCP ? kTurnTcpIntAddr : kTurnUdpIntAddr; |
| return CreateTurnPort(addr, socket_factory, int_proto, ext_proto, |
| server_addr); |
| } |
| std::unique_ptr<TurnPort> CreateTurnPort( |
| const SocketAddress& addr, |
| PacketSocketFactory* socket_factory, |
| ProtocolType int_proto, |
| ProtocolType ext_proto, |
| const rtc::SocketAddress& server_addr) { |
| return TurnPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0, |
| username_, password_, |
| ProtocolAddress(server_addr, int_proto), |
| kRelayCredentials, 0, "", {}, {}, nullptr, nullptr); |
| } |
| std::unique_ptr<RelayPort> CreateGturnPort(const SocketAddress& addr, |
| ProtocolType int_proto, |
| ProtocolType ext_proto) { |
| std::unique_ptr<RelayPort> port = CreateGturnPort(addr); |
| SocketAddress addrs[] = {kRelayUdpIntAddr, kRelayTcpIntAddr, |
| kRelaySslTcpIntAddr}; |
| port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto)); |
| return port; |
| } |
| std::unique_ptr<RelayPort> CreateGturnPort(const SocketAddress& addr) { |
| // TODO(pthatcher): Remove GTURN. |
| // Generate a username with length of 16 for Gturn only. |
| std::string username = rtc::CreateRandomString(kGturnUserNameLength); |
| return RelayPort::Create(&main_, &socket_factory_, MakeNetwork(addr), 0, 0, |
| username, password_); |
| // TODO(?): Add an external address for ext_proto, so that the |
| // other side can connect to this port using a non-UDP protocol. |
| } |
| std::unique_ptr<rtc::NATServer> CreateNatServer(const SocketAddress& addr, |
| rtc::NATType type) { |
| return absl::make_unique<rtc::NATServer>(type, ss_.get(), addr, addr, |
| ss_.get(), addr); |
| } |
| static const char* StunName(NATType type) { |
| switch (type) { |
| case NAT_OPEN_CONE: |
| return "stun(open cone)"; |
| case NAT_ADDR_RESTRICTED: |
| return "stun(addr restricted)"; |
| case NAT_PORT_RESTRICTED: |
| return "stun(port restricted)"; |
| case NAT_SYMMETRIC: |
| return "stun(symmetric)"; |
| default: |
| return "stun(?)"; |
| } |
| } |
| static const char* RelayName(RelayType type, ProtocolType proto) { |
| if (type == RELAY_TURN) { |
| switch (proto) { |
| case PROTO_UDP: |
| return "turn(udp)"; |
| case PROTO_TCP: |
| return "turn(tcp)"; |
| case PROTO_SSLTCP: |
| return "turn(ssltcp)"; |
| case PROTO_TLS: |
| return "turn(tls)"; |
| default: |
| return "turn(?)"; |
| } |
| } else { |
| switch (proto) { |
| case PROTO_UDP: |
| return "gturn(udp)"; |
| case PROTO_TCP: |
| return "gturn(tcp)"; |
| case PROTO_SSLTCP: |
| return "gturn(ssltcp)"; |
| case PROTO_TLS: |
| return "gturn(tls)"; |
| default: |
| return "gturn(?)"; |
| } |
| } |
| } |
| |
| void TestCrossFamilyPorts(int type); |
| |
| void ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2); |
| |
| // This does all the work and then deletes |port1| and |port2|. |
| void TestConnectivity(const char* name1, |
| std::unique_ptr<Port> port1, |
| const char* name2, |
| std::unique_ptr<Port> port2, |
| bool accept, |
| bool same_addr1, |
| bool same_addr2, |
| bool possible); |
| |
| // This connects the provided channels which have already started. |ch1| |
| // should have its Connection created (either through CreateConnection() or |
| // TCP reconnecting mechanism before entering this function. |
| void ConnectStartedChannels(TestChannel* ch1, TestChannel* ch2) { |
| ASSERT_TRUE(ch1->conn()); |
| EXPECT_TRUE_WAIT(ch1->conn()->connected(), |
| kDefaultTimeout); // for TCP connect |
| ch1->Ping(); |
| WAIT(!ch2->remote_address().IsNil(), kShortTimeout); |
| |
| // Send a ping from dst to src. |
| ch2->AcceptConnection(GetCandidate(ch1->port())); |
| ch2->Ping(); |
| EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(), |
| kDefaultTimeout); |
| } |
| |
| // This connects and disconnects the provided channels in the same sequence as |
| // TestConnectivity with all options set to |true|. It does not delete either |
| // channel. |
| void StartConnectAndStopChannels(TestChannel* ch1, TestChannel* ch2) { |
| // Acquire addresses. |
| ch1->Start(); |
| ch2->Start(); |
| |
| ch1->CreateConnection(GetCandidate(ch2->port())); |
| ConnectStartedChannels(ch1, ch2); |
| |
| // Destroy the connections. |
| ch1->Stop(); |
| ch2->Stop(); |
| } |
| |
| // This disconnects both end's Connection and make sure ch2 ready for new |
| // connection. |
| void DisconnectTcpTestChannels(TestChannel* ch1, TestChannel* ch2) { |
| TCPConnection* tcp_conn1 = static_cast<TCPConnection*>(ch1->conn()); |
| TCPConnection* tcp_conn2 = static_cast<TCPConnection*>(ch2->conn()); |
| ASSERT_TRUE( |
| ss_->CloseTcpConnections(tcp_conn1->socket()->GetLocalAddress(), |
| tcp_conn2->socket()->GetLocalAddress())); |
| |
| // Wait for both OnClose are delivered. |
| EXPECT_TRUE_WAIT(!ch1->conn()->connected(), kDefaultTimeout); |
| EXPECT_TRUE_WAIT(!ch2->conn()->connected(), kDefaultTimeout); |
| |
| // Ensure redundant SignalClose events on TcpConnection won't break tcp |
| // reconnection. Chromium will fire SignalClose for all outstanding IPC |
| // packets during reconnection. |
| tcp_conn1->socket()->SignalClose(tcp_conn1->socket(), 0); |
| tcp_conn2->socket()->SignalClose(tcp_conn2->socket(), 0); |
| |
| // Speed up destroying ch2's connection such that the test is ready to |
| // accept a new connection from ch1 before ch1's connection destroys itself. |
| ch2->conn()->Destroy(); |
| EXPECT_TRUE_WAIT(ch2->conn() == NULL, kDefaultTimeout); |
| } |
| |
| void TestTcpReconnect(bool ping_after_disconnected, |
| bool send_after_disconnected) { |
| auto port1 = CreateTcpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateTcpPort(kLocalAddr2); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| |
| port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); |
| port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); |
| |
| // Set up channels and ensure both ports will be deleted. |
| TestChannel ch1(std::move(port1)); |
| TestChannel ch2(std::move(port2)); |
| EXPECT_EQ(0, ch1.complete_count()); |
| EXPECT_EQ(0, ch2.complete_count()); |
| |
| ch1.Start(); |
| ch2.Start(); |
| ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); |
| ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout); |
| |
| // Initial connecting the channel, create connection on channel1. |
| ch1.CreateConnection(GetCandidate(ch2.port())); |
| ConnectStartedChannels(&ch1, &ch2); |
| |
| // Shorten the timeout period. |
| const int kTcpReconnectTimeout = kDefaultTimeout; |
| static_cast<TCPConnection*>(ch1.conn()) |
| ->set_reconnection_timeout(kTcpReconnectTimeout); |
| static_cast<TCPConnection*>(ch2.conn()) |
| ->set_reconnection_timeout(kTcpReconnectTimeout); |
| |
| EXPECT_FALSE(ch1.connection_ready_to_send()); |
| EXPECT_FALSE(ch2.connection_ready_to_send()); |
| |
| // Once connected, disconnect them. |
| DisconnectTcpTestChannels(&ch1, &ch2); |
| |
| if (send_after_disconnected || ping_after_disconnected) { |
| if (send_after_disconnected) { |
| // First SendData after disconnect should fail but will trigger |
| // reconnect. |
| EXPECT_EQ(-1, ch1.SendData(data, static_cast<int>(strlen(data)))); |
| } |
| |
| if (ping_after_disconnected) { |
| // Ping should trigger reconnect. |
| ch1.Ping(); |
| } |
| |
| // Wait for channel's outgoing TCPConnection connected. |
| EXPECT_TRUE_WAIT(ch1.conn()->connected(), kDefaultTimeout); |
| |
| // Verify that we could still connect channels. |
| ConnectStartedChannels(&ch1, &ch2); |
| EXPECT_TRUE_WAIT(ch1.connection_ready_to_send(), kTcpReconnectTimeout); |
| // Channel2 is the passive one so a new connection is created during |
| // reconnect. This new connection should never have issued ENOTCONN |
| // hence the connection_ready_to_send() should be false. |
| EXPECT_FALSE(ch2.connection_ready_to_send()); |
| } else { |
| EXPECT_EQ(ch1.conn()->write_state(), Connection::STATE_WRITABLE); |
| // Since the reconnection never happens, the connections should have been |
| // destroyed after the timeout. |
| EXPECT_TRUE_WAIT(!ch1.conn(), kTcpReconnectTimeout + kDefaultTimeout); |
| EXPECT_TRUE(!ch2.conn()); |
| } |
| |
| // Tear down and ensure that goes smoothly. |
| ch1.Stop(); |
| ch2.Stop(); |
| EXPECT_TRUE_WAIT(ch1.conn() == NULL, kDefaultTimeout); |
| EXPECT_TRUE_WAIT(ch2.conn() == NULL, kDefaultTimeout); |
| } |
| |
| std::unique_ptr<IceMessage> CreateStunMessage(int type) { |
| auto msg = absl::make_unique<IceMessage>(); |
| msg->SetType(type); |
| msg->SetTransactionID("TESTTESTTEST"); |
| return msg; |
| } |
| std::unique_ptr<IceMessage> CreateStunMessageWithUsername( |
| int type, |
| const std::string& username) { |
| std::unique_ptr<IceMessage> msg = CreateStunMessage(type); |
| msg->AddAttribute(absl::make_unique<StunByteStringAttribute>( |
| STUN_ATTR_USERNAME, username)); |
| return msg; |
| } |
| std::unique_ptr<TestPort> CreateTestPort(const rtc::SocketAddress& addr, |
| const std::string& username, |
| const std::string& password) { |
| auto port = absl::make_unique<TestPort>(&main_, "test", &socket_factory_, |
| MakeNetwork(addr), 0, 0, username, |
| password); |
| port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict); |
| return port; |
| } |
| std::unique_ptr<TestPort> CreateTestPort(const rtc::SocketAddress& addr, |
| const std::string& username, |
| const std::string& password, |
| cricket::IceRole role, |
| int tiebreaker) { |
| auto port = CreateTestPort(addr, username, password); |
| port->SetIceRole(role); |
| port->SetIceTiebreaker(tiebreaker); |
| return port; |
| } |
| // Overload to create a test port given an rtc::Network directly. |
| std::unique_ptr<TestPort> CreateTestPort(rtc::Network* network, |
| const std::string& username, |
| const std::string& password) { |
| auto port = absl::make_unique<TestPort>(&main_, "test", &socket_factory_, |
| network, 0, 0, username, password); |
| port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict); |
| return port; |
| } |
| |
| void OnRoleConflict(PortInterface* port) { role_conflict_ = true; } |
| bool role_conflict() const { return role_conflict_; } |
| |
| void ConnectToSignalDestroyed(PortInterface* port) { |
| port->SignalDestroyed.connect(this, &PortTest::OnDestroyed); |
| } |
| |
| void OnDestroyed(PortInterface* port) { ++ports_destroyed_; } |
| int ports_destroyed() const { return ports_destroyed_; } |
| |
| rtc::BasicPacketSocketFactory* nat_socket_factory1() { |
| return &nat_socket_factory1_; |
| } |
| |
| rtc::VirtualSocketServer* vss() { return ss_.get(); } |
| |
| private: |
| // When a "create port" helper method is called with an IP, we create a |
| // Network with that IP and add it to this list. Using a list instead of a |
| // vector so that when it grows, pointers aren't invalidated. |
| std::list<rtc::Network> networks_; |
| std::unique_ptr<rtc::VirtualSocketServer> ss_; |
| rtc::AutoSocketServerThread main_; |
| rtc::BasicPacketSocketFactory socket_factory_; |
| std::unique_ptr<rtc::NATServer> nat_server1_; |
| std::unique_ptr<rtc::NATServer> nat_server2_; |
| rtc::NATSocketFactory nat_factory1_; |
| rtc::NATSocketFactory nat_factory2_; |
| rtc::BasicPacketSocketFactory nat_socket_factory1_; |
| rtc::BasicPacketSocketFactory nat_socket_factory2_; |
| std::unique_ptr<TestStunServer> stun_server_; |
| TestTurnServer turn_server_; |
| TestRelayServer relay_server_; |
| std::string username_; |
| std::string password_; |
| bool role_conflict_; |
| int ports_destroyed_; |
| }; |
| |
| void PortTest::TestConnectivity(const char* name1, |
| std::unique_ptr<Port> port1, |
| const char* name2, |
| std::unique_ptr<Port> port2, |
| bool accept, |
| bool same_addr1, |
| bool same_addr2, |
| bool possible) { |
| rtc::ScopedFakeClock clock; |
| RTC_LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": "; |
| port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); |
