| // Copyright (c) 2005, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // --- |
| // Author: Sanjay Ghemawat |
| |
| #include <config.h> |
| #include <errno.h> // for EAGAIN, errno |
| #include <fcntl.h> // for open, O_RDWR |
| #include <stddef.h> // for size_t, NULL, ptrdiff_t |
| #if defined HAVE_STDINT_H |
| #include <stdint.h> // for uintptr_t, intptr_t |
| #elif defined HAVE_INTTYPES_H |
| #include <inttypes.h> |
| #else |
| #include <sys/types.h> |
| #endif |
| #ifdef HAVE_MMAP |
| #include <sys/mman.h> // for munmap, mmap, MADV_DONTNEED, etc |
| #endif |
| #ifdef HAVE_UNISTD_H |
| #include <unistd.h> // for sbrk, getpagesize, off_t |
| #endif |
| #include <new> // for operator new |
| #include <gperftools/malloc_extension.h> |
| #include "base/basictypes.h" |
| #include "base/commandlineflags.h" |
| #include "base/spinlock.h" // for SpinLockHolder, SpinLock, etc |
| #include "common.h" |
| #include "internal_logging.h" |
| |
| // On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old |
| // form of the name instead. |
| #ifndef MAP_ANONYMOUS |
| # define MAP_ANONYMOUS MAP_ANON |
| #endif |
| |
| // Linux added support for MADV_FREE in 4.5 but we aren't ready to use it |
| // yet. Among other things, using compile-time detection leads to poor |
| // results when compiling on a system with MADV_FREE and running on a |
| // system without it. See https://github.com/gperftools/gperftools/issues/780. |
| #if defined(__linux__) && defined(MADV_FREE) |
| # undef MADV_FREE |
| #endif |
| |
| // MADV_FREE is specifically designed for use by malloc(), but only |
| // FreeBSD supports it; in linux we fall back to the somewhat inferior |
| // MADV_DONTNEED. |
| #if !defined(MADV_FREE) && defined(MADV_DONTNEED) |
| # define MADV_FREE MADV_DONTNEED |
| #endif |
| |
| // Solaris has a bug where it doesn't declare madvise() for C++. |
| // http://www.opensolaris.org/jive/thread.jspa?threadID=21035&tstart=0 |
| #if defined(__sun) && defined(__SVR4) |
| # include <sys/types.h> // for caddr_t |
| extern "C" { extern int madvise(caddr_t, size_t, int); } |
| #endif |
| |
| // Set kDebugMode mode so that we can have use C++ conditionals |
| // instead of preprocessor conditionals. |
| #ifdef NDEBUG |
| static const bool kDebugMode = false; |
| #else |
| static const bool kDebugMode = true; |
| #endif |
| |
| // TODO(sanjay): Move the code below into the tcmalloc namespace |
| using tcmalloc::kLog; |
| using tcmalloc::Log; |
| |
| // Anonymous namespace to avoid name conflicts on "CheckAddressBits". |
| namespace { |
| |
| // Check that no bit is set at position ADDRESS_BITS or higher. |
| template <int ADDRESS_BITS> bool CheckAddressBits(uintptr_t ptr) { |
| return (ptr >> ADDRESS_BITS) == 0; |
| } |
| |
| // Specialize for the bit width of a pointer to avoid undefined shift. |
| template <> bool CheckAddressBits<8 * sizeof(void*)>(uintptr_t ptr) { |
| return true; |
| } |
| |
| #if defined(OS_LINUX) && defined(__x86_64__) |
| #define ASLR_IS_SUPPORTED |
| #endif |
| |
| #if defined(ASLR_IS_SUPPORTED) |
| // From libdieharder, public domain library by Bob Jenkins (rngav.c). |
| // Described at http://burtleburtle.net/bob/rand/smallprng.html. |
| // Not cryptographically secure, but good enough for what we need. |
| typedef uint32_t u4; |
| struct ranctx { |
| u4 a; |
| u4 b; |
| u4 c; |
| u4 d; |
| }; |
| |
