| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/ns/nsx_core.h" |
| |
| #include <arm_neon.h> |
| |
| #include "rtc_base/checks.h" |
| |
| // Constants to compensate for shifting signal log(2^shifts). |
| const int16_t WebRtcNsx_kLogTable[9] = { |
| 0, 177, 355, 532, 710, 887, 1065, 1242, 1420 |
| }; |
| |
| const int16_t WebRtcNsx_kCounterDiv[201] = { |
| 32767, 16384, 10923, 8192, 6554, 5461, 4681, 4096, 3641, 3277, 2979, 2731, |
| 2521, 2341, 2185, 2048, 1928, 1820, 1725, 1638, 1560, 1489, 1425, 1365, 1311, |
| 1260, 1214, 1170, 1130, 1092, 1057, 1024, 993, 964, 936, 910, 886, 862, 840, |
| 819, 799, 780, 762, 745, 728, 712, 697, 683, 669, 655, 643, 630, 618, 607, |
| 596, 585, 575, 565, 555, 546, 537, 529, 520, 512, 504, 496, 489, 482, 475, |
| 468, 462, 455, 449, 443, 437, 431, 426, 420, 415, 410, 405, 400, 395, 390, |
| 386, 381, 377, 372, 368, 364, 360, 356, 352, 349, 345, 341, 338, 334, 331, |
| 328, 324, 321, 318, 315, 312, 309, 306, 303, 301, 298, 295, 293, 290, 287, |
| 285, 282, 280, 278, 275, 273, 271, 269, 266, 264, 262, 260, 258, 256, 254, |
| 252, 250, 248, 246, 245, 243, 241, 239, 237, 236, 234, 232, 231, 229, 228, |
| 226, 224, 223, 221, 220, 218, 217, 216, 214, 213, 211, 210, 209, 207, 206, |
| 205, 204, 202, 201, 200, 199, 197, 196, 195, 194, 193, 192, 191, 189, 188, |
| 187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173, |
| 172, 172, 171, 170, 169, 168, 167, 166, 165, 165, 164, 163 |
| }; |
| |
| const int16_t WebRtcNsx_kLogTableFrac[256] = { |
| 0, 1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, |
| 22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42, |
| 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, |
| 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, |
| 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, |
| 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, |
| 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, |
| 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, |
| 147, 148, 149, 150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 160, |
| 161, 162, 163, 164, 165, 166, 167, 168, 169, 169, 170, 171, 172, 173, 174, |
| 175, 176, 177, 178, 178, 179, 180, 181, 182, 183, 184, 185, 185, 186, 187, |
| 188, 189, 190, 191, 192, 192, 193, 194, 195, 196, 197, 198, 198, 199, 200, |
| 201, 202, 203, 203, 204, 205, 206, 207, 208, 208, 209, 210, 211, 212, 212, |
| 213, 214, 215, 216, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, |
| 225, 226, 227, 228, 228, 229, 230, 231, 231, 232, 233, 234, 234, 235, 236, |
| 237, 238, 238, 239, 240, 241, 241, 242, 243, 244, 244, 245, 246, 247, 247, |
| 248, 249, 249, 250, 251, 252, 252, 253, 254, 255, 255 |
| }; |
| |
| // Update the noise estimation information. |
| static void UpdateNoiseEstimateNeon(NoiseSuppressionFixedC* inst, int offset) { |
| const int16_t kExp2Const = 11819; // Q13 |
| int16_t* ptr_noiseEstLogQuantile = NULL; |
| int16_t* ptr_noiseEstQuantile = NULL; |
| int16x4_t kExp2Const16x4 = vdup_n_s16(kExp2Const); |
| int32x4_t twentyOne32x4 = vdupq_n_s32(21); |
| int32x4_t constA32x4 = vdupq_n_s32(0x1fffff); |
