blob: f35dcbacf814cf41393f79be6df622891fa512f7 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "webrtc/base/network.h"
#if defined(WEBRTC_POSIX)
// linux/if.h can't be included at the same time as the posix sys/if.h, and
// it's transitively required by linux/route.h, so include that version on
// linux instead of the standard posix one.
#if defined(WEBRTC_LINUX)
#include <linux/if.h>
#include <linux/route.h>
#elif !defined(__native_client__)
#include <net/if.h>
#endif
#include <sys/socket.h>
#include <sys/utsname.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <errno.h>
#if defined(WEBRTC_ANDROID)
#include "webrtc/base/ifaddrs-android.h"
#elif !defined(__native_client__)
#include <ifaddrs.h>
#endif
#endif // WEBRTC_POSIX
#if defined(WEBRTC_WIN)
#include "webrtc/base/win32.h"
#include <Iphlpapi.h>
#endif
#include <stdio.h>
#include <algorithm>
#include "webrtc/base/logging.h"
#include "webrtc/base/networkmonitor.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/base/socket.h" // includes something that makes windows happy
#include "webrtc/base/stream.h"
#include "webrtc/base/stringencode.h"
#include "webrtc/base/thread.h"
namespace rtc {
namespace {
// Turning on IPv6 could make many IPv6 interfaces available for connectivity
// check and delay the call setup time. kMaxIPv6Networks is the default upper
// limit of IPv6 networks but could be changed by set_max_ipv6_networks().
const int kMaxIPv6Networks = 5;
const uint32_t kUpdateNetworksMessage = 1;
const uint32_t kSignalNetworksMessage = 2;
// Fetch list of networks every two seconds.
const int kNetworksUpdateIntervalMs = 2000;
const int kHighestNetworkPreference = 127;
typedef struct {
Network* net;
std::vector<InterfaceAddress> ips;
} AddressList;
bool CompareNetworks(const Network* a, const Network* b) {
if (a->prefix_length() == b->prefix_length()) {
if (a->name() == b->name()) {
return a->prefix() < b->prefix();
}
}
return a->name() < b->name();
}
bool SortNetworks(const Network* a, const Network* b) {
// Network types will be preferred above everything else while sorting
// Networks.
// Networks are sorted first by type.
if (a->type() != b->type()) {
return a->type() < b->type();
}
IPAddress ip_a = a->GetBestIP();
IPAddress ip_b = b->GetBestIP();
// After type, networks are sorted by IP address precedence values
// from RFC 3484-bis
if (IPAddressPrecedence(ip_a) != IPAddressPrecedence(ip_b)) {
return IPAddressPrecedence(ip_a) > IPAddressPrecedence(ip_b);
}
// TODO(mallinath) - Add VPN and Link speed conditions while sorting.
// Networks are sorted last by key.
return a->key() > b->key();
}
std::string AdapterTypeToString(AdapterType type) {
switch (type) {
case ADAPTER_TYPE_UNKNOWN:
return "Unknown";
case ADAPTER_TYPE_ETHERNET:
return "Ethernet";
case ADAPTER_TYPE_WIFI:
return "Wifi";
case ADAPTER_TYPE_CELLULAR:
return "Cellular";
case ADAPTER_TYPE_VPN:
return "VPN";
case ADAPTER_TYPE_LOOPBACK:
return "Loopback";
default:
RTC_DCHECK(false) << "Invalid type " << type;
return std::string();
}
}
bool IsIgnoredIPv6(const IPAddress& ip) {
if (ip.family() != AF_INET6) {
return false;
}
// Link-local addresses require scope id to be bound successfully.