| #define rot(x,k) (((x)<<(k))|((x)>>(32-(k)))) |
| |
| u4 ranval(ranctx* x) { |
| /* xxx: the generator being tested */ |
| u4 e = x->a - rot(x->b, 27); |
| x->a = x->b ^ rot(x->c, 17); |
| x->b = x->c + x->d; |
| x->c = x->d + e; |
| x->d = e + x->a; |
| return x->d; |
| } |
| |
| void raninit(ranctx* x, u4 seed) { |
| u4 i; |
| x->a = 0xf1ea5eed; |
| x->b = x->c = x->d = seed; |
| for (i = 0; i < 20; ++i) { |
| (void) ranval(x); |
| } |
| } |
| |
| // If the kernel cannot honor the hint in arch_get_unmapped_area_topdown, it |
| // will simply ignore it. So we give a hint that has a good chance of |
| // working. |
| // The mmap top-down allocator will normally allocate below TASK_SIZE - gap, |
| // with a gap that depends on the max stack size. See x86/mm/mmap.c. We |
| // should make allocations that are below this area, which would be |
| // 0x7ffbf8000000. |
| // We use 0x3ffffffff000 as the mask so that we only "pollute" half of the |
| // address space. In the unlikely case where fragmentation would become an |
| // issue, the kernel will still have another half to use. |
| const uint64_t kRandomAddressMask = 0x3ffffffff000ULL; |
| |
| #endif // defined(ASLR_IS_SUPPORTED) |
| |
| // Give a random "hint" that is suitable for use with mmap(). This cannot make |
| // mmap fail, as the kernel will simply not follow the hint if it can't. |
| // However, this will create address space fragmentation. Currently, we only |
| // implement it on x86_64, where we have a 47 bits userland address space and |
| // fragmentation is not an issue. |
| void* GetRandomAddrHint() { |
| #if !defined(ASLR_IS_SUPPORTED) |
| return NULL; |
| #else |
| // Note: we are protected by the general TCMalloc_SystemAlloc spinlock. Given |
| // the nature of what we're doing, it wouldn't be critical if we weren't for |
| // ctx, but it is for the "initialized" variable. |
| // It's nice to share the state between threads, because scheduling will add |
| // some randomness to the succession of ranval() calls. |
| static ranctx ctx; |
| static bool initialized = false; |
| if (!initialized) { |
| initialized = true; |
| // We really want this to be a stack variable and don't want any compiler |
| // optimization. We're using its address as a poor-man source of |
| // randomness. |
| volatile char c; |
| // Pre-initialize our seed with a "random" address in case /dev/urandom is |
| // not available. |
| uint32_t seed = (reinterpret_cast<uint64_t>(&c) >> 32) ^ |
| reinterpret_cast<uint64_t>(&c); |
| int urandom_fd = open("/dev/urandom", O_RDONLY); |
| if (urandom_fd >= 0) { |
| ssize_t len; |
| len = read(urandom_fd, &seed, sizeof(seed)); |
| ASSERT(len == sizeof(seed)); |
| int ret = close(urandom_fd); |
| ASSERT(ret == 0); |
| } |
| raninit(&ctx, seed); |
| } |
| uint64_t random_address = (static_cast<uint64_t>(ranval(&ctx)) << 32) | |
| ranval(&ctx); |
| // A a bit-wise "and" won't bias our random distribution. |
| random_address &= kRandomAddressMask; |
| return reinterpret_cast<void*>(random_address); |
| #endif // ASLR_IS_SUPPORTED |
| } |
| |
| // Allocate |length| bytes of memory using mmap(). The memory will be |
| // readable and writeable, but not executable. |
| // Like mmap(), we will return MAP_FAILED on failure. |
| // |is_aslr_enabled| controls address space layout randomization. When true, we |
