| /* |
| * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| * |
| */ |
| |
| #include "modules/video_coding/codecs/h264/h264_encoder_impl.h" |
| |
| #include <limits> |
| #include <string> |
| |
| #include "third_party/openh264/src/codec/api/svc/codec_api.h" |
| #include "third_party/openh264/src/codec/api/svc/codec_app_def.h" |
| #include "third_party/openh264/src/codec/api/svc/codec_def.h" |
| #include "third_party/openh264/src/codec/api/svc/codec_ver.h" |
| |
| #include "common_video/libyuv/include/webrtc_libyuv.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/timeutils.h" |
| #include "system_wrappers/include/metrics.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| const bool kOpenH264EncoderDetailedLogging = false; |
| |
| // QP scaling thresholds. |
| static const int kLowH264QpThreshold = 24; |
| static const int kHighH264QpThreshold = 37; |
| |
| // Used by histograms. Values of entries should not be changed. |
| enum H264EncoderImplEvent { |
| kH264EncoderEventInit = 0, |
| kH264EncoderEventError = 1, |
| kH264EncoderEventMax = 16, |
| }; |
| |
| int NumberOfThreads(int width, int height, int number_of_cores) { |
| // TODO(hbos): In Chromium, multiple threads do not work with sandbox on Mac, |
| // see crbug.com/583348. Until further investigated, only use one thread. |
| // if (width * height >= 1920 * 1080 && number_of_cores > 8) { |
| // return 8; // 8 threads for 1080p on high perf machines. |
| // } else if (width * height > 1280 * 960 && number_of_cores >= 6) { |
| // return 3; // 3 threads for 1080p. |
| // } else if (width * height > 640 * 480 && number_of_cores >= 3) { |
| // return 2; // 2 threads for qHD/HD. |
| // } else { |
| // return 1; // 1 thread for VGA or less. |
| // } |
| // TODO(sprang): Also check sSliceArgument.uiSliceNum om GetEncoderPrams(), |
| // before enabling multithreading here. |
| return 1; |
| } |
| |
| FrameType ConvertToVideoFrameType(EVideoFrameType type) { |
| switch (type) { |
| case videoFrameTypeIDR: |
| return kVideoFrameKey; |
| case videoFrameTypeSkip: |
| case videoFrameTypeI: |
| case videoFrameTypeP: |
| case videoFrameTypeIPMixed: |
| return kVideoFrameDelta; |
| case videoFrameTypeInvalid: |
| break; |
| } |
| RTC_NOTREACHED() << "Unexpected/invalid frame type: " << type; |
| return kEmptyFrame; |
| } |
| |
| } // namespace |
| |
| // Helper method used by H264EncoderImpl::Encode. |
| // Copies the encoded bytes from |info| to |encoded_image| and updates the |
| // fragmentation information of |frag_header|. The |encoded_image->_buffer| may |
| // be deleted and reallocated if a bigger buffer is required. |
| // |
| // After OpenH264 encoding, the encoded bytes are stored in |info| spread out |
| // over a number of layers and "NAL units". Each NAL unit is a fragment starting |
| // with the four-byte start code {0,0,0,1}. All of this data (including the |
| // start codes) is copied to the |encoded_image->_buffer| and the |frag_header| |
| // is updated to point to each fragment, with offsets and lengths set as to |
| // exclude the start codes. |
| static void RtpFragmentize(EncodedImage* encoded_image, |
| std::unique_ptr<uint8_t[]>* encoded_image_buffer, |
| const VideoFrameBuffer& frame_buffer, |
| SFrameBSInfo* info, |
| RTPFragmentationHeader* frag_header) { |
| // Calculate minimum buffer size required to hold encoded data. |
| size_t required_size = 0; |
| size_t fragments_count = 0; |
| for (int layer = 0; layer < info->iLayerNum; ++layer) { |
| const SLayerBSInfo& layerInfo = info->sLayerInfo[layer]; |
| for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++fragments_count) { |
| RTC_CHECK_GE(layerInfo.pNalLengthInByte[nal], 0); |
| // Ensure |required_size| will not overflow. |
| RTC_CHECK_LE(layerInfo.pNalLengthInByte[nal], |
| std::numeric_limits<size_t>::max() - required_size); |
| required_size += layerInfo.pNalLengthInByte[nal]; |
