| /* |
| * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/agc2/signal_classifier.h" |
| |
| #include <array> |
| #include <functional> |
| #include <limits> |
| |
| #include "modules/audio_processing/agc2/agc2_testing_common.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "rtc_base/gunit.h" |
| #include "rtc_base/random.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| Random rand_gen(42); |
| ApmDataDumper data_dumper(0); |
| constexpr int kNumIterations = 100; |
| |
| // Runs the signal classifier on audio generated by 'sample_generator' |
| // for kNumIterations. Returns the number of frames classified as noise. |
| int RunClassifier(std::function<float()> sample_generator, int rate) { |
| SignalClassifier classifier(&data_dumper); |
| std::array<float, 480> signal; |
| classifier.Initialize(rate); |
| const size_t samples_per_channel = rtc::CheckedDivExact(rate, 100); |
| int number_of_noise_frames = 0; |
| for (int i = 0; i < kNumIterations; ++i) { |
| for (size_t j = 0; j < samples_per_channel; ++j) { |
| signal[j] = sample_generator(); |
| } |
| number_of_noise_frames += |
| classifier.Analyze({&signal[0], samples_per_channel}) == |
| SignalClassifier::SignalType::kStationary; |
| } |
| return number_of_noise_frames; |
| } |
| |
| float WhiteNoiseGenerator() { |
| return static_cast<float>(rand_gen.Rand(std::numeric_limits<int16_t>::min(), |
| std::numeric_limits<int16_t>::max())); |
| } |
| } // namespace |
| |
| // White random noise is stationary, but does not trigger the detector |
| // every frame due to the randomness. |
| TEST(AutomaticGainController2SignalClassifier, WhiteNoise) { |
| for (const auto rate : {8000, 16000, 32000, 48000}) { |
| const int number_of_noise_frames = RunClassifier(WhiteNoiseGenerator, rate); |
| EXPECT_GT(number_of_noise_frames, kNumIterations / 2); |
| } |
| } |
| |
| // Sine curves are (very) stationary. They trigger the detector all |
| // the time. Except for a few initial frames. |
| TEST(AutomaticGainController2SignalClassifier, SineTone) { |
| for (const auto rate : {8000, 16000, 32000, 48000}) { |
| test::SineGenerator gen(600.f, rate); |
| const int number_of_noise_frames = RunClassifier(gen, rate); |
| EXPECT_GE(number_of_noise_frames, kNumIterations - 5); |
| } |
| } |
| |
| // Pulses are transient if they are far enough apart. They shouldn't |
| // trigger the noise detector. |
| TEST(AutomaticGainController2SignalClassifier, PulseTone) { |
| for (const auto rate : {8000, 16000, 32000, 48000}) { |
| test::PulseGenerator gen(30.f, rate); |
| const int number_of_noise_frames = RunClassifier(gen, rate); |
| EXPECT_EQ(number_of_noise_frames, 0); |
| } |
| } |
| } // namespace webrtc |