| // will put the first mapping at a random address and will then try to grow it. |
| // If it's not possible to grow an existing mapping, a new one will be created. |
| void* AllocWithMmap(size_t length, bool is_aslr_enabled) { |
| // Note: we are protected by the general TCMalloc_SystemAlloc spinlock. |
| static void* address_hint = NULL; |
| #if defined(ASLR_IS_SUPPORTED) |
| if (is_aslr_enabled && |
| (!address_hint || |
| reinterpret_cast<uint64_t>(address_hint) & ~kRandomAddressMask)) { |
| address_hint = GetRandomAddrHint(); |
| } |
| #endif // ASLR_IS_SUPPORTED |
| |
| // address_hint is likely to make us grow an existing mapping. |
| void* result = mmap(address_hint, length, PROT_READ|PROT_WRITE, |
| MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| #if defined(ASLR_IS_SUPPORTED) |
| if (result == address_hint) { |
| // If mmap() succeeded at a address_hint, our next mmap() will try to grow |
| // the current mapping as long as it's compatible with our ASLR mask. |
| // This has been done for performance reasons, see crbug.com/173371. |
| // It should be possible to strike a better balance between performance |
| // and security but will be done at a later date. |
| // If this overflows, it could only set address_hint to NULL, which is |
| // what we want (and can't happen on the currently supported architecture). |
| address_hint = static_cast<char*>(result) + length; |
| } else { |
| // mmap failed or a collision prevented the kernel from honoring the hint, |
| // reset the hint. |
| address_hint = NULL; |
| } |
| #endif // ASLR_IS_SUPPORTED |
| return result; |
| } |
| |
| } // Anonymous namespace to avoid name conflicts on "CheckAddressBits". |
| |
| COMPILE_ASSERT(kAddressBits <= 8 * sizeof(void*), |
| address_bits_larger_than_pointer_size); |
| |
| // Structure for discovering alignment |
| union MemoryAligner { |
| void* p; |
| double d; |
| size_t s; |
| } CACHELINE_ALIGNED; |
| |
| static SpinLock spinlock(SpinLock::LINKER_INITIALIZED); |
| |
| #if defined(HAVE_MMAP) || defined(MADV_FREE) |
| #ifdef HAVE_GETPAGESIZE |
| static size_t pagesize = 0; |
| #endif |
| #endif |
| |
| // The current system allocator |
| SysAllocator* sys_alloc = NULL; |
| |
| // Configuration parameters. |
| DEFINE_int32(malloc_devmem_start, |
| EnvToInt("TCMALLOC_DEVMEM_START", 0), |
| "Physical memory starting location in MB for /dev/mem allocation." |
| " Setting this to 0 disables /dev/mem allocation"); |
| DEFINE_int32(malloc_devmem_limit, |
| EnvToInt("TCMALLOC_DEVMEM_LIMIT", 0), |
| "Physical memory limit location in MB for /dev/mem allocation." |
| " Setting this to 0 means no limit."); |
| DEFINE_bool(malloc_skip_sbrk, |
| EnvToBool("TCMALLOC_SKIP_SBRK", false), |
| "Whether sbrk can be used to obtain memory."); |
| DEFINE_bool(malloc_skip_mmap, |
| EnvToBool("TCMALLOC_SKIP_MMAP", false), |
| "Whether mmap can be used to obtain memory."); |
| |
| DEFINE_bool(malloc_random_allocator, |
| #if defined(ASLR_IS_SUPPORTED) |
| EnvToBool("TCMALLOC_ASLR", true), |
| #else |
| EnvToBool("TCMALLOC_ASLR", false), |
| #endif |
| "Whether to randomize the address space via mmap()."); |
| |
| // static allocators |
| class SbrkSysAllocator : public SysAllocator { |
| public: |
| SbrkSysAllocator() : SysAllocator() { |
| } |
| void* Alloc(size_t size, size_t *actual_size, size_t alignment); |
| }; |
| static char sbrk_space[sizeof(SbrkSysAllocator)]; |