// However, our IPAddress structure doesn't carry that so the
// information is lost and causes binding failure.
if (IPIsLinkLocal(ip)) {
return true;
}
// Any MAC based IPv6 should be avoided to prevent the MAC tracking.
if (IPIsMacBased(ip)) {
return true;
}
return false;
}
} // namespace
// These addresses are used as the targets to find out the default local address
// on a multi-homed endpoint. They are actually DNS servers.
const char kPublicIPv4Host[] = "8.8.8.8";
const char kPublicIPv6Host[] = "2001:4860:4860::8888";
const int kPublicPort = 53; // DNS port.
std::string MakeNetworkKey(const std::string& name, const IPAddress& prefix,
int prefix_length) {
std::ostringstream ost;
ost << name << "%" << prefix.ToString() << "/" << prefix_length;
return ost.str();
}
NetworkManager::NetworkManager() {
}
NetworkManager::~NetworkManager() {
}
NetworkManager::EnumerationPermission NetworkManager::enumeration_permission()
const {
return ENUMERATION_ALLOWED;
}
bool NetworkManager::GetDefaultLocalAddress(int family, IPAddress* addr) const {
return false;
}
NetworkManagerBase::NetworkManagerBase()
: enumeration_permission_(NetworkManager::ENUMERATION_ALLOWED),
max_ipv6_networks_(kMaxIPv6Networks),
ipv6_enabled_(true) {
}
NetworkManagerBase::~NetworkManagerBase() {
for (const auto& kv : networks_map_) {
delete kv.second;
}
}
NetworkManager::EnumerationPermission
NetworkManagerBase::enumeration_permission() const {
return enumeration_permission_;
}
void NetworkManagerBase::GetAnyAddressNetworks(NetworkList* networks) {
if (!ipv4_any_address_network_) {
const rtc::IPAddress ipv4_any_address(INADDR_ANY);
ipv4_any_address_network_.reset(
new rtc::Network("any", "any", ipv4_any_address, 0));
ipv4_any_address_network_->set_default_local_address_provider(this);
ipv4_any_address_network_->AddIP(ipv4_any_address);
}
networks->push_back(ipv4_any_address_network_.get());
if (ipv6_enabled()) {
if (!ipv6_any_address_network_) {
const rtc::IPAddress ipv6_any_address(in6addr_any);
ipv6_any_address_network_.reset(
new rtc::Network("any", "any", ipv6_any_address, 0));
ipv6_any_address_network_->set_default_local_address_provider(this);
ipv6_any_address_network_->AddIP(ipv6_any_address);
}
networks->push_back(ipv6_any_address_network_.get());
}
}
void NetworkManagerBase::GetNetworks(NetworkList* result) const {
int ipv6_networks = 0;
result->clear();
for (Network* network : networks_) {
// Keep the number of IPv6 networks under |max_ipv6_networks_|.
if (network->prefix().family() == AF_INET6) {
if (ipv6_networks >= max_ipv6_networks_) {
continue;
}
++ipv6_networks;
}
result->push_back(network);
}
}
void NetworkManagerBase::MergeNetworkList(const NetworkList& new_networks,
bool* changed) {
NetworkManager::Stats stats;
MergeNetworkList(new_networks, changed, &stats);
}
void NetworkManagerBase::MergeNetworkList(const NetworkList& new_networks,
bool* changed,
NetworkManager::Stats* stats) {
// AddressList in this map will track IP addresses for all Networks
// with the same key.
std::map<std::string, AddressList> consolidated_address_list;
NetworkList list(new_networks);
// Result of Network merge. Element in this list should have unique key.
NetworkList merged_list;
std::sort(list.begin(), list.end(), CompareNetworks);
*changed = false;
if (networks_.size() != list.size())
*changed = true;
// First, build a set of network-keys to the ipaddresses.
for (Network* network : list) {
bool might_add_to_merged_list = false;
std::string key = MakeNetworkKey(network->name(),
network->prefix(),
network->prefix_length());
if (consolidated_address_list.find(key) ==
consolidated_address_list.end()) {
AddressList addrlist;
addrlist.net = network;
consolidated_address_list[key] = addrlist;
might_add_to_merged_list = true;
}
const std::vector<InterfaceAddress>& addresses = network->GetIPs();
AddressList& current_list = consolidated_address_list[key];
for (const InterfaceAddress& address : addresses) {
current_list.ips.push_back(address);
}
if (!might_add_to_merged_list) {
delete network;
} else {
if (current_list.ips[0].family() == AF_INET) {
stats->ipv4_network_count++;
} else {
ASSERT(current_list.ips[0].family() == AF_INET6);
stats->ipv6_network_count++;
}
}
}
// Next, look for existing network objects to re-use.
