blob: 6d21d84fab4c1fe91011e2afcbdcbb0f5623615c [file] [log] [blame]
/*
* Copyright 2012 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/sigslot.h"
#include "webrtc/base/gunit.h"
// This function, when passed a has_slots or signalx, will break the build if
// its threading requirement is not single threaded
static bool TemplateIsST(const sigslot::single_threaded* p) {
return true;
}
// This function, when passed a has_slots or signalx, will break the build if
// its threading requirement is not multi threaded
static bool TemplateIsMT(const sigslot::multi_threaded_local* p) {
return true;
}
class SigslotDefault : public testing::Test, public sigslot::has_slots<> {
protected:
sigslot::signal0<> signal_;
};
template<class slot_policy = sigslot::single_threaded,
class signal_policy = sigslot::single_threaded>
class SigslotReceiver : public sigslot::has_slots<slot_policy> {
public:
SigslotReceiver() : signal_(nullptr), signal_count_(0) {}
~SigslotReceiver() {
}
// Provide copy constructor so that tests can exercise the has_slots copy
// constructor.
SigslotReceiver(const SigslotReceiver&) = default;
void Connect(sigslot::signal0<signal_policy>* signal) {
if (!signal) return;
Disconnect();
signal_ = signal;
signal->connect(this,
&SigslotReceiver<slot_policy, signal_policy>::OnSignal);
}
void Disconnect() {
if (!signal_) return;
signal_->disconnect(this);
signal_ = nullptr;
}
void OnSignal() {
++signal_count_;
}
int signal_count() { return signal_count_; }
private:
sigslot::signal0<signal_policy>* signal_;
int signal_count_;
};
template<class slot_policy = sigslot::single_threaded,
class mt_signal_policy = sigslot::multi_threaded_local>
class SigslotSlotTest : public testing::Test {
protected:
SigslotSlotTest() {
mt_signal_policy mt_policy;
TemplateIsMT(&mt_policy);
}
virtual void SetUp() {
Connect();
}
virtual void TearDown() {
Disconnect();
}
void Disconnect() {
st_receiver_.Disconnect();
mt_receiver_.Disconnect();
}
void Connect() {
st_receiver_.Connect(&SignalSTLoopback);
mt_receiver_.Connect(&SignalMTLoopback);
}
int st_loop_back_count() { return st_receiver_.signal_count(); }
int mt_loop_back_count() { return mt_receiver_.signal_count(); }
sigslot::signal0<> SignalSTLoopback;
SigslotReceiver<slot_policy, sigslot::single_threaded> st_receiver_;
sigslot::signal0<mt_signal_policy> SignalMTLoopback;
SigslotReceiver<slot_policy, mt_signal_policy> mt_receiver_;
};
typedef SigslotSlotTest<> SigslotSTSlotTest;
typedef SigslotSlotTest<sigslot::multi_threaded_local,
sigslot::multi_threaded_local> SigslotMTSlotTest;
class multi_threaded_local_fake : public sigslot::multi_threaded_local {
public:
multi_threaded_local_fake() : lock_count_(0), unlock_count_(0) {
}
void lock() { ++lock_count_; }
void unlock() { ++unlock_count_; }
int lock_count() { return lock_count_; }
bool InCriticalSection() { return lock_count_ != unlock_count_; }
protected:
int lock_count_;
int unlock_count_;
};
typedef SigslotSlotTest<multi_threaded_local_fake,
multi_threaded_local_fake> SigslotMTLockBase;
class SigslotMTLockTest : public SigslotMTLockBase {
protected:
SigslotMTLockTest() {}
virtual void SetUp() {
EXPECT_EQ(0, SlotLockCount());
SigslotMTLockBase::SetUp();
// Connects to two signals (ST and MT). However,
// SlotLockCount() only gets the count for the
// MT signal (there are two separate SigslotReceiver which
// keep track of their own count).
EXPECT_EQ(1, SlotLockCount());
}
virtual void TearDown() {
const int previous_lock_count = SlotLockCount();
SigslotMTLockBase::TearDown();
// Disconnects from two signals. Note analogous to SetUp().
EXPECT_EQ(previous_lock_count + 1, SlotLockCount());
}
int SlotLockCount() { return mt_receiver_.lock_count(); }
void Signal() { SignalMTLoopback(); }
int SignalLockCount() { return SignalMTLoopback.lock_count(); }
int signal_count() { return mt_loop_back_count(); }
bool InCriticalSection() { return SignalMTLoopback.InCriticalSection(); }
};
// This test will always succeed. However, if the default template instantiation
// changes from single threaded to multi threaded it will break the build here.