| |
| class MmapSysAllocator : public SysAllocator { |
| public: |
| MmapSysAllocator() : SysAllocator() { |
| } |
| void* Alloc(size_t size, size_t *actual_size, size_t alignment); |
| }; |
| static char mmap_space[sizeof(MmapSysAllocator)]; |
| |
| class DevMemSysAllocator : public SysAllocator { |
| public: |
| DevMemSysAllocator() : SysAllocator() { |
| } |
| void* Alloc(size_t size, size_t *actual_size, size_t alignment); |
| }; |
| |
| class DefaultSysAllocator : public SysAllocator { |
| public: |
| DefaultSysAllocator() : SysAllocator() { |
| for (int i = 0; i < kMaxAllocators; i++) { |
| failed_[i] = true; |
| allocs_[i] = NULL; |
| names_[i] = NULL; |
| } |
| } |
| void SetChildAllocator(SysAllocator* alloc, unsigned int index, |
| const char* name) { |
| if (index < kMaxAllocators && alloc != NULL) { |
| allocs_[index] = alloc; |
| failed_[index] = false; |
| names_[index] = name; |
| } |
| } |
| void* Alloc(size_t size, size_t *actual_size, size_t alignment); |
| |
| private: |
| static const int kMaxAllocators = 2; |
| bool failed_[kMaxAllocators]; |
| SysAllocator* allocs_[kMaxAllocators]; |
| const char* names_[kMaxAllocators]; |
| }; |
| static char default_space[sizeof(DefaultSysAllocator)]; |
| static const char sbrk_name[] = "SbrkSysAllocator"; |
| static const char mmap_name[] = "MmapSysAllocator"; |
| |
| |
| void* SbrkSysAllocator::Alloc(size_t size, size_t *actual_size, |
| size_t alignment) { |
| #ifndef HAVE_SBRK |
| return NULL; |
| #else |
| // Check if we should use sbrk allocation. |
| // FLAGS_malloc_skip_sbrk starts out as false (its uninitialized |
| // state) and eventually gets initialized to the specified value. Note |
| // that this code runs for a while before the flags are initialized. |
| // That means that even if this flag is set to true, some (initial) |
| // memory will be allocated with sbrk before the flag takes effect. |
| if (FLAGS_malloc_skip_sbrk) { |
| return NULL; |
| } |
| |
| // sbrk will release memory if passed a negative number, so we do |
| // a strict check here |
| if (static_cast<ptrdiff_t>(size + alignment) < 0) return NULL; |
| |
| // This doesn't overflow because TCMalloc_SystemAlloc has already |
| // tested for overflow at the alignment boundary. |
| size = ((size + alignment - 1) / alignment) * alignment; |
| |
| // "actual_size" indicates that the bytes from the returned pointer |
| // p up to and including (p + actual_size - 1) have been allocated. |
| if (actual_size) { |
| *actual_size = size; |
| } |
| |
| // Check that we we're not asking for so much more memory that we'd |
| // wrap around the end of the virtual address space. (This seems |
| // like something sbrk() should check for us, and indeed opensolaris |
| // does, but glibc does not: |
| // http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/lib/libc/port/sys/sbrk.c?a=true |
| // http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/libc/misc/sbrk.c?rev=1.1.2.1&content-type=text/plain&cvsroot=glibc |
| // Without this check, sbrk may succeed when it ought to fail.) |
| if (reinterpret_cast<intptr_t>(sbrk(0)) + size < size) { |
| return NULL; |
| } |
| |
| void* result = sbrk(size); |
| if (result == reinterpret_cast<void*>(-1)) { |
| return NULL; |
| } |
| |
| // Is it aligned? |
| uintptr_t ptr = reinterpret_cast<uintptr_t>(result); |
| if ((ptr & (alignment-1)) == 0) return result; |