| port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); |
| |
| // Set up channels and ensure both ports will be deleted. |
| TestChannel ch1(std::move(port1)); |
| TestChannel ch2(std::move(port2)); |
| EXPECT_EQ(0, ch1.complete_count()); |
| EXPECT_EQ(0, ch2.complete_count()); |
| |
| // Acquire addresses. |
| ch1.Start(); |
| ch2.Start(); |
| ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock); |
| ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock); |
| |
| // Send a ping from src to dst. This may or may not make it. |
| ch1.CreateConnection(GetCandidate(ch2.port())); |
| ASSERT_TRUE(ch1.conn() != NULL); |
| EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout, |
| clock); // for TCP connect |
| ch1.Ping(); |
| SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock); |
| |
| if (accept) { |
| // We are able to send a ping from src to dst. This is the case when |
| // sending to UDP ports and cone NATs. |
| EXPECT_TRUE(ch1.remote_address().IsNil()); |
| EXPECT_EQ(ch2.remote_fragment(), ch1.port()->username_fragment()); |
| |
| // Ensure the ping came from the same address used for src. |
| // This is the case unless the source NAT was symmetric. |
| if (same_addr1) |
| EXPECT_EQ(ch2.remote_address(), GetAddress(ch1.port())); |
| EXPECT_TRUE(same_addr2); |
| |
| // Send a ping from dst to src. |
| ch2.AcceptConnection(GetCandidate(ch1.port())); |
| ASSERT_TRUE(ch2.conn() != NULL); |
| ch2.Ping(); |
| EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, |
| ch2.conn()->write_state(), kDefaultTimeout, clock); |
| } else { |
| // We can't send a ping from src to dst, so flip it around. This will happen |
| // when the destination NAT is addr/port restricted or symmetric. |
| EXPECT_TRUE(ch1.remote_address().IsNil()); |
| EXPECT_TRUE(ch2.remote_address().IsNil()); |
| |
| // Send a ping from dst to src. Again, this may or may not make it. |
| ch2.CreateConnection(GetCandidate(ch1.port())); |
| ASSERT_TRUE(ch2.conn() != NULL); |
| ch2.Ping(); |
| SIMULATED_WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, |
| kShortTimeout, clock); |
| |
| if (same_addr1 && same_addr2) { |
| // The new ping got back to the source. |
| EXPECT_TRUE(ch1.conn()->receiving()); |
| EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state()); |
| |
| // First connection may not be writable if the first ping did not get |
| // through. So we will have to do another. |
| if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) { |
| ch1.Ping(); |
| EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, |
| ch1.conn()->write_state(), kDefaultTimeout, |
| clock); |
| } |
| } else if (!same_addr1 && possible) { |
| // The new ping went to the candidate address, but that address was bad. |
| // This will happen when the source NAT is symmetric. |
| EXPECT_TRUE(ch1.remote_address().IsNil()); |
| EXPECT_TRUE(ch2.remote_address().IsNil()); |
| |
| // However, since we have now sent a ping to the source IP, we should be |
| // able to get a ping from it. This gives us the real source address. |
| ch1.Ping(); |
| EXPECT_TRUE_SIMULATED_WAIT(!ch2.remote_address().IsNil(), kDefaultTimeout, |
| clock); |
| EXPECT_FALSE(ch2.conn()->receiving()); |
| EXPECT_TRUE(ch1.remote_address().IsNil()); |
| |
| // Pick up the actual address and establish the connection. |
| ch2.AcceptConnection(GetCandidate(ch1.port())); |
| ASSERT_TRUE(ch2.conn() != NULL); |
| ch2.Ping(); |
| EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, |
| ch2.conn()->write_state(), kDefaultTimeout, |
| clock); |
| } else if (!same_addr2 && possible) { |
| // The new ping came in, but from an unexpected address. This will happen |
| // when the destination NAT is symmetric. |
| EXPECT_FALSE(ch1.remote_address().IsNil()); |
| EXPECT_FALSE(ch1.conn()->receiving()); |
| |
| // Update our address and complete the connection. |
| ch1.AcceptConnection(GetCandidate(ch2.port())); |
| ch1.Ping(); |
| EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, |
| ch1.conn()->write_state(), kDefaultTimeout, |
| clock); |
| } else { // (!possible) |
| // There should be s no way for the pings to reach each other. Check it. |
| EXPECT_TRUE(ch1.remote_address().IsNil()); |
| EXPECT_TRUE(ch2.remote_address().IsNil()); |
| ch1.Ping(); |
| SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock); |
| EXPECT_TRUE(ch1.remote_address().IsNil()); |
| EXPECT_TRUE(ch2.remote_address().IsNil()); |
| } |
| } |
| |
| // Everything should be good, unless we know the situation is impossible. |
| ASSERT_TRUE(ch1.conn() != NULL); |
| ASSERT_TRUE(ch2.conn() != NULL); |
| if (possible) { |
| EXPECT_TRUE(ch1.conn()->receiving()); |
| EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state()); |
| EXPECT_TRUE(ch2.conn()->receiving()); |
| EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state()); |
| } else { |
| EXPECT_FALSE(ch1.conn()->receiving()); |
| EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state()); |
| EXPECT_FALSE(ch2.conn()->receiving()); |
| EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state()); |
| } |
| |
| // Tear down and ensure that goes smoothly. |
| ch1.Stop(); |
| ch2.Stop(); |
| EXPECT_TRUE_SIMULATED_WAIT(ch1.conn() == NULL, kDefaultTimeout, clock); |
| EXPECT_TRUE_SIMULATED_WAIT(ch2.conn() == NULL, kDefaultTimeout, clock); |
| } |
| |
| class FakePacketSocketFactory : public rtc::PacketSocketFactory { |
| public: |
| FakePacketSocketFactory() |
| : next_udp_socket_(NULL), |
| next_server_tcp_socket_(NULL), |
| next_client_tcp_socket_(NULL) {} |
| ~FakePacketSocketFactory() override {} |
| |
| AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address, |
| uint16_t min_port, |
| uint16_t max_port) override { |
| EXPECT_TRUE(next_udp_socket_ != NULL); |
| AsyncPacketSocket* result = next_udp_socket_; |
| next_udp_socket_ = NULL; |
| return result; |
| } |
| |
| AsyncPacketSocket* CreateServerTcpSocket(const SocketAddress& local_address, |
| uint16_t min_port, |
| uint16_t max_port, |
| int opts) override { |
| EXPECT_TRUE(next_server_tcp_socket_ != NULL); |
| AsyncPacketSocket* result = next_server_tcp_socket_; |
| next_server_tcp_socket_ = NULL; |
| return result; |
| } |
| |
| // TODO(?): |proxy_info| and |user_agent| should be set |
| // per-factory and not when socket is created. |
| AsyncPacketSocket* CreateClientTcpSocket(const SocketAddress& local_address, |
| const SocketAddress& remote_address, |
| const rtc::ProxyInfo& proxy_info, |
| const std::string& user_agent, |
| int opts) override { |
| EXPECT_TRUE(next_client_tcp_socket_ != NULL); |
| AsyncPacketSocket* result = next_client_tcp_socket_; |
| next_client_tcp_socket_ = NULL; |
| return result; |
| } |
| |
| void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) { |
| next_udp_socket_ = next_udp_socket; |
| } |
| void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) { |
| next_server_tcp_socket_ = next_server_tcp_socket; |
| } |
| void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) { |
| next_client_tcp_socket_ = next_client_tcp_socket; |
| } |
| rtc::AsyncResolverInterface* CreateAsyncResolver() override { return NULL; } |
| |
| private: |
| AsyncPacketSocket* next_udp_socket_; |
| AsyncPacketSocket* next_server_tcp_socket_; |
| AsyncPacketSocket* next_client_tcp_socket_; |
| }; |
| |
| class FakeAsyncPacketSocket : public AsyncPacketSocket { |
| public: |
| // Returns current local address. Address may be set to NULL if the |
| // socket is not bound yet (GetState() returns STATE_BINDING). |
| virtual SocketAddress GetLocalAddress() const { return SocketAddress(); } |
| |
| // Returns remote address. Returns zeroes if this is not a client TCP socket. |
| virtual SocketAddress GetRemoteAddress() const { return SocketAddress(); } |
| |
| // Send a packet. |
| virtual int Send(const void* pv, |
| size_t cb, |
| const rtc::PacketOptions& options) { |
| return static_cast<int>(cb); |
| } |
| virtual int SendTo(const void* pv, |
| size_t cb, |
| const SocketAddress& addr, |
| const rtc::PacketOptions& options) { |
| return static_cast<int>(cb); |
| } |
| virtual int Close() { return 0; } |
| |
| virtual State GetState() const { return state_; } |
| virtual int GetOption(Socket::Option opt, int* value) { return 0; } |
| virtual int SetOption(Socket::Option opt, int value) { return 0; } |
| virtual int GetError() const { return 0; } |
| virtual void SetError(int error) {} |
| |
| void set_state(State state) { state_ = state; } |
| |
| private: |
| State state_; |
| }; |
| |
| // Local -> XXXX |
| TEST_F(PortTest, TestLocalToLocal) { |
| TestLocalToLocal(); |
| } |
| |
| TEST_F(PortTest, TestLocalToConeNat) { |
| TestLocalToStun(NAT_OPEN_CONE); |
| } |
| |
| TEST_F(PortTest, TestLocalToARNat) { |
| TestLocalToStun(NAT_ADDR_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestLocalToPRNat) { |
| TestLocalToStun(NAT_PORT_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestLocalToSymNat) { |
| TestLocalToStun(NAT_SYMMETRIC); |
| } |
| |
| // Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316. |
| TEST_F(PortTest, DISABLED_TestLocalToTurn) { |
| TestLocalToRelay(RELAY_TURN, PROTO_UDP); |
| } |
| |
| TEST_F(PortTest, TestLocalToGturn) { |
| TestLocalToRelay(RELAY_GTURN, PROTO_UDP); |
| } |
| |
| TEST_F(PortTest, TestLocalToTcpGturn) { |
| TestLocalToRelay(RELAY_GTURN, PROTO_TCP); |
| } |
| |
| TEST_F(PortTest, TestLocalToSslTcpGturn) { |
| TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP); |
| } |
| |
| // Cone NAT -> XXXX |
| TEST_F(PortTest, TestConeNatToLocal) { |
| TestStunToLocal(NAT_OPEN_CONE); |
| } |
| |
| TEST_F(PortTest, TestConeNatToConeNat) { |
| TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE); |
| } |
| |
| TEST_F(PortTest, TestConeNatToARNat) { |
| TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestConeNatToPRNat) { |
| TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestConeNatToSymNat) { |
| TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC); |
| } |
| |
| TEST_F(PortTest, TestConeNatToTurn) { |
| TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP); |
| } |
| |
| TEST_F(PortTest, TestConeNatToGturn) { |
| TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP); |
| } |
| |
| TEST_F(PortTest, TestConeNatToTcpGturn) { |
| TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP); |
| } |
| |
| // Address-restricted NAT -> XXXX |
| TEST_F(PortTest, TestARNatToLocal) { |
| TestStunToLocal(NAT_ADDR_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestARNatToConeNat) { |
| TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE); |
| } |
| |
| TEST_F(PortTest, TestARNatToARNat) { |
| TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestARNatToPRNat) { |
| TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestARNatToSymNat) { |
| TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC); |
| } |
| |
| TEST_F(PortTest, TestARNatToTurn) { |
| TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP); |
| } |
| |
| TEST_F(PortTest, TestARNatToGturn) { |
| TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP); |
| } |
| |
| TEST_F(PortTest, TestARNATNatToTcpGturn) { |
| TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP); |
| } |
| |
| // Port-restricted NAT -> XXXX |
| TEST_F(PortTest, TestPRNatToLocal) { |
| TestStunToLocal(NAT_PORT_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestPRNatToConeNat) { |
| TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE); |
| } |
| |
| TEST_F(PortTest, TestPRNatToARNat) { |
| TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestPRNatToPRNat) { |
| TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestPRNatToSymNat) { |
| // Will "fail" |
| TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC); |
| } |
| |