for (const auto& kv : consolidated_address_list) {
const std::string& key = kv.first;
Network* net = kv.second.net;
auto existing = networks_map_.find(key);
if (existing == networks_map_.end()) {
// This network is new. Place it in the network map.
merged_list.push_back(net);
networks_map_[key] = net;
// Also, we might have accumulated IPAddresses from the first
// step, set it here.
net->SetIPs(kv.second.ips, true);
*changed = true;
} else {
// This network exists in the map already. Reset its IP addresses.
*changed = existing->second->SetIPs(kv.second.ips, *changed);
merged_list.push_back(existing->second);
if (existing->second != net) {
delete net;
}
}
}
networks_ = merged_list;
// If the network lists changes, we resort it.
if (*changed) {
std::sort(networks_.begin(), networks_.end(), SortNetworks);
// Now network interfaces are sorted, we should set the preference value
// for each of the interfaces we are planning to use.
// Preference order of network interfaces might have changed from previous
// sorting due to addition of higher preference network interface.
// Since we have already sorted the network interfaces based on our
// requirements, we will just assign a preference value starting with 127,
// in decreasing order.
int pref = kHighestNetworkPreference;
for (Network* network : networks_) {
network->set_preference(pref);
if (pref > 0) {
--pref;
} else {
LOG(LS_ERROR) << "Too many network interfaces to handle!";
break;
}
}
}
}
void NetworkManagerBase::set_default_local_addresses(const IPAddress& ipv4,
const IPAddress& ipv6) {
if (ipv4.family() == AF_INET) {
default_local_ipv4_address_ = ipv4;
}
if (ipv6.family() == AF_INET6) {
default_local_ipv6_address_ = ipv6;
}
}
bool NetworkManagerBase::GetDefaultLocalAddress(int family,
IPAddress* ipaddr) const {
if (family == AF_INET) {
*ipaddr = default_local_ipv4_address_;
return true;
} else if (family == AF_INET6) {
*ipaddr = default_local_ipv6_address_;
return true;
}
return false;
}
BasicNetworkManager::BasicNetworkManager()
: thread_(NULL), sent_first_update_(false), start_count_(0),
network_ignore_mask_(kDefaultNetworkIgnoreMask),
ignore_non_default_routes_(false) {
}
BasicNetworkManager::~BasicNetworkManager() {
}
void BasicNetworkManager::OnNetworksChanged() {
LOG(LS_VERBOSE) << "Network change was observed at the network manager";
UpdateNetworksOnce();
}
#if defined(__native_client__)
bool BasicNetworkManager::CreateNetworks(bool include_ignored,
NetworkList* networks) const {
ASSERT(false);
LOG(LS_WARNING) << "BasicNetworkManager doesn't work on NaCl yet";
return false;
}
#elif defined(WEBRTC_POSIX)
void BasicNetworkManager::ConvertIfAddrs(struct ifaddrs* interfaces,
bool include_ignored,
NetworkList* networks) const {
NetworkMap current_networks;
for (struct ifaddrs* cursor = interfaces;
cursor != NULL; cursor = cursor->ifa_next) {
IPAddress prefix;
IPAddress mask;
IPAddress ip;
int scope_id = 0;
// Some interfaces may not have address assigned.