| |
| // Try to get more memory for alignment |
| size_t extra = alignment - (ptr & (alignment-1)); |
| void* r2 = sbrk(extra); |
| if (reinterpret_cast<uintptr_t>(r2) == (ptr + size)) { |
| // Contiguous with previous result |
| return reinterpret_cast<void*>(ptr + extra); |
| } |
| |
| // Give up and ask for "size + alignment - 1" bytes so |
| // that we can find an aligned region within it. |
| result = sbrk(size + alignment - 1); |
| if (result == reinterpret_cast<void*>(-1)) { |
| return NULL; |
| } |
| ptr = reinterpret_cast<uintptr_t>(result); |
| if ((ptr & (alignment-1)) != 0) { |
| ptr += alignment - (ptr & (alignment-1)); |
| } |
| return reinterpret_cast<void*>(ptr); |
| #endif // HAVE_SBRK |
| } |
| |
| void* MmapSysAllocator::Alloc(size_t size, size_t *actual_size, |
| size_t alignment) { |
| #ifndef HAVE_MMAP |
| return NULL; |
| #else |
| // Check if we should use mmap allocation. |
| // FLAGS_malloc_skip_mmap starts out as false (its uninitialized |
| // state) and eventually gets initialized to the specified value. Note |
| // that this code runs for a while before the flags are initialized. |
| // Chances are we never get here before the flags are initialized since |
| // sbrk is used until the heap is exhausted (before mmap is used). |
| if (FLAGS_malloc_skip_mmap) { |
| return NULL; |
| } |
| |
| // Enforce page alignment |
| if (pagesize == 0) pagesize = getpagesize(); |
| if (alignment < pagesize) alignment = pagesize; |
| size_t aligned_size = ((size + alignment - 1) / alignment) * alignment; |
| if (aligned_size < size) { |
| return NULL; |
| } |
| size = aligned_size; |
| |
| // "actual_size" indicates that the bytes from the returned pointer |
| // p up to and including (p + actual_size - 1) have been allocated. |
| if (actual_size) { |
| *actual_size = size; |
| } |
| |
| // Ask for extra memory if alignment > pagesize |
| size_t extra = 0; |
| if (alignment > pagesize) { |
| extra = alignment - pagesize; |
| } |
| |
| // Note: size + extra does not overflow since: |
| // size + alignment < (1<<NBITS). |
| // and extra <= alignment |
| // therefore size + extra < (1<<NBITS) |
| void* result = AllocWithMmap(size + extra, FLAGS_malloc_random_allocator); |
| if (result == reinterpret_cast<void*>(MAP_FAILED)) { |
| return NULL; |
| } |
| |
| // Adjust the return memory so it is aligned |
| uintptr_t ptr = reinterpret_cast<uintptr_t>(result); |
| size_t adjust = 0; |
| if ((ptr & (alignment - 1)) != 0) { |
| adjust = alignment - (ptr & (alignment - 1)); |
| } |
| |
| // Return the unused memory to the system |
| if (adjust > 0) { |
| munmap(reinterpret_cast<void*>(ptr), adjust); |
| } |
| if (adjust < extra) { |
| munmap(reinterpret_cast<void*>(ptr + adjust + size), extra - adjust); |
| } |
| |
| ptr += adjust; |
| return reinterpret_cast<void*>(ptr); |
| #endif // HAVE_MMAP |
| } |
| |
| void* DevMemSysAllocator::Alloc(size_t size, size_t *actual_size, |
| size_t alignment) { |
| #ifndef HAVE_MMAP |
| return NULL; |
| #else |
| static bool initialized = false; |
| static off_t physmem_base; // next physical memory address to allocate |
| static off_t physmem_limit; // maximum physical address allowed |
| static int physmem_fd; // file descriptor for /dev/mem |
| |
| // Check if we should use /dev/mem allocation. Note that it may take |