| TEST_F(PortTest, TestPRNatToTurn) { |
| TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP); |
| } |
| |
| TEST_F(PortTest, TestPRNatToGturn) { |
| TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP); |
| } |
| |
| TEST_F(PortTest, TestPRNatToTcpGturn) { |
| TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP); |
| } |
| |
| // Symmetric NAT -> XXXX |
| TEST_F(PortTest, TestSymNatToLocal) { |
| TestStunToLocal(NAT_SYMMETRIC); |
| } |
| |
| TEST_F(PortTest, TestSymNatToConeNat) { |
| TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE); |
| } |
| |
| TEST_F(PortTest, TestSymNatToARNat) { |
| TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestSymNatToPRNat) { |
| // Will "fail" |
| TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED); |
| } |
| |
| TEST_F(PortTest, TestSymNatToSymNat) { |
| // Will "fail" |
| TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC); |
| } |
| |
| TEST_F(PortTest, TestSymNatToTurn) { |
| TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP); |
| } |
| |
| TEST_F(PortTest, TestSymNatToGturn) { |
| TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP); |
| } |
| |
| TEST_F(PortTest, TestSymNatToTcpGturn) { |
| TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP); |
| } |
| |
| // Outbound TCP -> XXXX |
| TEST_F(PortTest, TestTcpToTcp) { |
| TestTcpToTcp(); |
| } |
| |
| TEST_F(PortTest, TestTcpReconnectOnSendPacket) { |
| TestTcpReconnect(false /* ping */, true /* send */); |
| } |
| |
| TEST_F(PortTest, TestTcpReconnectOnPing) { |
| TestTcpReconnect(true /* ping */, false /* send */); |
| } |
| |
| TEST_F(PortTest, TestTcpReconnectTimeout) { |
| TestTcpReconnect(false /* ping */, false /* send */); |
| } |
| |
| // Test when TcpConnection never connects, the OnClose() will be called to |
| // destroy the connection. |
| TEST_F(PortTest, TestTcpNeverConnect) { |
| auto port1 = CreateTcpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); |
| |
| // Set up a channel and ensure the port will be deleted. |
| TestChannel ch1(std::move(port1)); |
| EXPECT_EQ(0, ch1.complete_count()); |
| |
| ch1.Start(); |
| ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); |
| |
| std::unique_ptr<rtc::AsyncSocket> server( |
| vss()->CreateAsyncSocket(kLocalAddr2.family(), SOCK_STREAM)); |
| // Bind but not listen. |
| EXPECT_EQ(0, server->Bind(kLocalAddr2)); |
| |
| Candidate c = GetCandidate(ch1.port()); |
| c.set_address(server->GetLocalAddress()); |
| |
| ch1.CreateConnection(c); |
| EXPECT_TRUE(ch1.conn()); |
| EXPECT_TRUE_WAIT(!ch1.conn(), kDefaultTimeout); // for TCP connect |
| } |
| |
| /* TODO(?): Enable these once testrelayserver can accept external TCP. |
| TEST_F(PortTest, TestTcpToTcpRelay) { |
| TestTcpToRelay(PROTO_TCP); |
| } |
| |
| TEST_F(PortTest, TestTcpToSslTcpRelay) { |
| TestTcpToRelay(PROTO_SSLTCP); |
| } |
| */ |
| |
| // Outbound SSLTCP -> XXXX |
| /* TODO(?): Enable these once testrelayserver can accept external SSL. |
| TEST_F(PortTest, TestSslTcpToTcpRelay) { |
| TestSslTcpToRelay(PROTO_TCP); |
| } |
| |
| TEST_F(PortTest, TestSslTcpToSslTcpRelay) { |
| TestSslTcpToRelay(PROTO_SSLTCP); |
| } |
| */ |
| |
| // Test that a connection will be dead and deleted if |
| // i) it has never received anything for MIN_CONNECTION_LIFETIME milliseconds |
| // since it was created, or |
| // ii) it has not received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT |
| // milliseconds since last receiving. |
| TEST_F(PortTest, TestConnectionDead) { |
| TestChannel ch1(CreateUdpPort(kLocalAddr1)); |
| TestChannel ch2(CreateUdpPort(kLocalAddr2)); |
| // Acquire address. |
| ch1.Start(); |
| ch2.Start(); |
| ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); |
| ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout); |
| |
| // Test case that the connection has never received anything. |
| int64_t before_created = rtc::TimeMillis(); |
| ch1.CreateConnection(GetCandidate(ch2.port())); |
| int64_t after_created = rtc::TimeMillis(); |
| Connection* conn = ch1.conn(); |
| ASSERT_NE(conn, nullptr); |
| // It is not dead if it is after MIN_CONNECTION_LIFETIME but not pruned. |
| conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1); |
| rtc::Thread::Current()->ProcessMessages(0); |
| EXPECT_TRUE(ch1.conn() != nullptr); |
| // It is not dead if it is before MIN_CONNECTION_LIFETIME and pruned. |
| conn->UpdateState(before_created + MIN_CONNECTION_LIFETIME - 1); |
| conn->Prune(); |
| rtc::Thread::Current()->ProcessMessages(0); |
| EXPECT_TRUE(ch1.conn() != nullptr); |
| // It will be dead after MIN_CONNECTION_LIFETIME and pruned. |
| conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1); |
| EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout); |
| |
| // Test case that the connection has received something. |
| // Create a connection again and receive a ping. |
| ch1.CreateConnection(GetCandidate(ch2.port())); |
| conn = ch1.conn(); |
| ASSERT_NE(conn, nullptr); |
| int64_t before_last_receiving = rtc::TimeMillis(); |
| conn->ReceivedPing(); |
| int64_t after_last_receiving = rtc::TimeMillis(); |
| // The connection will be dead after DEAD_CONNECTION_RECEIVE_TIMEOUT |
| conn->UpdateState(before_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT - |
| 1); |
| rtc::Thread::Current()->ProcessMessages(100); |
| EXPECT_TRUE(ch1.conn() != nullptr); |
| conn->UpdateState(after_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1); |
| EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout); |
| } |
| |
| // This test case verifies standard ICE features in STUN messages. Currently it |
| // verifies Message Integrity attribute in STUN messages and username in STUN |
| // binding request will have colon (":") between remote and local username. |
| TEST_F(PortTest, TestLocalToLocalStandard) { |
| auto port1 = CreateUdpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| port1->SetIceTiebreaker(kTiebreaker1); |
| auto port2 = CreateUdpPort(kLocalAddr2); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| port2->SetIceTiebreaker(kTiebreaker2); |
| // Same parameters as TestLocalToLocal above. |
| TestConnectivity("udp", std::move(port1), "udp", std::move(port2), true, true, |
| true, true); |
| } |
| |
| // This test is trying to validate a successful and failure scenario in a |
| // loopback test when protocol is RFC5245. For success IceTiebreaker, username |
| // should remain equal to the request generated by the port and role of port |
| // must be in controlling. |
| TEST_F(PortTest, TestLoopbackCall) { |
| auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| lport->SetIceTiebreaker(kTiebreaker1); |
| lport->PrepareAddress(); |
| ASSERT_FALSE(lport->Candidates().empty()); |
| Connection* conn = |
| lport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| conn->Ping(0); |
| |
| ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); |
| IceMessage* msg = lport->last_stun_msg(); |
| EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); |
| conn->OnReadPacket(lport->last_stun_buf()->data<char>(), |
| lport->last_stun_buf()->size(), rtc::PacketTime()); |
| ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); |
| msg = lport->last_stun_msg(); |
| EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type()); |
| |
| // If the tiebreaker value is different from port, we expect a error |
| // response. |
| lport->Reset(); |
| lport->AddCandidateAddress(kLocalAddr2); |
| // Creating a different connection as |conn| is receiving. |
| Connection* conn1 = |
| lport->CreateConnection(lport->Candidates()[1], Port::ORIGIN_MESSAGE); |
| conn1->Ping(0); |
| |
| ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); |
| msg = lport->last_stun_msg(); |
| EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); |
| std::unique_ptr<IceMessage> modified_req( |
| CreateStunMessage(STUN_BINDING_REQUEST)); |
| const StunByteStringAttribute* username_attr = |
| msg->GetByteString(STUN_ATTR_USERNAME); |
| modified_req->AddAttribute(absl::make_unique<StunByteStringAttribute>( |
| STUN_ATTR_USERNAME, username_attr->GetString())); |
| // To make sure we receive error response, adding tiebreaker less than |
| // what's present in request. |
| modified_req->AddAttribute(absl::make_unique<StunUInt64Attribute>( |
| STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1)); |
| modified_req->AddMessageIntegrity("lpass"); |
| modified_req->AddFingerprint(); |
| |
| lport->Reset(); |
| auto buf = absl::make_unique<ByteBufferWriter>(); |
| WriteStunMessage(*modified_req, buf.get()); |
| conn1->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime()); |
| ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); |
| msg = lport->last_stun_msg(); |
| EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type()); |
| } |
| |
| // This test verifies role conflict signal is received when there is |
| // conflict in the role. In this case both ports are in controlling and |
| // |rport| has higher tiebreaker value than |lport|. Since |lport| has lower |
| // value of tiebreaker, when it receives ping request from |rport| it will |
| // send role conflict signal. |
| TEST_F(PortTest, TestIceRoleConflict) { |
| auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| lport->SetIceTiebreaker(kTiebreaker1); |
| auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| rport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| rport->SetIceTiebreaker(kTiebreaker2); |
| |
| lport->PrepareAddress(); |
| rport->PrepareAddress(); |
| ASSERT_FALSE(lport->Candidates().empty()); |
| ASSERT_FALSE(rport->Candidates().empty()); |
| Connection* lconn = |
| lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| Connection* rconn = |
| rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| rconn->Ping(0); |
| |
| ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); |
| IceMessage* msg = rport->last_stun_msg(); |
| EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); |
| // Send rport binding request to lport. |
| lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), |
| rport->last_stun_buf()->size(), rtc::PacketTime()); |
| |
| ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); |
| EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type()); |
| EXPECT_TRUE(role_conflict()); |
| } |
| |
| TEST_F(PortTest, TestTcpNoDelay) { |
| auto port1 = CreateTcpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| int option_value = -1; |
| int success = port1->GetOption(rtc::Socket::OPT_NODELAY, &option_value); |
| ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0 |
| ASSERT_EQ(1, option_value); |
| } |
| |
| TEST_F(PortTest, TestDelayedBindingUdp) { |
| FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket(); |
| FakePacketSocketFactory socket_factory; |
| |
| socket_factory.set_next_udp_socket(socket); |
| auto port = CreateUdpPort(kLocalAddr1, &socket_factory); |
| |
| socket->set_state(AsyncPacketSocket::STATE_BINDING); |
| port->PrepareAddress(); |
| |
| EXPECT_EQ(0U, port->Candidates().size()); |
| socket->SignalAddressReady(socket, kLocalAddr2); |
| |
| EXPECT_EQ(1U, port->Candidates().size()); |
| } |
| |
| TEST_F(PortTest, TestDelayedBindingTcp) { |
| FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket(); |
| FakePacketSocketFactory socket_factory; |
| |
| socket_factory.set_next_server_tcp_socket(socket); |
| auto port = CreateTcpPort(kLocalAddr1, &socket_factory); |
| |
| socket->set_state(AsyncPacketSocket::STATE_BINDING); |
| port->PrepareAddress(); |
| |
| EXPECT_EQ(0U, port->Candidates().size()); |
| socket->SignalAddressReady(socket, kLocalAddr2); |
| |
| EXPECT_EQ(1U, port->Candidates().size()); |
| } |
| |
| void PortTest::TestCrossFamilyPorts(int type) { |
| FakePacketSocketFactory factory; |
| std::unique_ptr<Port> ports[4]; |