if (!cursor->ifa_addr || !cursor->ifa_netmask)
continue;
switch (cursor->ifa_addr->sa_family) {
case AF_INET: {
ip = IPAddress(
reinterpret_cast<sockaddr_in*>(cursor->ifa_addr)->sin_addr);
mask = IPAddress(
reinterpret_cast<sockaddr_in*>(cursor->ifa_netmask)->sin_addr);
break;
}
case AF_INET6: {
if (ipv6_enabled()) {
ip = IPAddress(
reinterpret_cast<sockaddr_in6*>(cursor->ifa_addr)->sin6_addr);
if (IsIgnoredIPv6(ip)) {
continue;
}
mask = IPAddress(
reinterpret_cast<sockaddr_in6*>(cursor->ifa_netmask)->sin6_addr);
scope_id =
reinterpret_cast<sockaddr_in6*>(cursor->ifa_addr)->sin6_scope_id;
break;
} else {
continue;
}
}
default: {
continue;
}
}
int prefix_length = CountIPMaskBits(mask);
prefix = TruncateIP(ip, prefix_length);
std::string key = MakeNetworkKey(std::string(cursor->ifa_name),
prefix, prefix_length);
auto existing_network = current_networks.find(key);
if (existing_network == current_networks.end()) {
AdapterType adapter_type = ADAPTER_TYPE_UNKNOWN;
if (cursor->ifa_flags & IFF_LOOPBACK) {
adapter_type = ADAPTER_TYPE_LOOPBACK;
}
#if defined(WEBRTC_IOS)
// Cell networks are pdp_ipN on iOS.
if (strncmp(cursor->ifa_name, "pdp_ip", 6) == 0) {
adapter_type = ADAPTER_TYPE_CELLULAR;
}
#endif
// TODO(phoglund): Need to recognize other types as well.
scoped_ptr<Network> network(new Network(cursor->ifa_name,
cursor->ifa_name, prefix,
prefix_length, adapter_type));
network->set_default_local_address_provider(this);
network->set_scope_id(scope_id);
network->AddIP(ip);
network->set_ignored(IsIgnoredNetwork(*network));
if (include_ignored || !network->ignored()) {
networks->push_back(network.release());
}
} else {
(*existing_network).second->AddIP(ip);
}
}
}
bool BasicNetworkManager::CreateNetworks(bool include_ignored,
NetworkList* networks) const {
struct ifaddrs* interfaces;
int error = getifaddrs(&interfaces);
if (error != 0) {
LOG_ERR(LERROR) << "getifaddrs failed to gather interface data: " << error;
return false;
}
ConvertIfAddrs(interfaces, include_ignored, networks);
freeifaddrs(interfaces);
return true;
}
#elif defined(WEBRTC_WIN)
unsigned int GetPrefix(PIP_ADAPTER_PREFIX prefixlist,
const IPAddress& ip, IPAddress* prefix) {
IPAddress current_prefix;
IPAddress best_prefix;
unsigned int best_length = 0;
while (prefixlist) {
// Look for the longest matching prefix in the prefixlist.
if (prefixlist->Address.lpSockaddr == NULL ||
prefixlist->Address.lpSockaddr->sa_family != ip.family()) {
prefixlist = prefixlist->Next;
continue;
}
switch (prefixlist->Address.lpSockaddr->sa_family) {
case AF_INET: {
sockaddr_in* v4_addr =
reinterpret_cast<sockaddr_in*>(prefixlist->Address.lpSockaddr);
current_prefix = IPAddress(v4_addr->sin_addr);
break;
}
case AF_INET6: {
sockaddr_in6* v6_addr =
reinterpret_cast<sockaddr_in6*>(prefixlist->Address.lpSockaddr);
current_prefix = IPAddress(v6_addr->sin6_addr);
break;
}
default: {
prefixlist = prefixlist->Next;
continue;
}
}
if (TruncateIP(ip, prefixlist->PrefixLength) == current_prefix &&
prefixlist->PrefixLength > best_length) {
best_prefix = current_prefix;
best_length = prefixlist->PrefixLength;
}
prefixlist = prefixlist->Next;
}
*prefix = best_prefix;
return best_length;
}
bool BasicNetworkManager::CreateNetworks(bool include_ignored,
NetworkList* networks) const {
NetworkMap current_networks;
// MSDN recommends a 15KB buffer for the first try at GetAdaptersAddresses.