| int32x4_t constB32x4 = vdupq_n_s32(0x200000); |
| |
| int16_t tmp16 = WebRtcSpl_MaxValueW16(inst->noiseEstLogQuantile + offset, |
| inst->magnLen); |
| |
| // Guarantee a Q-domain as high as possible and still fit in int16 |
| inst->qNoise = 14 - (int) WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(kExp2Const, |
| tmp16, |
| 21); |
| |
| int32x4_t qNoise32x4 = vdupq_n_s32(inst->qNoise); |
| |
| for (ptr_noiseEstLogQuantile = &inst->noiseEstLogQuantile[offset], |
| ptr_noiseEstQuantile = &inst->noiseEstQuantile[0]; |
| ptr_noiseEstQuantile < &inst->noiseEstQuantile[inst->magnLen - 3]; |
| ptr_noiseEstQuantile += 4, ptr_noiseEstLogQuantile += 4) { |
| |
| // tmp32no2 = kExp2Const * inst->noiseEstLogQuantile[offset + i]; |
| int16x4_t v16x4 = vld1_s16(ptr_noiseEstLogQuantile); |
| int32x4_t v32x4B = vmull_s16(v16x4, kExp2Const16x4); |
| |
| // tmp32no1 = (0x00200000 | (tmp32no2 & 0x001FFFFF)); // 2^21 + frac |
| int32x4_t v32x4A = vandq_s32(v32x4B, constA32x4); |
| v32x4A = vorrq_s32(v32x4A, constB32x4); |
| |
| // tmp16 = (int16_t)(tmp32no2 >> 21); |
| v32x4B = vshrq_n_s32(v32x4B, 21); |
| |
| // tmp16 -= 21;// shift 21 to get result in Q0 |
| v32x4B = vsubq_s32(v32x4B, twentyOne32x4); |
| |
| // tmp16 += (int16_t) inst->qNoise; |
| // shift to get result in Q(qNoise) |
| v32x4B = vaddq_s32(v32x4B, qNoise32x4); |
| |
| // if (tmp16 < 0) { |
| // tmp32no1 >>= -tmp16; |
| // } else { |
| // tmp32no1 <<= tmp16; |
| // } |
| v32x4B = vshlq_s32(v32x4A, v32x4B); |
| |
| // tmp16 = WebRtcSpl_SatW32ToW16(tmp32no1); |
| v16x4 = vqmovn_s32(v32x4B); |
| |
| //inst->noiseEstQuantile[i] = tmp16; |
| vst1_s16(ptr_noiseEstQuantile, v16x4); |
| } |
| |
| // Last iteration: |
| |
| // inst->quantile[i]=exp(inst->lquantile[offset+i]); |
| // in Q21 |
| int32_t tmp32no2 = kExp2Const * *ptr_noiseEstLogQuantile; |
| int32_t tmp32no1 = (0x00200000 | (tmp32no2 & 0x001FFFFF)); // 2^21 + frac |
| |
| tmp16 = (int16_t)(tmp32no2 >> 21); |
| tmp16 -= 21;// shift 21 to get result in Q0 |
| tmp16 += (int16_t) inst->qNoise; //shift to get result in Q(qNoise) |
| if (tmp16 < 0) { |
| tmp32no1 >>= -tmp16; |
| } else { |
| tmp32no1 <<= tmp16; |
| } |
| *ptr_noiseEstQuantile = WebRtcSpl_SatW32ToW16(tmp32no1); |
| } |
| |
| // Noise Estimation |
| void WebRtcNsx_NoiseEstimationNeon(NoiseSuppressionFixedC* inst, |
| uint16_t* magn, |
| uint32_t* noise, |
| int16_t* q_noise) { |
| int16_t lmagn[HALF_ANAL_BLOCKL], counter, countDiv; |
| int16_t countProd, delta, zeros, frac; |
| int16_t log2, tabind, logval, tmp16, tmp16no1, tmp16no2; |
| const int16_t log2_const = 22713; |
| const int16_t width_factor = 21845; |
| |
| size_t i, s, offset; |
| |
| tabind = inst->stages - inst->normData; |
| RTC_DCHECK_LT(tabind, 9); |
| RTC_DCHECK_GT(tabind, -9); |
| if (tabind < 0) { |
| logval = -WebRtcNsx_kLogTable[-tabind]; |
| } else { |
| logval = WebRtcNsx_kLogTable[tabind]; |
| } |
| |
| int16x8_t logval_16x8 = vdupq_n_s16(logval); |
| |
| // lmagn(i)=log(magn(i))=log(2)*log2(magn(i)) |
| // magn is in Q(-stages), and the real lmagn values are: |
| // real_lmagn(i)=log(magn(i)*2^stages)=log(magn(i))+log(2^stages) |
| // lmagn in Q8 |