| SocketAddress addresses[4] = { |
| SocketAddress("192.168.1.3", 0), SocketAddress("192.168.1.4", 0), |
| SocketAddress("2001:db8::1", 0), SocketAddress("2001:db8::2", 0)}; |
| for (int i = 0; i < 4; i++) { |
| FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket(); |
| if (type == SOCK_DGRAM) { |
| factory.set_next_udp_socket(socket); |
| ports[i] = CreateUdpPort(addresses[i], &factory); |
| } else if (type == SOCK_STREAM) { |
| factory.set_next_server_tcp_socket(socket); |
| ports[i] = CreateTcpPort(addresses[i], &factory); |
| } |
| socket->set_state(AsyncPacketSocket::STATE_BINDING); |
| socket->SignalAddressReady(socket, addresses[i]); |
| ports[i]->PrepareAddress(); |
| } |
| |
| // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate. |
| if (type == SOCK_STREAM) { |
| FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket(); |
| factory.set_next_client_tcp_socket(clientsocket); |
| } |
| Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()), |
| Port::ORIGIN_MESSAGE); |
| EXPECT_TRUE(NULL == c); |
| EXPECT_EQ(0U, ports[0]->connections().size()); |
| c = ports[0]->CreateConnection(GetCandidate(ports[1].get()), |
| Port::ORIGIN_MESSAGE); |
| EXPECT_FALSE(NULL == c); |
| EXPECT_EQ(1U, ports[0]->connections().size()); |
| |
| // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate. |
| if (type == SOCK_STREAM) { |
| FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket(); |
| factory.set_next_client_tcp_socket(clientsocket); |
| } |
| c = ports[2]->CreateConnection(GetCandidate(ports[0].get()), |
| Port::ORIGIN_MESSAGE); |
| EXPECT_TRUE(NULL == c); |
| EXPECT_EQ(0U, ports[2]->connections().size()); |
| c = ports[2]->CreateConnection(GetCandidate(ports[3].get()), |
| Port::ORIGIN_MESSAGE); |
| EXPECT_FALSE(NULL == c); |
| EXPECT_EQ(1U, ports[2]->connections().size()); |
| } |
| |
| TEST_F(PortTest, TestSkipCrossFamilyTcp) { |
| TestCrossFamilyPorts(SOCK_STREAM); |
| } |
| |
| TEST_F(PortTest, TestSkipCrossFamilyUdp) { |
| TestCrossFamilyPorts(SOCK_DGRAM); |
| } |
| |
| void PortTest::ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2) { |
| Connection* c = p1->CreateConnection(GetCandidate(p2), Port::ORIGIN_MESSAGE); |
| if (can_connect) { |
| EXPECT_FALSE(NULL == c); |
| EXPECT_EQ(1U, p1->connections().size()); |
| } else { |
| EXPECT_TRUE(NULL == c); |
| EXPECT_EQ(0U, p1->connections().size()); |
| } |
| } |
| |
| TEST_F(PortTest, TestUdpV6CrossTypePorts) { |
| FakePacketSocketFactory factory; |
| std::unique_ptr<Port> ports[4]; |
| SocketAddress addresses[4] = { |
| SocketAddress("2001:db8::1", 0), SocketAddress("fe80::1", 0), |
| SocketAddress("fe80::2", 0), SocketAddress("::1", 0)}; |
| for (int i = 0; i < 4; i++) { |
| FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket(); |
| factory.set_next_udp_socket(socket); |
| ports[i] = CreateUdpPort(addresses[i], &factory); |
| socket->set_state(AsyncPacketSocket::STATE_BINDING); |
| socket->SignalAddressReady(socket, addresses[i]); |
| ports[i]->PrepareAddress(); |
| } |
| |
| Port* standard = ports[0].get(); |
| Port* link_local1 = ports[1].get(); |
| Port* link_local2 = ports[2].get(); |
| Port* localhost = ports[3].get(); |
| |
| ExpectPortsCanConnect(false, link_local1, standard); |
| ExpectPortsCanConnect(false, standard, link_local1); |
| ExpectPortsCanConnect(false, link_local1, localhost); |
| ExpectPortsCanConnect(false, localhost, link_local1); |
| |
| ExpectPortsCanConnect(true, link_local1, link_local2); |
| ExpectPortsCanConnect(true, localhost, standard); |
| ExpectPortsCanConnect(true, standard, localhost); |
| } |
| |
| // This test verifies DSCP value set through SetOption interface can be |
| // get through DefaultDscpValue. |
| TEST_F(PortTest, TestDefaultDscpValue) { |
| int dscp; |
| auto udpport = CreateUdpPort(kLocalAddr1); |
| EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6)); |
| EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); |
| auto tcpport = CreateTcpPort(kLocalAddr1); |
| EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF31)); |
| EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); |
| EXPECT_EQ(rtc::DSCP_AF31, dscp); |
| auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1()); |
| EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF41)); |
| EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); |
| EXPECT_EQ(rtc::DSCP_AF41, dscp); |
| auto turnport1 = |
| CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); |
| // Socket is created in PrepareAddress. |
| turnport1->PrepareAddress(); |
| EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS7)); |
| EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp)); |
| EXPECT_EQ(rtc::DSCP_CS7, dscp); |
| // This will verify correct value returned without the socket. |
| auto turnport2 = |
| CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); |
| EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6)); |
| EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp)); |
| EXPECT_EQ(rtc::DSCP_CS6, dscp); |
| } |
| |
| // Test sending STUN messages. |
| TEST_F(PortTest, TestSendStunMessage) { |
| auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); |
| auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| lport->SetIceTiebreaker(kTiebreaker1); |
| rport->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| rport->SetIceTiebreaker(kTiebreaker2); |
| |
| // Send a fake ping from lport to rport. |
| lport->PrepareAddress(); |
| rport->PrepareAddress(); |
| ASSERT_FALSE(rport->Candidates().empty()); |
| Connection* lconn = |
| lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| Connection* rconn = |
| rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| lconn->Ping(0); |
| |
| // Check that it's a proper BINDING-REQUEST. |
| ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); |
| IceMessage* msg = lport->last_stun_msg(); |
| EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); |
| EXPECT_FALSE(msg->IsLegacy()); |
| const StunByteStringAttribute* username_attr = |
| msg->GetByteString(STUN_ATTR_USERNAME); |
| ASSERT_TRUE(username_attr != NULL); |
| const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY); |
| ASSERT_TRUE(priority_attr != NULL); |
| EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value()); |
| EXPECT_EQ("rfrag:lfrag", username_attr->GetString()); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); |
| EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( |
| lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size(), |
| "rpass")); |
| const StunUInt64Attribute* ice_controlling_attr = |
| msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); |
| ASSERT_TRUE(ice_controlling_attr != NULL); |
| EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value()); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL); |
| EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); |
| EXPECT_TRUE(StunMessage::ValidateFingerprint( |
| lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size())); |
| |
| // Request should not include ping count. |
| ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL); |
| |
| // Save a copy of the BINDING-REQUEST for use below. |
| std::unique_ptr<IceMessage> request = CopyStunMessage(*msg); |
| |
| // Receive the BINDING-REQUEST and respond with BINDING-RESPONSE. |
| rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), |
| lport->last_stun_buf()->size(), rtc::PacketTime()); |
| msg = rport->last_stun_msg(); |
| ASSERT_TRUE(msg != NULL); |
| EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type()); |
| // Received a BINDING-RESPONSE. |
| lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), |
| rport->last_stun_buf()->size(), rtc::PacketTime()); |
| // Verify the STUN Stats. |
| EXPECT_EQ(1U, lconn->stats().sent_ping_requests_total); |
| EXPECT_EQ(1U, lconn->stats().sent_ping_requests_before_first_response); |
| EXPECT_EQ(1U, lconn->stats().recv_ping_responses); |
| EXPECT_EQ(1U, rconn->stats().recv_ping_requests); |
| EXPECT_EQ(1U, rconn->stats().sent_ping_responses); |
| |
| EXPECT_FALSE(msg->IsLegacy()); |
| const StunAddressAttribute* addr_attr = |
| msg->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| ASSERT_TRUE(addr_attr != NULL); |
| EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress()); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); |
| EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( |
| rport->last_stun_buf()->data<char>(), rport->last_stun_buf()->size(), |
| "rpass")); |
| EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); |
| EXPECT_TRUE(StunMessage::ValidateFingerprint( |
| lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size())); |
| // No USERNAME or PRIORITY in ICE responses. |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); |
| |
| // Response should not include ping count. |
| ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL); |
| |
| // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life, |
| // but we can do it here. |
| rport->SendBindingErrorResponse( |
| request.get(), lport->Candidates()[0].address(), STUN_ERROR_SERVER_ERROR, |
| STUN_ERROR_REASON_SERVER_ERROR); |
| msg = rport->last_stun_msg(); |
| ASSERT_TRUE(msg != NULL); |
| EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type()); |
| EXPECT_FALSE(msg->IsLegacy()); |
| const StunErrorCodeAttribute* error_attr = msg->GetErrorCode(); |
| ASSERT_TRUE(error_attr != NULL); |
| EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code()); |
| EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason()); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); |
| EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( |
| rport->last_stun_buf()->data<char>(), rport->last_stun_buf()->size(), |
| "rpass")); |
| EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); |
| EXPECT_TRUE(StunMessage::ValidateFingerprint( |
| lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size())); |
| // No USERNAME with ICE. |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL); |
| |
| // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED |
| // and (incremented) RETRANSMIT_COUNT attributes. |
| rport->Reset(); |
| rport->set_send_retransmit_count_attribute(true); |
| rconn->Ping(0); |
| rconn->Ping(0); |
| rconn->Ping(0); |
| ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); |
| msg = rport->last_stun_msg(); |
| EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); |
| const StunUInt64Attribute* ice_controlled_attr = |
| msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED); |
| ASSERT_TRUE(ice_controlled_attr != NULL); |
| EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value()); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); |
| |
| // Request should include ping count. |
| const StunUInt32Attribute* retransmit_attr = |
| msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); |
| ASSERT_TRUE(retransmit_attr != NULL); |
| EXPECT_EQ(2U, retransmit_attr->value()); |
| |
| // Respond with a BINDING-RESPONSE. |
| request = CopyStunMessage(*msg); |
| lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), |
| rport->last_stun_buf()->size(), rtc::PacketTime()); |
| msg = lport->last_stun_msg(); |
| // Receive the BINDING-RESPONSE. |
| rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), |
| lport->last_stun_buf()->size(), rtc::PacketTime()); |
| |
| // Verify the Stun ping stats. |
| EXPECT_EQ(3U, rconn->stats().sent_ping_requests_total); |
| EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response); |
| EXPECT_EQ(1U, rconn->stats().recv_ping_responses); |
| EXPECT_EQ(1U, lconn->stats().sent_ping_responses); |
| EXPECT_EQ(1U, lconn->stats().recv_ping_requests); |
| // Ping after receiver the first response |
| rconn->Ping(0); |
| rconn->Ping(0); |