size_t buffer_size = 16384;
scoped_ptr<char[]> adapter_info(new char[buffer_size]);
PIP_ADAPTER_ADDRESSES adapter_addrs =
reinterpret_cast<PIP_ADAPTER_ADDRESSES>(adapter_info.get());
int adapter_flags = (GAA_FLAG_SKIP_DNS_SERVER | GAA_FLAG_SKIP_ANYCAST |
GAA_FLAG_SKIP_MULTICAST | GAA_FLAG_INCLUDE_PREFIX);
int ret = 0;
do {
adapter_info.reset(new char[buffer_size]);
adapter_addrs = reinterpret_cast<PIP_ADAPTER_ADDRESSES>(adapter_info.get());
ret = GetAdaptersAddresses(AF_UNSPEC, adapter_flags,
0, adapter_addrs,
reinterpret_cast<PULONG>(&buffer_size));
} while (ret == ERROR_BUFFER_OVERFLOW);
if (ret != ERROR_SUCCESS) {
return false;
}
int count = 0;
while (adapter_addrs) {
if (adapter_addrs->OperStatus == IfOperStatusUp) {
PIP_ADAPTER_UNICAST_ADDRESS address = adapter_addrs->FirstUnicastAddress;
PIP_ADAPTER_PREFIX prefixlist = adapter_addrs->FirstPrefix;
std::string name;
std::string description;
#if !defined(NDEBUG)
name = ToUtf8(adapter_addrs->FriendlyName,
wcslen(adapter_addrs->FriendlyName));
#endif
description = ToUtf8(adapter_addrs->Description,
wcslen(adapter_addrs->Description));
for (; address; address = address->Next) {
#if defined(NDEBUG)
name = rtc::ToString(count);
#endif
IPAddress ip;
int scope_id = 0;
scoped_ptr<Network> network;
switch (address->Address.lpSockaddr->sa_family) {
case AF_INET: {
sockaddr_in* v4_addr =
reinterpret_cast<sockaddr_in*>(address->Address.lpSockaddr);
ip = IPAddress(v4_addr->sin_addr);
break;
}
case AF_INET6: {
if (ipv6_enabled()) {
sockaddr_in6* v6_addr =
reinterpret_cast<sockaddr_in6*>(address->Address.lpSockaddr);
scope_id = v6_addr->sin6_scope_id;
ip = IPAddress(v6_addr->sin6_addr);
if (IsIgnoredIPv6(ip)) {
continue;
}
break;
} else {
continue;
}
}
default: {
continue;
}
}
IPAddress prefix;
int prefix_length = GetPrefix(prefixlist, ip, &prefix);
std::string key = MakeNetworkKey(name, prefix, prefix_length);
auto existing_network = current_networks.find(key);
if (existing_network == current_networks.end()) {
AdapterType adapter_type = ADAPTER_TYPE_UNKNOWN;
if (adapter_addrs->IfType == IF_TYPE_SOFTWARE_LOOPBACK) {
// TODO(phoglund): Need to recognize other types as well.
adapter_type = ADAPTER_TYPE_LOOPBACK;
}
scoped_ptr<Network> network(new Network(name, description, prefix,
prefix_length, adapter_type));
network->set_default_local_address_provider(this);
network->set_scope_id(scope_id);
network->AddIP(ip);
bool ignored = IsIgnoredNetwork(*network);
network->set_ignored(ignored);
if (include_ignored || !network->ignored()) {
networks->push_back(network.release());
}
} else {
(*existing_network).second->AddIP(ip);
}
}
// Count is per-adapter - all 'Networks' created from the same
// adapter need to have the same name.
++count;
}
adapter_addrs = adapter_addrs->Next;
}
return true;
}
#endif // WEBRTC_WIN
#if defined(WEBRTC_LINUX)
bool IsDefaultRoute(const std::string& network_name) {
FileStream fs;
if (!fs.Open("/proc/net/route", "r", NULL)) {
LOG(LS_WARNING) << "Couldn't read /proc/net/route, skipping default "
<< "route check (assuming everything is a default route).";
return true;
} else {
std::string line;
while (fs.ReadLine(&line) == SR_SUCCESS) {
char iface_name[256];
unsigned int iface_ip, iface_gw, iface_mask, iface_flags;
if (sscanf(line.c_str(),
"%255s %8X %8X %4X %*d %*u %*d %8X",
iface_name, &iface_ip, &iface_gw,
&iface_flags, &iface_mask) == 5 &&
network_name == iface_name &&
iface_mask == 0 &&
(iface_flags & (RTF_UP | RTF_HOST)) == RTF_UP) {
return true;
}
}
}
return false;
}
#endif
bool BasicNetworkManager::IsIgnoredNetwork(const Network& network) const {
// Ignore networks on the explicit ignore list.