TEST_F(SigslotDefault, DefaultIsST) {
EXPECT_TRUE(TemplateIsST(this));
EXPECT_TRUE(TemplateIsST(&signal_));
}
// ST slot, ST signal
TEST_F(SigslotSTSlotTest, STLoopbackTest) {
SignalSTLoopback();
EXPECT_EQ(1, st_loop_back_count());
EXPECT_EQ(0, mt_loop_back_count());
}
// ST slot, MT signal
TEST_F(SigslotSTSlotTest, MTLoopbackTest) {
SignalMTLoopback();
EXPECT_EQ(1, mt_loop_back_count());
EXPECT_EQ(0, st_loop_back_count());
}
// ST slot, both ST and MT (separate) signal
TEST_F(SigslotSTSlotTest, AllLoopbackTest) {
SignalSTLoopback();
SignalMTLoopback();
EXPECT_EQ(1, mt_loop_back_count());
EXPECT_EQ(1, st_loop_back_count());
}
TEST_F(SigslotSTSlotTest, Reconnect) {
SignalSTLoopback();
SignalMTLoopback();
EXPECT_EQ(1, mt_loop_back_count());
EXPECT_EQ(1, st_loop_back_count());
Disconnect();
SignalSTLoopback();
SignalMTLoopback();
EXPECT_EQ(1, mt_loop_back_count());
EXPECT_EQ(1, st_loop_back_count());
Connect();
SignalSTLoopback();
SignalMTLoopback();
EXPECT_EQ(2, mt_loop_back_count());
EXPECT_EQ(2, st_loop_back_count());
}
// MT slot, ST signal
TEST_F(SigslotMTSlotTest, STLoopbackTest) {
SignalSTLoopback();
EXPECT_EQ(1, st_loop_back_count());
EXPECT_EQ(0, mt_loop_back_count());
}
// MT slot, MT signal
TEST_F(SigslotMTSlotTest, MTLoopbackTest) {
SignalMTLoopback();
EXPECT_EQ(1, mt_loop_back_count());
EXPECT_EQ(0, st_loop_back_count());
}
// MT slot, both ST and MT (separate) signal
TEST_F(SigslotMTSlotTest, AllLoopbackTest) {
SignalMTLoopback();
SignalSTLoopback();
EXPECT_EQ(1, st_loop_back_count());
EXPECT_EQ(1, mt_loop_back_count());
}
// Test that locks are acquired and released correctly.
TEST_F(SigslotMTLockTest, LockSanity) {
const int lock_count = SignalLockCount();
Signal();
EXPECT_FALSE(InCriticalSection());
EXPECT_EQ(lock_count + 1, SignalLockCount());
EXPECT_EQ(1, signal_count());
}
// Destroy signal and slot in different orders.
TEST(SigslotDestructionOrder, SignalFirst) {
sigslot::signal0<>* signal = new sigslot::signal0<>;
SigslotReceiver<>* receiver = new SigslotReceiver<>();
receiver->Connect(signal);
(*signal)();
EXPECT_EQ(1, receiver->signal_count());
delete signal;
delete receiver;
}
TEST(SigslotDestructionOrder, SlotFirst) {
sigslot::signal0<>* signal = new sigslot::signal0<>;
SigslotReceiver<>* receiver = new SigslotReceiver<>();
receiver->Connect(signal);
(*signal)();
EXPECT_EQ(1, receiver->signal_count());
delete receiver;
(*signal)();
delete signal;
}
// Test that if a signal is copied, its slot connections are copied as well.
TEST(SigslotTest, CopyConnectedSignal) {
sigslot::signal<> signal;
SigslotReceiver<> receiver;
receiver.Connect(&signal);
// Fire the copied signal, expecting the receiver to be notified.
sigslot::signal<> copied_signal(signal);
copied_signal();
EXPECT_EQ(1, receiver.signal_count());
}
// Test that if a slot is copied, its signal connections are copied as well.
TEST(SigslotTest, CopyConnectedSlot) {
sigslot::signal<> signal;
SigslotReceiver<> receiver;
receiver.Connect(&signal);
// Fire the signal after copying the receiver, expecting the copied receiver
// to be notified.
SigslotReceiver<> copied_receiver(receiver);
signal();
EXPECT_EQ(1, copied_receiver.signal_count());
}
// Just used for the test below.
class Disconnector : public sigslot::has_slots<> {
public:
Disconnector(SigslotReceiver<>* receiver1, SigslotReceiver<>* receiver2)
: receiver1_(receiver1), receiver2_(receiver2) {}
void Connect(sigslot::signal<>* signal) {
signal_ = signal;
signal->connect(this, &Disconnector::Disconnect);
}
private:
void Disconnect() {
receiver1_->Disconnect();
receiver2_->Disconnect();
signal_->disconnect(this);
}
sigslot::signal<>* signal_;
SigslotReceiver<>* receiver1_;
SigslotReceiver<>* receiver2_;
};
// Test that things work as expected if a signal is disconnected from a slot
// while it's firing.
TEST(SigslotTest, DisconnectFromSignalWhileFiring) {
sigslot::signal<> signal;
SigslotReceiver<> receiver1;
SigslotReceiver<> receiver2;
SigslotReceiver<> receiver3;
Disconnector disconnector(&receiver1, &receiver2);
// From this ordering, receiver1 should receive the signal, then the
// disconnector will be invoked, causing receiver2 to be disconnected before
// it receives the signal. And receiver3 should also receive the signal,
// since it was never disconnected.
receiver1.Connect(&signal);
disconnector.Connect(&signal);
receiver2.Connect(&signal);
receiver3.Connect(&signal);
signal();
EXPECT_EQ(1, receiver1.signal_count());
EXPECT_EQ(0, receiver2.signal_count());
EXPECT_EQ(1, receiver3.signal_count());
}
// Uses disconnect_all instead of disconnect.
class Disconnector2 : public sigslot::has_slots<> {
public:
void Connect(sigslot::signal<>* signal) {
signal_ = signal;
signal->connect(this, &Disconnector2::Disconnect);
}
private:
void Disconnect() {
signal_->disconnect_all();
}
sigslot::signal<>* signal_;
};
// Test that things work as expected if a signal is disconnected from a slot
// while it's firing using disconnect_all.
TEST(SigslotTest, CallDisconnectAllWhileSignalFiring) {
sigslot::signal<> signal;
SigslotReceiver<> receiver1;
SigslotReceiver<> receiver2;
Disconnector2 disconnector;
// From this ordering, receiver1 should receive the signal, then the
// disconnector will be invoked, causing receiver2 to be disconnected before
// it receives the signal.
receiver1.Connect(&signal);
disconnector.Connect(&signal);
receiver2.Connect(&signal);
signal();
EXPECT_EQ(1, receiver1.signal_count());
EXPECT_EQ(0, receiver2.signal_count());
}