| } |
| } |
| if (encoded_image->_size < required_size) { |
| // Increase buffer size. Allocate enough to hold an unencoded image, this |
| // should be more than enough to hold any encoded data of future frames of |
| // the same size (avoiding possible future reallocation due to variations in |
| // required size). |
| encoded_image->_size = CalcBufferSize( |
| VideoType::kI420, frame_buffer.width(), frame_buffer.height()); |
| if (encoded_image->_size < required_size) { |
| // Encoded data > unencoded data. Allocate required bytes. |
| RTC_LOG(LS_WARNING) |
| << "Encoding produced more bytes than the original image " |
| << "data! Original bytes: " << encoded_image->_size |
| << ", encoded bytes: " << required_size << "."; |
| encoded_image->_size = required_size; |
| } |
| encoded_image->_buffer = new uint8_t[encoded_image->_size]; |
| encoded_image_buffer->reset(encoded_image->_buffer); |
| } |
| |
| // Iterate layers and NAL units, note each NAL unit as a fragment and copy |
| // the data to |encoded_image->_buffer|. |
| const uint8_t start_code[4] = {0, 0, 0, 1}; |
| frag_header->VerifyAndAllocateFragmentationHeader(fragments_count); |
| size_t frag = 0; |
| encoded_image->_length = 0; |
| for (int layer = 0; layer < info->iLayerNum; ++layer) { |
| const SLayerBSInfo& layerInfo = info->sLayerInfo[layer]; |
| // Iterate NAL units making up this layer, noting fragments. |
| size_t layer_len = 0; |
| for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++frag) { |
| // Because the sum of all layer lengths, |required_size|, fits in a |
| // |size_t|, we know that any indices in-between will not overflow. |
| RTC_DCHECK_GE(layerInfo.pNalLengthInByte[nal], 4); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 0], start_code[0]); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 1], start_code[1]); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 2], start_code[2]); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 3], start_code[3]); |
| frag_header->fragmentationOffset[frag] = |
| encoded_image->_length + layer_len + sizeof(start_code); |
| frag_header->fragmentationLength[frag] = |
| layerInfo.pNalLengthInByte[nal] - sizeof(start_code); |
| layer_len += layerInfo.pNalLengthInByte[nal]; |
| } |
| // Copy the entire layer's data (including start codes). |
| memcpy(encoded_image->_buffer + encoded_image->_length, layerInfo.pBsBuf, |
| layer_len); |
| encoded_image->_length += layer_len; |
| } |
| } |
| |
| H264EncoderImpl::H264EncoderImpl(const cricket::VideoCodec& codec) |
| : openh264_encoder_(nullptr), |
| width_(0), |
| height_(0), |
| max_frame_rate_(0.0f), |
| target_bps_(0), |
| max_bps_(0), |
| mode_(VideoCodecMode::kRealtimeVideo), |
| frame_dropping_on_(false), |
| key_frame_interval_(0), |
| packetization_mode_(H264PacketizationMode::SingleNalUnit), |
| max_payload_size_(0), |
| number_of_cores_(0), |
| encoded_image_callback_(nullptr), |
| has_reported_init_(false), |
| has_reported_error_(false) { |
| RTC_CHECK(cricket::CodecNamesEq(codec.name, cricket::kH264CodecName)); |
| std::string packetization_mode_string; |
| if (codec.GetParam(cricket::kH264FmtpPacketizationMode, |
| &packetization_mode_string) && |
| packetization_mode_string == "1") { |
| packetization_mode_ = H264PacketizationMode::NonInterleaved; |
| } |
| } |
| |
| H264EncoderImpl::~H264EncoderImpl() { |
| Release(); |
| } |
| |
| int32_t H264EncoderImpl::InitEncode(const VideoCodec* codec_settings, |
| int32_t number_of_cores, |
| size_t max_payload_size) { |
| ReportInit(); |
| if (!codec_settings || codec_settings->codecType != kVideoCodecH264) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (codec_settings->maxFramerate == 0) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (codec_settings->width < 1 || codec_settings->height < 1) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| int32_t release_ret = Release(); |