for (const std::string& ignored_name : network_ignore_list_) {
if (network.name() == ignored_name) {
return true;
}
}
if (network_ignore_mask_ & network.type()) {
return true;
}
#if defined(WEBRTC_POSIX)
// Filter out VMware/VirtualBox interfaces, typically named vmnet1,
// vmnet8, or vboxnet0.
if (strncmp(network.name().c_str(), "vmnet", 5) == 0 ||
strncmp(network.name().c_str(), "vnic", 4) == 0 ||
strncmp(network.name().c_str(), "vboxnet", 7) == 0) {
return true;
}
#if defined(WEBRTC_LINUX)
// Make sure this is a default route, if we're ignoring non-defaults.
if (ignore_non_default_routes_ && !IsDefaultRoute(network.name())) {
return true;
}
#endif
#elif defined(WEBRTC_WIN)
// Ignore any HOST side vmware adapters with a description like:
// VMware Virtual Ethernet Adapter for VMnet1
// but don't ignore any GUEST side adapters with a description like:
// VMware Accelerated AMD PCNet Adapter #2
if (strstr(network.description().c_str(), "VMnet") != NULL) {
return true;
}
#endif
// Ignore any networks with a 0.x.y.z IP
if (network.prefix().family() == AF_INET) {
return (network.prefix().v4AddressAsHostOrderInteger() < 0x01000000);
}
return false;
}
void BasicNetworkManager::StartUpdating() {
thread_ = Thread::Current();
if (start_count_) {
// If network interfaces are already discovered and signal is sent,
// we should trigger network signal immediately for the new clients
// to start allocating ports.
if (sent_first_update_)
thread_->Post(this, kSignalNetworksMessage);
} else {
thread_->Post(this, kUpdateNetworksMessage);
StartNetworkMonitor();
}
++start_count_;
}
void BasicNetworkManager::StopUpdating() {
ASSERT(Thread::Current() == thread_);
if (!start_count_)
return;
--start_count_;
if (!start_count_) {
thread_->Clear(this);
sent_first_update_ = false;
StopNetworkMonitor();
}
}
void BasicNetworkManager::StartNetworkMonitor() {
NetworkMonitorFactory* factory = NetworkMonitorFactory::GetFactory();
if (factory == nullptr) {
return;
}
network_monitor_.reset(factory->CreateNetworkMonitor());
if (!network_monitor_) {
return;
}
network_monitor_->SignalNetworksChanged.connect(
this, &BasicNetworkManager::OnNetworksChanged);
network_monitor_->Start();
}
void BasicNetworkManager::StopNetworkMonitor() {
if (!network_monitor_) {
return;
}
network_monitor_->Stop();
network_monitor_.reset();
}
void BasicNetworkManager::OnMessage(Message* msg) {
switch (msg->message_id) {
case kUpdateNetworksMessage: {
UpdateNetworksContinually();
break;
}
case kSignalNetworksMessage: {
SignalNetworksChanged();
break;
}
default:
ASSERT(false);
}
}
IPAddress BasicNetworkManager::QueryDefaultLocalAddress(int family) const {
ASSERT(thread_ == Thread::Current());
ASSERT(thread_->socketserver() != nullptr);
ASSERT(family == AF_INET || family == AF_INET6);
scoped_ptr<AsyncSocket> socket(
thread_->socketserver()->CreateAsyncSocket(family, SOCK_DGRAM));
if (!socket) {
return IPAddress();
}
if (!socket->Connect(
SocketAddress(family == AF_INET ? kPublicIPv4Host : kPublicIPv6Host,
kPublicPort))) {
return IPAddress();
}
return socket->GetLocalAddress().ipaddr();
}
void BasicNetworkManager::UpdateNetworksOnce() {
if (!start_count_)
return;
ASSERT(Thread::Current() == thread_);
NetworkList list;
if (!CreateNetworks(false, &list)) {
SignalError();
} else {
bool changed;
NetworkManager::Stats stats;
MergeNetworkList(list, &changed, &stats);
set_default_local_addresses(QueryDefaultLocalAddress(AF_INET),
QueryDefaultLocalAddress(AF_INET6));
if (changed || !sent_first_update_) {
SignalNetworksChanged();
sent_first_update_ = true;
}
}
}
void BasicNetworkManager::UpdateNetworksContinually() {
UpdateNetworksOnce();
thread_->PostDelayed(kNetworksUpdateIntervalMs, this, kUpdateNetworksMessage);
}
void BasicNetworkManager::DumpNetworks(bool include_ignored) {
NetworkList list;
CreateNetworks(include_ignored, &list);
LOG(LS_INFO) << "NetworkManager detected " << list.size() << " networks:";
for (const Network* network : list) {
if (!network->ignored() || include_ignored) {
LOG(LS_INFO) << network->ToString() << ": "
<< network->description()
<< ((network->ignored()) ? ", Ignored" : "");
}
}
// Release the network list created previously.