| EXPECT_EQ(5U, rconn->stats().sent_ping_requests_total); |
| EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response); |
| |
| // Response should include same ping count. |
| retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); |
| ASSERT_TRUE(retransmit_attr != NULL); |
| EXPECT_EQ(2U, retransmit_attr->value()); |
| } |
| |
| TEST_F(PortTest, TestNomination) { |
| auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); |
| auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| lport->SetIceTiebreaker(kTiebreaker1); |
| rport->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| rport->SetIceTiebreaker(kTiebreaker2); |
| |
| lport->PrepareAddress(); |
| rport->PrepareAddress(); |
| ASSERT_FALSE(lport->Candidates().empty()); |
| ASSERT_FALSE(rport->Candidates().empty()); |
| Connection* lconn = |
| lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| Connection* rconn = |
| rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| |
| // |lconn| is controlling, |rconn| is controlled. |
| uint32_t nomination = 1234; |
| lconn->set_nomination(nomination); |
| |
| EXPECT_FALSE(lconn->nominated()); |
| EXPECT_FALSE(rconn->nominated()); |
| EXPECT_EQ(lconn->nominated(), lconn->stats().nominated); |
| EXPECT_EQ(rconn->nominated(), rconn->stats().nominated); |
| |
| // Send ping (including the nomination value) from |lconn| to |rconn|. This |
| // should set the remote nomination of |rconn|. |
| lconn->Ping(0); |
| ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout); |
| ASSERT_TRUE(lport->last_stun_buf()); |
| rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), |
| lport->last_stun_buf()->size(), rtc::PacketTime()); |
| EXPECT_EQ(nomination, rconn->remote_nomination()); |
| EXPECT_FALSE(lconn->nominated()); |
| EXPECT_TRUE(rconn->nominated()); |
| EXPECT_EQ(lconn->nominated(), lconn->stats().nominated); |
| EXPECT_EQ(rconn->nominated(), rconn->stats().nominated); |
| |
| // This should result in an acknowledgment sent back from |rconn| to |lconn|, |
| // updating the acknowledged nomination of |lconn|. |
| ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout); |
| ASSERT_TRUE(rport->last_stun_buf()); |
| lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), |
| rport->last_stun_buf()->size(), rtc::PacketTime()); |
| EXPECT_EQ(nomination, lconn->acked_nomination()); |
| EXPECT_TRUE(lconn->nominated()); |
| EXPECT_TRUE(rconn->nominated()); |
| EXPECT_EQ(lconn->nominated(), lconn->stats().nominated); |
| EXPECT_EQ(rconn->nominated(), rconn->stats().nominated); |
| } |
| |
| TEST_F(PortTest, TestRoundTripTime) { |
| rtc::ScopedFakeClock clock; |
| |
| auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); |
| auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| lport->SetIceTiebreaker(kTiebreaker1); |
| rport->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| rport->SetIceTiebreaker(kTiebreaker2); |
| |
| lport->PrepareAddress(); |
| rport->PrepareAddress(); |
| ASSERT_FALSE(lport->Candidates().empty()); |
| ASSERT_FALSE(rport->Candidates().empty()); |
| Connection* lconn = |
| lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| Connection* rconn = |
| rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| |
| EXPECT_EQ(0u, lconn->stats().total_round_trip_time_ms); |
| EXPECT_FALSE(lconn->stats().current_round_trip_time_ms); |
| |
| SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock, |
| 10); |
| EXPECT_EQ(10u, lconn->stats().total_round_trip_time_ms); |
| ASSERT_TRUE(lconn->stats().current_round_trip_time_ms); |
| EXPECT_EQ(10u, *lconn->stats().current_round_trip_time_ms); |
| |
| SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock, |
| 20); |
| EXPECT_EQ(30u, lconn->stats().total_round_trip_time_ms); |
| ASSERT_TRUE(lconn->stats().current_round_trip_time_ms); |
| EXPECT_EQ(20u, *lconn->stats().current_round_trip_time_ms); |
| |
| SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock, |
| 30); |
| EXPECT_EQ(60u, lconn->stats().total_round_trip_time_ms); |
| ASSERT_TRUE(lconn->stats().current_round_trip_time_ms); |
| EXPECT_EQ(30u, *lconn->stats().current_round_trip_time_ms); |
| } |
| |
| TEST_F(PortTest, TestUseCandidateAttribute) { |
| auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); |
| auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| lport->SetIceTiebreaker(kTiebreaker1); |
| rport->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| rport->SetIceTiebreaker(kTiebreaker2); |
| |
| // Send a fake ping from lport to rport. |
| lport->PrepareAddress(); |
| rport->PrepareAddress(); |
| ASSERT_FALSE(rport->Candidates().empty()); |
| Connection* lconn = |
| lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| lconn->Ping(0); |
| ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); |
| IceMessage* msg = lport->last_stun_msg(); |
| const StunUInt64Attribute* ice_controlling_attr = |
| msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); |
| ASSERT_TRUE(ice_controlling_attr != NULL); |
| const StunByteStringAttribute* use_candidate_attr = |
| msg->GetByteString(STUN_ATTR_USE_CANDIDATE); |
| ASSERT_TRUE(use_candidate_attr != NULL); |
| } |
| |
| // Tests that when the network type changes, the network cost of the port will |
| // change, the network cost of the local candidates will change. Also tests that |
| // the remote network costs are updated with the stun binding requests. |
| TEST_F(PortTest, TestNetworkCostChange) { |
| rtc::Network* test_network = MakeNetwork(kLocalAddr1); |
| auto lport = CreateTestPort(test_network, "lfrag", "lpass"); |
| auto rport = CreateTestPort(test_network, "rfrag", "rpass"); |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| lport->SetIceTiebreaker(kTiebreaker1); |
| rport->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| rport->SetIceTiebreaker(kTiebreaker2); |
| lport->PrepareAddress(); |
| rport->PrepareAddress(); |
| |
| // Default local port cost is rtc::kNetworkCostUnknown. |
| EXPECT_EQ(rtc::kNetworkCostUnknown, lport->network_cost()); |
| ASSERT_TRUE(!lport->Candidates().empty()); |
| for (const cricket::Candidate& candidate : lport->Candidates()) { |
| EXPECT_EQ(rtc::kNetworkCostUnknown, candidate.network_cost()); |
| } |
| |
| // Change the network type to wifi. |
| test_network->set_type(rtc::ADAPTER_TYPE_WIFI); |
| EXPECT_EQ(rtc::kNetworkCostLow, lport->network_cost()); |
| for (const cricket::Candidate& candidate : lport->Candidates()) { |
| EXPECT_EQ(rtc::kNetworkCostLow, candidate.network_cost()); |
| } |
| |
| // Add a connection and then change the network type. |
| Connection* lconn = |
| lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| // Change the network type to cellular. |
| test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR); |
| EXPECT_EQ(rtc::kNetworkCostHigh, lport->network_cost()); |
| for (const cricket::Candidate& candidate : lport->Candidates()) { |
| EXPECT_EQ(rtc::kNetworkCostHigh, candidate.network_cost()); |
| } |
| |
| test_network->set_type(rtc::ADAPTER_TYPE_WIFI); |
| Connection* rconn = |
| rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR); |
| lconn->Ping(0); |
| // The rconn's remote candidate cost is rtc::kNetworkCostLow, but the ping |
| // contains an attribute of network cost of rtc::kNetworkCostHigh. Once the |
| // message is handled in rconn, The rconn's remote candidate will have cost |
| // rtc::kNetworkCostHigh; |
| EXPECT_EQ(rtc::kNetworkCostLow, rconn->remote_candidate().network_cost()); |
| ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); |
| IceMessage* msg = lport->last_stun_msg(); |
| EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); |
| // Pass the binding request to rport. |
| rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), |
| lport->last_stun_buf()->size(), rtc::PacketTime()); |
| // Wait until rport sends the response and then check the remote network cost. |
| ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); |
| EXPECT_EQ(rtc::kNetworkCostHigh, rconn->remote_candidate().network_cost()); |
| } |
| |
| TEST_F(PortTest, TestNetworkInfoAttribute) { |
| rtc::Network* test_network = MakeNetwork(kLocalAddr1); |
| auto lport = CreateTestPort(test_network, "lfrag", "lpass"); |
| auto rport = CreateTestPort(test_network, "rfrag", "rpass"); |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| lport->SetIceTiebreaker(kTiebreaker1); |
| rport->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| rport->SetIceTiebreaker(kTiebreaker2); |
| |
| uint16_t lnetwork_id = 9; |
| lport->Network()->set_id(lnetwork_id); |
| // Send a fake ping from lport to rport. |
| lport->PrepareAddress(); |
| rport->PrepareAddress(); |
| Connection* lconn = |
| lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| lconn->Ping(0); |
| ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); |
| IceMessage* msg = lport->last_stun_msg(); |
| const StunUInt32Attribute* network_info_attr = |
| msg->GetUInt32(STUN_ATTR_NETWORK_INFO); |
| ASSERT_TRUE(network_info_attr != NULL); |
| uint32_t network_info = network_info_attr->value(); |
| EXPECT_EQ(lnetwork_id, network_info >> 16); |
| // Default network has unknown type and cost kNetworkCostUnknown. |
| EXPECT_EQ(rtc::kNetworkCostUnknown, network_info & 0xFFFF); |
| |
| // Set the network type to be cellular so its cost will be kNetworkCostHigh. |
| // Send a fake ping from rport to lport. |
| test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR); |
| uint16_t rnetwork_id = 8; |
| rport->Network()->set_id(rnetwork_id); |
| Connection* rconn = |
| rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| rconn->Ping(0); |
| ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); |
| msg = rport->last_stun_msg(); |
| network_info_attr = msg->GetUInt32(STUN_ATTR_NETWORK_INFO); |
| ASSERT_TRUE(network_info_attr != NULL); |
| network_info = network_info_attr->value(); |
| EXPECT_EQ(rnetwork_id, network_info >> 16); |
| EXPECT_EQ(rtc::kNetworkCostHigh, network_info & 0xFFFF); |
| } |
| |
| // Test handling STUN messages. |
| TEST_F(PortTest, TestHandleStunMessage) { |
| // Our port will act as the "remote" port. |
| auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| |
| std::unique_ptr<IceMessage> in_msg, out_msg; |
| auto buf = absl::make_unique<ByteBufferWriter>(); |
| rtc::SocketAddress addr(kLocalAddr1); |
| std::string username; |
| |
| // BINDING-REQUEST from local to remote with valid ICE username, |
| // MESSAGE-INTEGRITY, and FINGERPRINT. |
| in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"); |
| in_msg->AddMessageIntegrity("rpass"); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() != NULL); |
| EXPECT_EQ("lfrag", username); |
| |
| // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT. |
| in_msg = CreateStunMessage(STUN_BINDING_RESPONSE); |
| in_msg->AddAttribute(absl::make_unique<StunXorAddressAttribute>( |
| STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2)); |
| in_msg->AddMessageIntegrity("rpass"); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() != NULL); |
| EXPECT_EQ("", username); |
| |
| // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT. |
| in_msg = CreateStunMessage(STUN_BINDING_ERROR_RESPONSE); |
| in_msg->AddAttribute(absl::make_unique<StunErrorCodeAttribute>( |
| STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR, |
| STUN_ERROR_REASON_SERVER_ERROR)); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() != NULL); |
| EXPECT_EQ("", username); |
| ASSERT_TRUE(out_msg->GetErrorCode() != NULL); |
| EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code()); |
| EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), |
| out_msg->GetErrorCode()->reason()); |
| } |
| |
| // Tests handling of ICE binding requests with missing or incorrect usernames. |
| TEST_F(PortTest, TestHandleStunMessageBadUsername) { |
| auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| |
| std::unique_ptr<IceMessage> in_msg, out_msg; |
| auto buf = absl::make_unique<ByteBufferWriter>(); |
| rtc::SocketAddress addr(kLocalAddr1); |
| std::string username; |
| |
| // BINDING-REQUEST with no username. |
| in_msg = CreateStunMessage(STUN_BINDING_REQUEST); |
| in_msg->AddMessageIntegrity("rpass"); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() == NULL); |
| EXPECT_EQ("", username); |
| EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code()); |
| |
| // BINDING-REQUEST with empty username. |
| in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""); |
| in_msg->AddMessageIntegrity("rpass"); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() == NULL); |
| EXPECT_EQ("", username); |
| EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); |
| |
| // BINDING-REQUEST with too-short username. |
| in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"); |
| in_msg->AddMessageIntegrity("rpass"); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() == NULL); |
| EXPECT_EQ("", username); |
| EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); |
| |
| // BINDING-REQUEST with reversed username. |
| in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfrag:rfrag"); |
| in_msg->AddMessageIntegrity("rpass"); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() == NULL); |
| EXPECT_EQ("", username); |
| EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); |
| |
| // BINDING-REQUEST with garbage username. |
| in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "abcd:efgh"); |
| in_msg->AddMessageIntegrity("rpass"); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() == NULL); |
| EXPECT_EQ("", username); |
| EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); |
| } |
| |
| // Test handling STUN messages with missing or malformed M-I. |
| TEST_F(PortTest, TestHandleStunMessageBadMessageIntegrity) { |
| // Our port will act as the "remote" port. |
| auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| |
| std::unique_ptr<IceMessage> in_msg, out_msg; |
| auto buf = absl::make_unique<ByteBufferWriter>(); |
| rtc::SocketAddress addr(kLocalAddr1); |
| std::string username; |
| |
| // BINDING-REQUEST from local to remote with valid ICE username and |
| // FINGERPRINT, but no MESSAGE-INTEGRITY. |
| in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() == NULL); |
| EXPECT_EQ("", username); |
| EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code()); |
| |
| // BINDING-REQUEST from local to remote with valid ICE username and |
| // FINGERPRINT, but invalid MESSAGE-INTEGRITY. |
| in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"); |
| in_msg->AddMessageIntegrity("invalid"); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() == NULL); |
| EXPECT_EQ("", username); |
| EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); |
| |
| // TODO(?): BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked |
| // by the Connection, not the Port, since they require the remote username. |
| // Change this test to pass in data via Connection::OnReadPacket instead. |
| } |
| |
| // Test handling STUN messages with missing or malformed FINGERPRINT. |
| TEST_F(PortTest, TestHandleStunMessageBadFingerprint) { |
| // Our port will act as the "remote" port. |
| auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| |
| std::unique_ptr<IceMessage> in_msg, out_msg; |
| auto buf = absl::make_unique<ByteBufferWriter>(); |
| rtc::SocketAddress addr(kLocalAddr1); |
| std::string username; |
| |
| // BINDING-REQUEST from local to remote with valid ICE username and |
| // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail. |
| in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"); |
| in_msg->AddMessageIntegrity("rpass"); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_EQ(0, port->last_stun_error_code()); |
| |
| // Now, add a fingerprint, but munge the message so it's not valid. |
| in_msg->AddFingerprint(); |
| in_msg->SetTransactionID("TESTTESTBADD"); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_EQ(0, port->last_stun_error_code()); |
| |
| // Valid BINDING-RESPONSE, except no FINGERPRINT. |
| in_msg = CreateStunMessage(STUN_BINDING_RESPONSE); |
| in_msg->AddAttribute(absl::make_unique<StunXorAddressAttribute>( |
| STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2)); |
| in_msg->AddMessageIntegrity("rpass"); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_EQ(0, port->last_stun_error_code()); |
| |
| // Now, add a fingerprint, but munge the message so it's not valid. |
| in_msg->AddFingerprint(); |
| in_msg->SetTransactionID("TESTTESTBADD"); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_EQ(0, port->last_stun_error_code()); |
| |
| // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT. |
| in_msg = CreateStunMessage(STUN_BINDING_ERROR_RESPONSE); |
| in_msg->AddAttribute(absl::make_unique<StunErrorCodeAttribute>( |
| STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR, |
| STUN_ERROR_REASON_SERVER_ERROR)); |
| in_msg->AddMessageIntegrity("rpass"); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_EQ(0, port->last_stun_error_code()); |
| |
| // Now, add a fingerprint, but munge the message so it's not valid. |
| in_msg->AddFingerprint(); |
| in_msg->SetTransactionID("TESTTESTBADD"); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_EQ(0, port->last_stun_error_code()); |
| } |
| |
| // Test handling of STUN binding indication messages . STUN binding |
| // indications are allowed only to the connection which is in read mode. |
| TEST_F(PortTest, TestHandleStunBindingIndication) { |
| auto lport = CreateTestPort(kLocalAddr2, "lfrag", "lpass"); |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| lport->SetIceTiebreaker(kTiebreaker1); |
| |
| // Verifying encoding and decoding STUN indication message. |
| std::unique_ptr<IceMessage> in_msg, out_msg; |
| std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter()); |
| rtc::SocketAddress addr(kLocalAddr1); |
| std::string username; |
| |
| in_msg = CreateStunMessage(STUN_BINDING_INDICATION); |
| in_msg->AddFingerprint(); |
| WriteStunMessage(*in_msg, buf.get()); |
| EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, |
| &username)); |
| EXPECT_TRUE(out_msg.get() != NULL); |
| EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION); |
| EXPECT_EQ("", username); |
| |
| // Verify connection can handle STUN indication and updates |
| // last_ping_received. |
| auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| rport->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| rport->SetIceTiebreaker(kTiebreaker2); |
| |
| lport->PrepareAddress(); |
| rport->PrepareAddress(); |
| ASSERT_FALSE(lport->Candidates().empty()); |
| ASSERT_FALSE(rport->Candidates().empty()); |
| |
| Connection* lconn = |
| lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| Connection* rconn = |
| rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| rconn->Ping(0); |
| |
| ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); |
| IceMessage* msg = rport->last_stun_msg(); |
| EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); |
| // Send rport binding request to lport. |
| lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), |
| rport->last_stun_buf()->size(), rtc::PacketTime()); |
| ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); |
| EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type()); |
| int64_t last_ping_received1 = lconn->last_ping_received(); |
| |
| // Adding a delay of 100ms. |
| rtc::Thread::Current()->ProcessMessages(100); |
| // Pinging lconn using stun indication message. |
| lconn->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime()); |
| int64_t last_ping_received2 = lconn->last_ping_received(); |
| EXPECT_GT(last_ping_received2, last_ping_received1); |
| } |
| |
| TEST_F(PortTest, TestComputeCandidatePriority) { |
| auto port = CreateTestPort(kLocalAddr1, "name", "pass"); |
| port->set_type_preference(90); |
| port->set_component(177); |
| port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234)); |
| port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234)); |
| port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234)); |
| port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234)); |
| port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234)); |
| port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234)); |
| port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234)); |
| port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234)); |
| port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234)); |
| // These should all be: |
| // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177) |
| uint32_t expected_priority_v4 = 1509957199U; |
| uint32_t expected_priority_v6 = 1509959759U; |
| uint32_t expected_priority_ula = 1509962319U; |
| uint32_t expected_priority_v4mapped = expected_priority_v4; |
| uint32_t expected_priority_v4compat = 1509949775U; |
| uint32_t expected_priority_6to4 = 1509954639U; |
| uint32_t expected_priority_teredo = 1509952079U; |
| uint32_t expected_priority_sitelocal = 1509949775U; |
| uint32_t expected_priority_6bone = 1509949775U; |
| ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority()); |
| ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority()); |
| ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority()); |
| ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority()); |
| ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority()); |
| ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority()); |
| ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority()); |
| ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority()); |
| ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority()); |
| } |
| |
| // In the case of shared socket, one port may be shared by local and stun. |
| // Test that candidates with different types will have different foundation. |
| TEST_F(PortTest, TestFoundation) { |
| auto testport = CreateTestPort(kLocalAddr1, "name", "pass"); |
| testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1, LOCAL_PORT_TYPE, |
| cricket::ICE_TYPE_PREFERENCE_HOST, false); |
| testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1, STUN_PORT_TYPE, |
| cricket::ICE_TYPE_PREFERENCE_SRFLX, true); |
| EXPECT_NE(testport->Candidates()[0].foundation(), |
| testport->Candidates()[1].foundation()); |
| } |
| |
| // This test verifies the foundation of different types of ICE candidates. |
| TEST_F(PortTest, TestCandidateFoundation) { |
| std::unique_ptr<rtc::NATServer> nat_server( |
| CreateNatServer(kNatAddr1, NAT_OPEN_CONE)); |
| auto udpport1 = CreateUdpPort(kLocalAddr1); |
| udpport1->PrepareAddress(); |
| auto udpport2 = CreateUdpPort(kLocalAddr1); |
| udpport2->PrepareAddress(); |
| EXPECT_EQ(udpport1->Candidates()[0].foundation(), |
| udpport2->Candidates()[0].foundation()); |
| auto tcpport1 = CreateTcpPort(kLocalAddr1); |
| tcpport1->PrepareAddress(); |
| auto tcpport2 = CreateTcpPort(kLocalAddr1); |
| tcpport2->PrepareAddress(); |
| EXPECT_EQ(tcpport1->Candidates()[0].foundation(), |
| tcpport2->Candidates()[0].foundation()); |
| auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1()); |
| stunport->PrepareAddress(); |
| ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kDefaultTimeout); |
| EXPECT_NE(tcpport1->Candidates()[0].foundation(), |
| stunport->Candidates()[0].foundation()); |
| EXPECT_NE(tcpport2->Candidates()[0].foundation(), |
| stunport->Candidates()[0].foundation()); |
| EXPECT_NE(udpport1->Candidates()[0].foundation(), |
| stunport->Candidates()[0].foundation()); |
| EXPECT_NE(udpport2->Candidates()[0].foundation(), |
| stunport->Candidates()[0].foundation()); |