| // a while to get this flag initialized, so meanwhile we fall back to |
| // the next allocator. (It looks like 7MB gets allocated before |
| // this flag gets initialized -khr.) |
| if (FLAGS_malloc_devmem_start == 0) { |
| // NOTE: not a devmem_failure - we'd like TCMalloc_SystemAlloc to |
| // try us again next time. |
| return NULL; |
| } |
| |
| if (!initialized) { |
| physmem_fd = open("/dev/mem", O_RDWR); |
| if (physmem_fd < 0) { |
| return NULL; |
| } |
| physmem_base = FLAGS_malloc_devmem_start*1024LL*1024LL; |
| physmem_limit = FLAGS_malloc_devmem_limit*1024LL*1024LL; |
| initialized = true; |
| } |
| |
| // Enforce page alignment |
| if (pagesize == 0) pagesize = getpagesize(); |
| if (alignment < pagesize) alignment = pagesize; |
| size_t aligned_size = ((size + alignment - 1) / alignment) * alignment; |
| if (aligned_size < size) { |
| return NULL; |
| } |
| size = aligned_size; |
| |
| // "actual_size" indicates that the bytes from the returned pointer |
| // p up to and including (p + actual_size - 1) have been allocated. |
| if (actual_size) { |
| *actual_size = size; |
| } |
| |
| // Ask for extra memory if alignment > pagesize |
| size_t extra = 0; |
| if (alignment > pagesize) { |
| extra = alignment - pagesize; |
| } |
| |
| // check to see if we have any memory left |
| if (physmem_limit != 0 && |
| ((size + extra) > (physmem_limit - physmem_base))) { |
| return NULL; |
| } |
| |
| // Note: size + extra does not overflow since: |
| // size + alignment < (1<<NBITS). |
| // and extra <= alignment |
| // therefore size + extra < (1<<NBITS) |
| void *result = mmap(0, size + extra, PROT_WRITE|PROT_READ, |
| MAP_SHARED, physmem_fd, physmem_base); |
| if (result == reinterpret_cast<void*>(MAP_FAILED)) { |
| return NULL; |
| } |
| uintptr_t ptr = reinterpret_cast<uintptr_t>(result); |
| |
| // Adjust the return memory so it is aligned |
| size_t adjust = 0; |
| if ((ptr & (alignment - 1)) != 0) { |
| adjust = alignment - (ptr & (alignment - 1)); |
| } |
| |
| // Return the unused virtual memory to the system |
| if (adjust > 0) { |
| munmap(reinterpret_cast<void*>(ptr), adjust); |
| } |
| if (adjust < extra) { |
| munmap(reinterpret_cast<void*>(ptr + adjust + size), extra - adjust); |
| } |
| |
| ptr += adjust; |
| physmem_base += adjust + size; |
| |
| return reinterpret_cast<void*>(ptr); |
| #endif // HAVE_MMAP |
| } |
| |
| void* DefaultSysAllocator::Alloc(size_t size, size_t *actual_size, |
| size_t alignment) { |
| for (int i = 0; i < kMaxAllocators; i++) { |
| if (!failed_[i] && allocs_[i] != NULL) { |
| void* result = allocs_[i]->Alloc(size, actual_size, alignment); |
| if (result != NULL) { |
| return result; |
| } |
| failed_[i] = true; |
| } |
| } |
| // After both failed, reset "failed_" to false so that a single failed |
| // allocation won't make the allocator never work again. |
| for (int i = 0; i < kMaxAllocators; i++) { |
| failed_[i] = false; |
| } |
| return NULL; |
| } |
| |
| static bool system_alloc_inited = false; |
| void InitSystemAllocators(void) { |
| MmapSysAllocator *mmap = new (mmap_space) MmapSysAllocator(); |
| SbrkSysAllocator *sbrk = new (sbrk_space) SbrkSysAllocator(); |
| |
| // In 64-bit debug mode, place the mmap allocator first since it |
| // allocates pointers that do not fit in 32 bits and therefore gives |
| // us better testing of code's 64-bit correctness. It also leads to |