// Do this in a seperated for loop for better readability.
for (Network* network : list) {
delete network;
}
}
Network::Network(const std::string& name,
const std::string& desc,
const IPAddress& prefix,
int prefix_length)
: name_(name),
description_(desc),
prefix_(prefix),
prefix_length_(prefix_length),
key_(MakeNetworkKey(name, prefix, prefix_length)),
scope_id_(0),
ignored_(false),
type_(ADAPTER_TYPE_UNKNOWN),
preference_(0) {}
Network::Network(const std::string& name,
const std::string& desc,
const IPAddress& prefix,
int prefix_length,
AdapterType type)
: name_(name),
description_(desc),
prefix_(prefix),
prefix_length_(prefix_length),
key_(MakeNetworkKey(name, prefix, prefix_length)),
scope_id_(0),
ignored_(false),
type_(type),
preference_(0) {}
Network::~Network() = default;
// Sets the addresses of this network. Returns true if the address set changed.
// Change detection is short circuited if the changed argument is true.
bool Network::SetIPs(const std::vector<InterfaceAddress>& ips, bool changed) {
// Detect changes with a nested loop; n-squared but we expect on the order
// of 2-3 addresses per network.
changed = changed || ips.size() != ips_.size();
if (!changed) {
for (const InterfaceAddress& ip : ips) {
if (std::find(ips_.begin(), ips_.end(), ip) == ips_.end()) {
changed = true;
break;
}
}
}
ips_ = ips;
return changed;
}
// Select the best IP address to use from this Network.
IPAddress Network::GetBestIP() const {
if (ips_.size() == 0) {
return IPAddress();
}
if (prefix_.family() == AF_INET) {
return static_cast<IPAddress>(ips_.at(0));
}
InterfaceAddress selected_ip, ula_ip;
for (const InterfaceAddress& ip : ips_) {
// Ignore any address which has been deprecated already.
if (ip.ipv6_flags() & IPV6_ADDRESS_FLAG_DEPRECATED)
continue;
// ULA address should only be returned when we have no other
// global IP.
if (IPIsULA(static_cast<const IPAddress&>(ip))) {
ula_ip = ip;
continue;
}
selected_ip = ip;
// Search could stop once a temporary non-deprecated one is found.
if (ip.ipv6_flags() & IPV6_ADDRESS_FLAG_TEMPORARY)
break;
}
// No proper global IPv6 address found, use ULA instead.
if (IPIsUnspec(selected_ip) && !IPIsUnspec(ula_ip)) {
selected_ip = ula_ip;
}
return static_cast<IPAddress>(selected_ip);
}
std::string Network::ToString() const {
std::stringstream ss;
// Print out the first space-terminated token of the network desc, plus
// the IP address.
ss << "Net[" << description_.substr(0, description_.find(' '))
<< ":" << prefix_.ToSensitiveString() << "/" << prefix_length_
<< ":" << AdapterTypeToString(type_) << "]";
return ss.str();
}
} // namespace rtc