| if (release_ret != WEBRTC_VIDEO_CODEC_OK) { |
| ReportError(); |
| return release_ret; |
| } |
| RTC_DCHECK(!openh264_encoder_); |
| |
| // Create encoder. |
| if (WelsCreateSVCEncoder(&openh264_encoder_) != 0) { |
| // Failed to create encoder. |
| RTC_LOG(LS_ERROR) << "Failed to create OpenH264 encoder"; |
| RTC_DCHECK(!openh264_encoder_); |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| RTC_DCHECK(openh264_encoder_); |
| if (kOpenH264EncoderDetailedLogging) { |
| int trace_level = WELS_LOG_DETAIL; |
| openh264_encoder_->SetOption(ENCODER_OPTION_TRACE_LEVEL, &trace_level); |
| } |
| // else WELS_LOG_DEFAULT is used by default. |
| |
| number_of_cores_ = number_of_cores; |
| // Set internal settings from codec_settings |
| width_ = codec_settings->width; |
| height_ = codec_settings->height; |
| max_frame_rate_ = static_cast<float>(codec_settings->maxFramerate); |
| mode_ = codec_settings->mode; |
| frame_dropping_on_ = codec_settings->H264().frameDroppingOn; |
| key_frame_interval_ = codec_settings->H264().keyFrameInterval; |
| max_payload_size_ = max_payload_size; |
| |
| // Codec_settings uses kbits/second; encoder uses bits/second. |
| max_bps_ = codec_settings->maxBitrate * 1000; |
| if (codec_settings->targetBitrate == 0) |
| target_bps_ = codec_settings->startBitrate * 1000; |
| else |
| target_bps_ = codec_settings->targetBitrate * 1000; |
| |
| SEncParamExt encoder_params = CreateEncoderParams(); |
| |
| // Initialize. |
| if (openh264_encoder_->InitializeExt(&encoder_params) != 0) { |
| RTC_LOG(LS_ERROR) << "Failed to initialize OpenH264 encoder"; |
| Release(); |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| // TODO(pbos): Base init params on these values before submitting. |
| int video_format = EVideoFormatType::videoFormatI420; |
| openh264_encoder_->SetOption(ENCODER_OPTION_DATAFORMAT, &video_format); |
| |
| // Initialize encoded image. Default buffer size: size of unencoded data. |
| encoded_image_._size = CalcBufferSize(VideoType::kI420, codec_settings->width, |
| codec_settings->height); |
| encoded_image_._buffer = new uint8_t[encoded_image_._size]; |
| encoded_image_buffer_.reset(encoded_image_._buffer); |
| encoded_image_._completeFrame = true; |
| encoded_image_._encodedWidth = 0; |
| encoded_image_._encodedHeight = 0; |
| encoded_image_._length = 0; |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int32_t H264EncoderImpl::Release() { |
| if (openh264_encoder_) { |
| RTC_CHECK_EQ(0, openh264_encoder_->Uninitialize()); |
| WelsDestroySVCEncoder(openh264_encoder_); |
| openh264_encoder_ = nullptr; |
| } |
| encoded_image_._buffer = nullptr; |
| encoded_image_buffer_.reset(); |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int32_t H264EncoderImpl::RegisterEncodeCompleteCallback( |
| EncodedImageCallback* callback) { |
| encoded_image_callback_ = callback; |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int32_t H264EncoderImpl::SetRateAllocation( |
| const VideoBitrateAllocation& bitrate_allocation, |
| uint32_t framerate) { |
| if (bitrate_allocation.get_sum_bps() <= 0 || framerate <= 0) |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| |
| target_bps_ = bitrate_allocation.get_sum_bps(); |
| max_frame_rate_ = static_cast<float>(framerate); |
| |
| SBitrateInfo target_bitrate; |
| memset(&target_bitrate, 0, sizeof(SBitrateInfo)); |
| target_bitrate.iLayer = SPATIAL_LAYER_ALL, |
| target_bitrate.iBitrate = target_bps_; |
| openh264_encoder_->SetOption(ENCODER_OPTION_BITRATE, &target_bitrate); |
| openh264_encoder_->SetOption(ENCODER_OPTION_FRAME_RATE, &max_frame_rate_); |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int32_t H264EncoderImpl::Encode(const VideoFrame& input_frame, |
| const CodecSpecificInfo* codec_specific_info, |
| const std::vector<FrameType>* frame_types) { |
| if (!IsInitialized()) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| if (!encoded_image_callback_) { |