| // Verify GTURN candidate foundation. |
| auto relayport = CreateGturnPort(kLocalAddr1); |
| relayport->AddServerAddress( |
| cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP)); |
| relayport->PrepareAddress(); |
| ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kDefaultTimeout); |
| EXPECT_NE(udpport1->Candidates()[0].foundation(), |
| relayport->Candidates()[0].foundation()); |
| EXPECT_NE(udpport2->Candidates()[0].foundation(), |
| relayport->Candidates()[0].foundation()); |
| // Verifying TURN candidate foundation. |
| auto turnport1 = |
| CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); |
| turnport1->PrepareAddress(); |
| ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kDefaultTimeout); |
| EXPECT_NE(udpport1->Candidates()[0].foundation(), |
| turnport1->Candidates()[0].foundation()); |
| EXPECT_NE(udpport2->Candidates()[0].foundation(), |
| turnport1->Candidates()[0].foundation()); |
| EXPECT_NE(stunport->Candidates()[0].foundation(), |
| turnport1->Candidates()[0].foundation()); |
| auto turnport2 = |
| CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); |
| turnport2->PrepareAddress(); |
| ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kDefaultTimeout); |
| EXPECT_EQ(turnport1->Candidates()[0].foundation(), |
| turnport2->Candidates()[0].foundation()); |
| |
| // Running a second turn server, to get different base IP address. |
| SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT); |
| SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0); |
| TestTurnServer turn_server2(rtc::Thread::Current(), kTurnUdpIntAddr2, |
| kTurnUdpExtAddr2); |
| auto turnport3 = CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, |
| PROTO_UDP, kTurnUdpIntAddr2); |
| turnport3->PrepareAddress(); |
| ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kDefaultTimeout); |
| EXPECT_NE(turnport3->Candidates()[0].foundation(), |
| turnport2->Candidates()[0].foundation()); |
| |
| // Start a TCP turn server, and check that two turn candidates have |
| // different foundations if their relay protocols are different. |
| TestTurnServer turn_server3(rtc::Thread::Current(), kTurnTcpIntAddr, |
| kTurnUdpExtAddr, PROTO_TCP); |
| auto turnport4 = |
| CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_TCP, PROTO_UDP); |
| turnport4->PrepareAddress(); |
| ASSERT_EQ_WAIT(1U, turnport4->Candidates().size(), kDefaultTimeout); |
| EXPECT_NE(turnport2->Candidates()[0].foundation(), |
| turnport4->Candidates()[0].foundation()); |
| } |
| |
| // This test verifies the related addresses of different types of |
| // ICE candiates. |
| TEST_F(PortTest, TestCandidateRelatedAddress) { |
| auto nat_server = CreateNatServer(kNatAddr1, NAT_OPEN_CONE); |
| auto udpport = CreateUdpPort(kLocalAddr1); |
| udpport->PrepareAddress(); |
| // For UDPPort, related address will be empty. |
| EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil()); |
| // Testing related address for stun candidates. |
| // For stun candidate related address must be equal to the base |
| // socket address. |
| auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1()); |
| stunport->PrepareAddress(); |
| ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kDefaultTimeout); |
| // Check STUN candidate address. |
| EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(), kNatAddr1.ipaddr()); |
| // Check STUN candidate related address. |
| EXPECT_EQ(stunport->Candidates()[0].related_address(), |
| stunport->GetLocalAddress()); |
| // Verifying the related address for the GTURN candidates. |
| // NOTE: In case of GTURN related address will be equal to the mapped |
| // address, but address(mapped) will not be XOR. |
| auto relayport = CreateGturnPort(kLocalAddr1); |
| relayport->AddServerAddress( |
| cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP)); |
| relayport->PrepareAddress(); |
| ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kDefaultTimeout); |
| // For Gturn related address is set to "0.0.0.0:0" |
| EXPECT_EQ(rtc::SocketAddress(), relayport->Candidates()[0].related_address()); |
| // Verifying the related address for TURN candidate. |
| // For TURN related address must be equal to the mapped address. |
| auto turnport = |
| CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); |
| turnport->PrepareAddress(); |
| ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kDefaultTimeout); |
| EXPECT_EQ(kTurnUdpExtAddr.ipaddr(), |
| turnport->Candidates()[0].address().ipaddr()); |
| EXPECT_EQ(kNatAddr1.ipaddr(), |
| turnport->Candidates()[0].related_address().ipaddr()); |
| } |
| |
| // Test priority value overflow handling when preference is set to 3. |
| TEST_F(PortTest, TestCandidatePriority) { |
| cricket::Candidate cand1; |
| cand1.set_priority(3); |
| cricket::Candidate cand2; |
| cand2.set_priority(1); |
| EXPECT_TRUE(cand1.priority() > cand2.priority()); |
| } |
| |
| // Test the Connection priority is calculated correctly. |
| TEST_F(PortTest, TestConnectionPriority) { |
| auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); |
| lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST); |
| auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); |
| rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY_UDP); |
| lport->set_component(123); |
| lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234)); |
| rport->set_component(23); |
| rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234)); |
| |
| EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority()); |
| EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority()); |
| |
| // RFC 5245 |
| // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0) |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| rport->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| Connection* lconn = |
| lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| #if defined(WEBRTC_WIN) |
| EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority()); |
| #else |
| EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority()); |
| #endif |
| |
| lport->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| rport->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| Connection* rconn = |
| rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); |
| #if defined(WEBRTC_WIN) |
| EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority()); |
| #else |
| EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority()); |
| #endif |
| } |
| |
| // Note that UpdateState takes into account the estimated RTT, and the |
| // correctness of using |kMaxExpectedSimulatedRtt| as an upper bound of RTT in |
| // the following tests depends on the link rate and the delay distriubtion |
| // configured in VirtualSocketServer::AddPacketToNetwork. The tests below use |
| // the default setup where the RTT is deterministically one, which generates an |
| // estimate given by |MINIMUM_RTT| = 100. |
| TEST_F(PortTest, TestWritableState) { |
| rtc::ScopedFakeClock clock; |
| auto port1 = CreateUdpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateUdpPort(kLocalAddr2); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| |
| // Set up channels. |
| TestChannel ch1(std::move(port1)); |
| TestChannel ch2(std::move(port2)); |
| |
| // Acquire addresses. |
| ch1.Start(); |
| ch2.Start(); |
| ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock); |
| ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock); |
| |
| // Send a ping from src to dst. |
| ch1.CreateConnection(GetCandidate(ch2.port())); |
| ASSERT_TRUE(ch1.conn() != NULL); |
| EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); |
| // for TCP connect |
| EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout, clock); |
| ch1.Ping(); |
| SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock); |
| |
| // Data should be sendable before the connection is accepted. |
| char data[] = "abcd"; |
| int data_size = arraysize(data); |
| rtc::PacketOptions options; |
| EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); |
| |
| // Accept the connection to return the binding response, transition to |
| // writable, and allow data to be sent. |
| ch2.AcceptConnection(GetCandidate(ch1.port())); |
| EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, |
| ch1.conn()->write_state(), kDefaultTimeout, clock); |
| EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); |
| |
| // Ask the connection to update state as if enough time has passed to lose |
| // full writability and 5 pings went unresponded to. We'll accomplish the |
| // latter by sending pings but not pumping messages. |
| for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { |
| ch1.Ping(i); |
| } |
| int unreliable_timeout_delay = |
| CONNECTION_WRITE_CONNECT_TIMEOUT + kMaxExpectedSimulatedRtt; |
| ch1.conn()->UpdateState(unreliable_timeout_delay); |
| EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state()); |
| |
| // Data should be able to be sent in this state. |
| EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); |
| |
| // And now allow the other side to process the pings and send binding |
| // responses. |
| EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, |
| ch1.conn()->write_state(), kDefaultTimeout, clock); |
| // Wait long enough for a full timeout (past however long we've already |
| // waited). |
| for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { |
| ch1.Ping(unreliable_timeout_delay + i); |
| } |
| ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT + |
| kMaxExpectedSimulatedRtt); |
| EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state()); |
| |
| // Even if the connection has timed out, the Connection shouldn't block |
| // the sending of data. |
| EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); |
| |
| ch1.Stop(); |
| ch2.Stop(); |
| } |
| |
| // Test writability states using the configured threshold value to replace |
| // the default value given by |CONNECTION_WRITE_CONNECT_TIMEOUT| and |
| // |CONNECTION_WRITE_CONNECT_FAILURES|. |
| TEST_F(PortTest, TestWritableStateWithConfiguredThreshold) { |
| rtc::ScopedFakeClock clock; |
| auto port1 = CreateUdpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateUdpPort(kLocalAddr2); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| |
| // Set up channels. |
| TestChannel ch1(std::move(port1)); |
| TestChannel ch2(std::move(port2)); |
| |
| // Acquire addresses. |
| ch1.Start(); |
| ch2.Start(); |
| ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock); |
| ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock); |
| |
| // Send a ping from src to dst. |
| ch1.CreateConnection(GetCandidate(ch2.port())); |
| ASSERT_TRUE(ch1.conn() != NULL); |
| ch1.Ping(); |
| SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock); |
| |
| // Accept the connection to return the binding response, transition to |
| // writable, and allow data to be sent. |
| ch2.AcceptConnection(GetCandidate(ch1.port())); |
| EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, |
| ch1.conn()->write_state(), kDefaultTimeout, clock); |
| |
| ch1.conn()->set_unwritable_timeout(1000); |
| ch1.conn()->set_unwritable_min_checks(3); |
| // Send two checks. |
| ch1.Ping(1); |
| ch1.Ping(2); |
| // We have not reached the timeout nor have we sent the minimum number of |
| // checks to change the state to Unreliable. |
| ch1.conn()->UpdateState(999); |
| EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state()); |
| // We have not sent the minimum number of checks without responses. |
| ch1.conn()->UpdateState(1000 + kMaxExpectedSimulatedRtt); |
| EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state()); |
| // Last ping after which the candidate pair should become Unreliable after |
| // timeout. |
| ch1.Ping(3); |