| // less false negatives in heap-checking code. (Numbers are less |
| // likely to look like pointers and therefore the conservative gc in |
| // the heap-checker is less likely to misinterpret a number as a |
| // pointer). |
| DefaultSysAllocator *sdef = new (default_space) DefaultSysAllocator(); |
| // Unfortunately, this code runs before flags are initialized. So |
| // we can't use FLAGS_malloc_random_allocator. |
| #if defined(ASLR_IS_SUPPORTED) |
| // Our only random allocator is mmap. |
| sdef->SetChildAllocator(mmap, 0, mmap_name); |
| #else |
| if (kDebugMode && sizeof(void*) > 4) { |
| sdef->SetChildAllocator(mmap, 0, mmap_name); |
| sdef->SetChildAllocator(sbrk, 1, sbrk_name); |
| } else { |
| sdef->SetChildAllocator(sbrk, 0, sbrk_name); |
| sdef->SetChildAllocator(mmap, 1, mmap_name); |
| } |
| #endif // ASLR_IS_SUPPORTED |
| sys_alloc = sdef; |
| } |
| |
| void* TCMalloc_SystemAlloc(size_t size, size_t *actual_size, |
| size_t alignment) { |
| // Discard requests that overflow |
| if (size + alignment < size) return NULL; |
| |
| SpinLockHolder lock_holder(&spinlock); |
| |
| if (!system_alloc_inited) { |
| InitSystemAllocators(); |
| system_alloc_inited = true; |
| } |
| |
| // Enforce minimum alignment |
| if (alignment < sizeof(MemoryAligner)) alignment = sizeof(MemoryAligner); |
| |
| void* result = sys_alloc->Alloc(size, actual_size, alignment); |
| if (result != NULL) { |
| if (actual_size) { |
| CheckAddressBits<kAddressBits>( |
| reinterpret_cast<uintptr_t>(result) + *actual_size - 1); |
| } else { |
| CheckAddressBits<kAddressBits>( |
| reinterpret_cast<uintptr_t>(result) + size - 1); |
| } |
| } |
| return result; |
| } |
| |
| size_t TCMalloc_SystemAddGuard(void* start, size_t size) { |
| #ifdef HAVE_GETPAGESIZE |
| if (pagesize == 0) |
| pagesize = getpagesize(); |
| |
| if (size < pagesize || (reinterpret_cast<size_t>(start) % pagesize) != 0) |
| return 0; |
| |
| if (!mprotect(start, pagesize, PROT_NONE)) |
| return pagesize; |
| #endif |
| |
| return 0; |
| } |
| |
| void TCMalloc_SystemRelease(void* start, size_t length) { |
| #ifdef MADV_FREE |
| if (FLAGS_malloc_devmem_start) { |
| // It's not safe to use MADV_FREE/MADV_DONTNEED if we've been |
| // mapping /dev/mem for heap memory. |
| return; |
| } |
| if (pagesize == 0) pagesize = getpagesize(); |
| const size_t pagemask = pagesize - 1; |
| |
| size_t new_start = reinterpret_cast<size_t>(start); |
| size_t end = new_start + length; |
| size_t new_end = end; |
| |
| // Round up the starting address and round down the ending address |
| // to be page aligned: |
| new_start = (new_start + pagesize - 1) & ~pagemask; |
| new_end = new_end & ~pagemask; |
| |
| ASSERT((new_start & pagemask) == 0); |
| ASSERT((new_end & pagemask) == 0); |
| ASSERT(new_start >= reinterpret_cast<size_t>(start)); |
| ASSERT(new_end <= end); |
| |
| if (new_end > new_start) { |
| // Note -- ignoring most return codes, because if this fails it |
| // doesn't matter... |
| while (madvise(reinterpret_cast<char*>(new_start), new_end - new_start, |
| MADV_FREE) == -1 && |
| errno == EAGAIN) { |
| // NOP |
| } |
| } |
| #endif |
| } |
| |
| void TCMalloc_SystemCommit(void* start, size_t length) { |
| // Nothing to do here. TCMalloc_SystemRelease does not alter pages |
| // such that they need to be re-committed before they can be used by the |
| // application. |
| } |