| RTC_LOG(LS_WARNING) |
| << "InitEncode() has been called, but a callback function " |
| << "has not been set with RegisterEncodeCompleteCallback()"; |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| |
| bool force_key_frame = false; |
| if (frame_types != nullptr) { |
| // We only support a single stream. |
| RTC_DCHECK_EQ(frame_types->size(), 1); |
| // Skip frame? |
| if ((*frame_types)[0] == kEmptyFrame) { |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| // Force key frame? |
| force_key_frame = (*frame_types)[0] == kVideoFrameKey; |
| } |
| if (force_key_frame) { |
| // API doc says ForceIntraFrame(false) does nothing, but calling this |
| // function forces a key frame regardless of the |bIDR| argument's value. |
| // (If every frame is a key frame we get lag/delays.) |
| openh264_encoder_->ForceIntraFrame(true); |
| } |
| rtc::scoped_refptr<const I420BufferInterface> frame_buffer = |
| input_frame.video_frame_buffer()->ToI420(); |
| // EncodeFrame input. |
| SSourcePicture picture; |
| memset(&picture, 0, sizeof(SSourcePicture)); |
| picture.iPicWidth = frame_buffer->width(); |
| picture.iPicHeight = frame_buffer->height(); |
| picture.iColorFormat = EVideoFormatType::videoFormatI420; |
| picture.uiTimeStamp = input_frame.ntp_time_ms(); |
| picture.iStride[0] = frame_buffer->StrideY(); |
| picture.iStride[1] = frame_buffer->StrideU(); |
| picture.iStride[2] = frame_buffer->StrideV(); |
| picture.pData[0] = const_cast<uint8_t*>(frame_buffer->DataY()); |
| picture.pData[1] = const_cast<uint8_t*>(frame_buffer->DataU()); |
| picture.pData[2] = const_cast<uint8_t*>(frame_buffer->DataV()); |
| |
| // EncodeFrame output. |
| SFrameBSInfo info; |
| memset(&info, 0, sizeof(SFrameBSInfo)); |
| |
| // Encode! |
| int enc_ret = openh264_encoder_->EncodeFrame(&picture, &info); |
| if (enc_ret != 0) { |
| RTC_LOG(LS_ERROR) << "OpenH264 frame encoding failed, EncodeFrame returned " |
| << enc_ret << "."; |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| |
| encoded_image_._encodedWidth = frame_buffer->width(); |
| encoded_image_._encodedHeight = frame_buffer->height(); |
| encoded_image_._timeStamp = input_frame.timestamp(); |
| encoded_image_.ntp_time_ms_ = input_frame.ntp_time_ms(); |
| encoded_image_.capture_time_ms_ = input_frame.render_time_ms(); |
| encoded_image_.rotation_ = input_frame.rotation(); |
| encoded_image_.content_type_ = (mode_ == VideoCodecMode::kScreensharing) |
| ? VideoContentType::SCREENSHARE |
| : VideoContentType::UNSPECIFIED; |
| encoded_image_.timing_.flags = VideoSendTiming::kInvalid; |
| encoded_image_._frameType = ConvertToVideoFrameType(info.eFrameType); |
| |
| // Split encoded image up into fragments. This also updates |encoded_image_|. |
| RTPFragmentationHeader frag_header; |
| RtpFragmentize(&encoded_image_, &encoded_image_buffer_, *frame_buffer, &info, |
| &frag_header); |
| |
| // Encoder can skip frames to save bandwidth in which case |
| // |encoded_image_._length| == 0. |
| if (encoded_image_._length > 0) { |
| // Parse QP. |
| h264_bitstream_parser_.ParseBitstream(encoded_image_._buffer, |
| encoded_image_._length); |
| h264_bitstream_parser_.GetLastSliceQp(&encoded_image_.qp_); |
| |
| // Deliver encoded image. |
| CodecSpecificInfo codec_specific; |
| codec_specific.codecType = kVideoCodecH264; |
| codec_specific.codecSpecific.H264.packetization_mode = packetization_mode_; |
| encoded_image_callback_->OnEncodedImage(encoded_image_, &codec_specific, |
| &frag_header); |
| } |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| const char* H264EncoderImpl::ImplementationName() const { |
| return "OpenH264"; |
| } |
| |
| bool H264EncoderImpl::IsInitialized() const { |
| return openh264_encoder_ != nullptr; |
| } |
| |
| // Initialization parameters. |
| // There are two ways to initialize. There is SEncParamBase (cleared with |
| // memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt |
| // which is a superset of SEncParamBase (cleared with GetDefaultParams) used |
| // in InitializeExt. |
| SEncParamExt H264EncoderImpl::CreateEncoderParams() const { |
| RTC_DCHECK(openh264_encoder_); |
| SEncParamExt encoder_params; |
| openh264_encoder_->GetDefaultParams(&encoder_params); |
| if (mode_ == VideoCodecMode::kRealtimeVideo) { |
| encoder_params.iUsageType = CAMERA_VIDEO_REAL_TIME; |
| } else if (mode_ == VideoCodecMode::kScreensharing) { |
| encoder_params.iUsageType = SCREEN_CONTENT_REAL_TIME; |
| } else { |
| RTC_NOTREACHED(); |
| } |
| encoder_params.iPicWidth = width_; |
| encoder_params.iPicHeight = height_; |
| encoder_params.iTargetBitrate = target_bps_; |
| encoder_params.iMaxBitrate = max_bps_; |
| // Rate Control mode |
| encoder_params.iRCMode = RC_BITRATE_MODE; |
| encoder_params.fMaxFrameRate = max_frame_rate_; |
| |
| // The following parameters are extension parameters (they're in SEncParamExt, |
| // not in SEncParamBase). |
| encoder_params.bEnableFrameSkip = frame_dropping_on_; |
| // |uiIntraPeriod| - multiple of GOP size |
| // |keyFrameInterval| - number of frames |
| encoder_params.uiIntraPeriod = key_frame_interval_; |
| encoder_params.uiMaxNalSize = 0; |
| // Threading model: use auto. |
| // 0: auto (dynamic imp. internal encoder) |
| // 1: single thread (default value) |
| // >1: number of threads |
| encoder_params.iMultipleThreadIdc = NumberOfThreads( |
| encoder_params.iPicWidth, encoder_params.iPicHeight, number_of_cores_); |
| // The base spatial layer 0 is the only one we use. |
| encoder_params.sSpatialLayers[0].iVideoWidth = encoder_params.iPicWidth; |
| encoder_params.sSpatialLayers[0].iVideoHeight = encoder_params.iPicHeight; |
| encoder_params.sSpatialLayers[0].fFrameRate = encoder_params.fMaxFrameRate; |
| encoder_params.sSpatialLayers[0].iSpatialBitrate = |
| encoder_params.iTargetBitrate; |
| encoder_params.sSpatialLayers[0].iMaxSpatialBitrate = |
| encoder_params.iMaxBitrate; |
| RTC_LOG(INFO) << "OpenH264 version is " << OPENH264_MAJOR << "." |
| << OPENH264_MINOR; |
| switch (packetization_mode_) { |
| case H264PacketizationMode::SingleNalUnit: |
| // Limit the size of the packets produced. |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1; |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode = |
| SM_SIZELIMITED_SLICE; |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceSizeConstraint = |
| static_cast<unsigned int>(max_payload_size_); |
| RTC_LOG(INFO) << "Encoder is configured with NALU constraint: " |
| << max_payload_size_ << " bytes"; |
| break; |
| case H264PacketizationMode::NonInterleaved: |
| // When uiSliceMode = SM_FIXEDSLCNUM_SLICE, uiSliceNum = 0 means auto |
| // design it with cpu core number. |
| // TODO(sprang): Set to 0 when we understand why the rate controller borks |
| // when uiSliceNum > 1. |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1; |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode = |
| SM_FIXEDSLCNUM_SLICE; |
| break; |
| } |
| return encoder_params; |
| } |
| |
| void H264EncoderImpl::ReportInit() { |
| if (has_reported_init_) |
| return; |
| RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event", |
| kH264EncoderEventInit, kH264EncoderEventMax); |
| has_reported_init_ = true; |
| } |
| |
| void H264EncoderImpl::ReportError() { |
| if (has_reported_error_) |
| return; |
| RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event", |
| kH264EncoderEventError, kH264EncoderEventMax); |
| has_reported_error_ = true; |
| } |
| |
| int32_t H264EncoderImpl::SetChannelParameters(uint32_t packet_loss, |
| int64_t rtt) { |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| VideoEncoder::ScalingSettings H264EncoderImpl::GetScalingSettings() const { |
| return VideoEncoder::ScalingSettings(kLowH264QpThreshold, |
| kHighH264QpThreshold); |
| } |
| |
| } // namespace webrtc |