| // We have not reached the timeout. |
| ch1.conn()->UpdateState(999); |
| EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state()); |
| // We should be in the state Unreliable now. |
| ch1.conn()->UpdateState(1000 + kMaxExpectedSimulatedRtt); |
| EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state()); |
| |
| ch1.Stop(); |
| ch2.Stop(); |
| } |
| |
| TEST_F(PortTest, TestTimeoutForNeverWritable) { |
| auto port1 = CreateUdpPort(kLocalAddr1); |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| auto port2 = CreateUdpPort(kLocalAddr2); |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| |
| // Set up channels. |
| TestChannel ch1(std::move(port1)); |
| TestChannel ch2(std::move(port2)); |
| |
| // Acquire addresses. |
| ch1.Start(); |
| ch2.Start(); |
| |
| ch1.CreateConnection(GetCandidate(ch2.port())); |
| ASSERT_TRUE(ch1.conn() != NULL); |
| EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); |
| |
| // Attempt to go directly to write timeout. |
| for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { |
| ch1.Ping(i); |
| } |
| ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + kMaxExpectedSimulatedRtt); |
| EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state()); |
| } |
| |
| // This test verifies the connection setup between ICEMODE_FULL |
| // and ICEMODE_LITE. |
| // In this test |ch1| behaves like FULL mode client and we have created |
| // port which responds to the ping message just like LITE client. |
| TEST_F(PortTest, TestIceLiteConnectivity) { |
| auto ice_full_port = |
| CreateTestPort(kLocalAddr1, "lfrag", "lpass", |
| cricket::ICEROLE_CONTROLLING, kTiebreaker1); |
| auto* ice_full_port_ptr = ice_full_port.get(); |
| |
| auto ice_lite_port = CreateTestPort( |
| kLocalAddr2, "rfrag", "rpass", cricket::ICEROLE_CONTROLLED, kTiebreaker2); |
| // Setup TestChannel. This behaves like FULL mode client. |
| TestChannel ch1(std::move(ice_full_port)); |
| ch1.SetIceMode(ICEMODE_FULL); |
| |
| // Start gathering candidates. |
| ch1.Start(); |
| ice_lite_port->PrepareAddress(); |
| |
| ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); |
| ASSERT_FALSE(ice_lite_port->Candidates().empty()); |
| |
| ch1.CreateConnection(GetCandidate(ice_lite_port.get())); |
| ASSERT_TRUE(ch1.conn() != NULL); |
| EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); |
| |
| // Send ping from full mode client. |
| // This ping must not have USE_CANDIDATE_ATTR. |
| ch1.Ping(); |
| |
| // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly |
| // from port. |
| ASSERT_TRUE_WAIT(ice_full_port_ptr->last_stun_msg() != NULL, kDefaultTimeout); |
| IceMessage* msg = ice_full_port_ptr->last_stun_msg(); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); |
| |
| // Respond with a BINDING-RESPONSE from litemode client. |
| // NOTE: Ideally we should't create connection at this stage from lite |
| // port, as it should be done only after receiving ping with USE_CANDIDATE. |
| // But we need a connection to send a response message. |
| ice_lite_port->CreateConnection(ice_full_port_ptr->Candidates()[0], |
| cricket::Port::ORIGIN_MESSAGE); |
| std::unique_ptr<IceMessage> request = CopyStunMessage(*msg); |
| ice_lite_port->SendBindingResponse( |
| request.get(), ice_full_port_ptr->Candidates()[0].address()); |
| |
| // Feeding the respone message from litemode to the full mode connection. |
| ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->data<char>(), |
| ice_lite_port->last_stun_buf()->size(), |
| rtc::PacketTime()); |
| // Verifying full mode connection becomes writable from the response. |
| EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), |
| kDefaultTimeout); |
| EXPECT_TRUE_WAIT(ch1.nominated(), kDefaultTimeout); |
| |
| // Clear existing stun messsages. Otherwise we will process old stun |
| // message right after we send ping. |
| ice_full_port_ptr->Reset(); |
| // Send ping. This must have USE_CANDIDATE_ATTR. |
| ch1.Ping(); |
| ASSERT_TRUE_WAIT(ice_full_port_ptr->last_stun_msg() != NULL, kDefaultTimeout); |
| msg = ice_full_port_ptr->last_stun_msg(); |
| EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL); |
| ch1.Stop(); |
| } |
| |
| // This test case verifies that both the controlling port and the controlled |
| // port will time out after connectivity is lost, if they are not marked as |
| // "keep alive until pruned." |
| TEST_F(PortTest, TestPortTimeoutIfNotKeptAlive) { |
| rtc::ScopedFakeClock clock; |
| int timeout_delay = 100; |
| auto port1 = CreateUdpPort(kLocalAddr1); |
| ConnectToSignalDestroyed(port1.get()); |
| port1->set_timeout_delay(timeout_delay); // milliseconds |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| port1->SetIceTiebreaker(kTiebreaker1); |
| |
| auto port2 = CreateUdpPort(kLocalAddr2); |
| ConnectToSignalDestroyed(port2.get()); |
| port2->set_timeout_delay(timeout_delay); // milliseconds |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| port2->SetIceTiebreaker(kTiebreaker2); |
| |
| // Set up channels and ensure both ports will be deleted. |
| TestChannel ch1(std::move(port1)); |
| TestChannel ch2(std::move(port2)); |
| |
| // Simulate a connection that succeeds, and then is destroyed. |
| StartConnectAndStopChannels(&ch1, &ch2); |
| // After the connection is destroyed, the port will be destroyed because |
| // none of them is marked as "keep alive until pruned. |
| EXPECT_EQ_SIMULATED_WAIT(2, ports_destroyed(), 110, clock); |
| } |
| |
| // Test that if after all connection are destroyed, new connections are created |
| // and destroyed again, ports won't be destroyed until a timeout period passes |
| // after the last set of connections are all destroyed. |
| TEST_F(PortTest, TestPortTimeoutAfterNewConnectionCreatedAndDestroyed) { |
| rtc::ScopedFakeClock clock; |
| int timeout_delay = 100; |
| auto port1 = CreateUdpPort(kLocalAddr1); |
| ConnectToSignalDestroyed(port1.get()); |
| port1->set_timeout_delay(timeout_delay); // milliseconds |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| port1->SetIceTiebreaker(kTiebreaker1); |
| |
| auto port2 = CreateUdpPort(kLocalAddr2); |
| ConnectToSignalDestroyed(port2.get()); |
| port2->set_timeout_delay(timeout_delay); // milliseconds |
| |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| port2->SetIceTiebreaker(kTiebreaker2); |
| |
| // Set up channels and ensure both ports will be deleted. |
| TestChannel ch1(std::move(port1)); |
| TestChannel ch2(std::move(port2)); |
| |
| // Simulate a connection that succeeds, and then is destroyed. |
| StartConnectAndStopChannels(&ch1, &ch2); |
| SIMULATED_WAIT(ports_destroyed() > 0, 80, clock); |
| EXPECT_EQ(0, ports_destroyed()); |
| |
| // Start the second set of connection and destroy them. |
| ch1.CreateConnection(GetCandidate(ch2.port())); |
| ch2.CreateConnection(GetCandidate(ch1.port())); |
| ch1.Stop(); |
| ch2.Stop(); |
| |
| SIMULATED_WAIT(ports_destroyed() > 0, 80, clock); |
| EXPECT_EQ(0, ports_destroyed()); |
| |
| // The ports on both sides should be destroyed after timeout. |
| EXPECT_TRUE_SIMULATED_WAIT(ports_destroyed() == 2, 30, clock); |
| } |
| |
| // This test case verifies that neither the controlling port nor the controlled |
| // port will time out after connectivity is lost if they are marked as "keep |
| // alive until pruned". They will time out after they are pruned. |
| TEST_F(PortTest, TestPortNotTimeoutUntilPruned) { |
| rtc::ScopedFakeClock clock; |
| int timeout_delay = 100; |
| auto port1 = CreateUdpPort(kLocalAddr1); |
| ConnectToSignalDestroyed(port1.get()); |
| port1->set_timeout_delay(timeout_delay); // milliseconds |
| port1->SetIceRole(cricket::ICEROLE_CONTROLLING); |
| port1->SetIceTiebreaker(kTiebreaker1); |
| |
| auto port2 = CreateUdpPort(kLocalAddr2); |
| ConnectToSignalDestroyed(port2.get()); |
| port2->set_timeout_delay(timeout_delay); // milliseconds |
| port2->SetIceRole(cricket::ICEROLE_CONTROLLED); |
| port2->SetIceTiebreaker(kTiebreaker2); |
| // The connection must not be destroyed before a connection is attempted. |
| EXPECT_EQ(0, ports_destroyed()); |
| |
| port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); |
| port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); |
| |
| // Set up channels and keep the port alive. |
| TestChannel ch1(std::move(port1)); |
| TestChannel ch2(std::move(port2)); |
| // Simulate a connection that succeeds, and then is destroyed. But ports |
| // are kept alive. Ports won't be destroyed. |
| StartConnectAndStopChannels(&ch1, &ch2); |
| ch1.port()->KeepAliveUntilPruned(); |
| ch2.port()->KeepAliveUntilPruned(); |
| SIMULATED_WAIT(ports_destroyed() > 0, 150, clock); |
| EXPECT_EQ(0, ports_destroyed()); |
| |
| // If they are pruned now, they will be destroyed right away. |
| ch1.port()->Prune(); |
| ch2.port()->Prune(); |
| // The ports on both sides should be destroyed after timeout. |
| EXPECT_TRUE_SIMULATED_WAIT(ports_destroyed() == 2, 1, clock); |
| } |
| |
| TEST_F(PortTest, TestSupportsProtocol) { |
| auto udp_port = CreateUdpPort(kLocalAddr1); |
| EXPECT_TRUE(udp_port->SupportsProtocol(UDP_PROTOCOL_NAME)); |
| EXPECT_FALSE(udp_port->SupportsProtocol(TCP_PROTOCOL_NAME)); |
| |
| auto stun_port = CreateStunPort(kLocalAddr1, nat_socket_factory1()); |
| EXPECT_TRUE(stun_port->SupportsProtocol(UDP_PROTOCOL_NAME)); |
| EXPECT_FALSE(stun_port->SupportsProtocol(TCP_PROTOCOL_NAME)); |
| |
| auto tcp_port = CreateTcpPort(kLocalAddr1); |
| EXPECT_TRUE(tcp_port->SupportsProtocol(TCP_PROTOCOL_NAME)); |
| EXPECT_TRUE(tcp_port->SupportsProtocol(SSLTCP_PROTOCOL_NAME)); |
| EXPECT_FALSE(tcp_port->SupportsProtocol(UDP_PROTOCOL_NAME)); |
| |
| auto turn_port = |
| CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); |
| EXPECT_TRUE(turn_port->SupportsProtocol(UDP_PROTOCOL_NAME)); |
| EXPECT_FALSE(turn_port->SupportsProtocol(TCP_PROTOCOL_NAME)); |
| } |
| |
| // Test that SetIceParameters updates the component, ufrag and password |
| // on both the port itself and its candidates. |
| TEST_F(PortTest, TestSetIceParameters) { |
| auto port = CreateTestPort(kLocalAddr1, "ufrag1", "password1"); |
| port->PrepareAddress(); |
| EXPECT_EQ(1UL, port->Candidates().size()); |
| port->SetIceParameters(1, "ufrag2", "password2"); |
| EXPECT_EQ(1, port->component()); |
| EXPECT_EQ("ufrag2", port->username_fragment()); |
| EXPECT_EQ("password2", port->password()); |
| const Candidate& candidate = port->Candidates()[0]; |
| EXPECT_EQ(1, candidate.component()); |
| EXPECT_EQ("ufrag2", candidate.username()); |
| EXPECT_EQ("password2", candidate.password()); |
| } |
| |
| TEST_F(PortTest, TestAddConnectionWithSameAddress) { |
| auto port = CreateTestPort(kLocalAddr1, "ufrag1", "password1"); |
| port->PrepareAddress(); |
| EXPECT_EQ(1u, port->Candidates().size()); |
| rtc::SocketAddress address("1.1.1.1", 5000); |
| cricket::Candidate candidate(1, "udp", address, 0, "", "", "relay", 0, ""); |
| cricket::Connection* conn1 = |
| port->CreateConnection(candidate, Port::ORIGIN_MESSAGE); |
| cricket::Connection* conn_in_use = port->GetConnection(address); |
| EXPECT_EQ(conn1, conn_in_use); |
| EXPECT_EQ(0u, conn_in_use->remote_candidate().generation()); |
| |
| // Creating with a candidate with the same address again will get us a |
| // different connection with the new candidate. |
| candidate.set_generation(2); |
| cricket::Connection* conn2 = |
| port->CreateConnection(candidate, Port::ORIGIN_MESSAGE); |
| EXPECT_NE(conn1, conn2); |
| conn_in_use = port->GetConnection(address); |
| EXPECT_EQ(conn2, conn_in_use); |
| EXPECT_EQ(2u, conn_in_use->remote_candidate().generation()); |
| |
| // Make sure the new connection was not deleted. |
| rtc::Thread::Current()->ProcessMessages(300); |
| EXPECT_TRUE(port->GetConnection(address) != nullptr); |
| } |
| |
| } // namespace cricket |