| for (i = 0; i < inst->magnLen; i++) { |
| if (magn[i]) { |
| zeros = WebRtcSpl_NormU32((uint32_t)magn[i]); |
| frac = (int16_t)((((uint32_t)magn[i] << zeros) |
| & 0x7FFFFFFF) >> 23); |
| RTC_DCHECK_LT(frac, 256); |
| // log2(magn(i)) |
| log2 = (int16_t)(((31 - zeros) << 8) |
| + WebRtcNsx_kLogTableFrac[frac]); |
| // log2(magn(i))*log(2) |
| lmagn[i] = (int16_t)((log2 * log2_const) >> 15); |
| // + log(2^stages) |
| lmagn[i] += logval; |
| } else { |
| lmagn[i] = logval; |
| } |
| } |
| |
| int16x4_t Q3_16x4 = vdup_n_s16(3); |
| int16x8_t WIDTHQ8_16x8 = vdupq_n_s16(WIDTH_Q8); |
| int16x8_t WIDTHFACTOR_16x8 = vdupq_n_s16(width_factor); |
| |
| int16_t factor = FACTOR_Q7; |
| if (inst->blockIndex < END_STARTUP_LONG) |
| factor = FACTOR_Q7_STARTUP; |
| |
| // Loop over simultaneous estimates |
| for (s = 0; s < SIMULT; s++) { |
| offset = s * inst->magnLen; |
| |
| // Get counter values from state |
| counter = inst->noiseEstCounter[s]; |
| RTC_DCHECK_LT(counter, 201); |
| countDiv = WebRtcNsx_kCounterDiv[counter]; |
| countProd = (int16_t)(counter * countDiv); |
| |
| // quant_est(...) |
| int16_t deltaBuff[8]; |
| int16x4_t tmp16x4_0; |
| int16x4_t tmp16x4_1; |
| int16x4_t countDiv_16x4 = vdup_n_s16(countDiv); |
| int16x8_t countProd_16x8 = vdupq_n_s16(countProd); |
| int16x8_t tmp16x8_0 = vdupq_n_s16(countDiv); |
| int16x8_t prod16x8 = vqrdmulhq_s16(WIDTHFACTOR_16x8, tmp16x8_0); |
| int16x8_t tmp16x8_1; |
| int16x8_t tmp16x8_2; |
| int16x8_t tmp16x8_3; |
| uint16x8_t tmp16x8_4; |
| int32x4_t tmp32x4; |
| |
| for (i = 0; i + 7 < inst->magnLen; i += 8) { |
| // Compute delta. |
| // Smaller step size during startup. This prevents from using |
| // unrealistic values causing overflow. |
| tmp16x8_0 = vdupq_n_s16(factor); |
| vst1q_s16(deltaBuff, tmp16x8_0); |
| |
| int j; |
| for (j = 0; j < 8; j++) { |
| if (inst->noiseEstDensity[offset + i + j] > 512) { |
| // Get values for deltaBuff by shifting intead of dividing. |
| int factor = WebRtcSpl_NormW16(inst->noiseEstDensity[offset + i + j]); |
| deltaBuff[j] = (int16_t)(FACTOR_Q16 >> (14 - factor)); |
| } |
| } |
| |
| // Update log quantile estimate |
| |
| // tmp16 = (int16_t)((delta * countDiv) >> 14); |
| tmp32x4 = vmull_s16(vld1_s16(&deltaBuff[0]), countDiv_16x4); |
| tmp16x4_1 = vshrn_n_s32(tmp32x4, 14); |
| tmp32x4 = vmull_s16(vld1_s16(&deltaBuff[4]), countDiv_16x4); |
| tmp16x4_0 = vshrn_n_s32(tmp32x4, 14); |
| tmp16x8_0 = vcombine_s16(tmp16x4_1, tmp16x4_0); // Keep for several lines. |
| |
| // prepare for the "if" branch |
| // tmp16 += 2; |
| // tmp16_1 = (Word16)(tmp16>>2); |
| tmp16x8_1 = vrshrq_n_s16(tmp16x8_0, 2); |
| |
| // inst->noiseEstLogQuantile[offset+i] + tmp16_1; |
| tmp16x8_2 = vld1q_s16(&inst->noiseEstLogQuantile[offset + i]); // Keep |
| tmp16x8_1 = vaddq_s16(tmp16x8_2, tmp16x8_1); // Keep for several lines |
| |
| // Prepare for the "else" branch |
| // tmp16 += 1; |
| // tmp16_1 = (Word16)(tmp16>>1); |
| tmp16x8_0 = vrshrq_n_s16(tmp16x8_0, 1); |
| |
| // tmp16_2 = (int16_t)((tmp16_1 * 3) >> 1); |
| tmp32x4 = vmull_s16(vget_low_s16(tmp16x8_0), Q3_16x4); |
| tmp16x4_1 = vshrn_n_s32(tmp32x4, 1); |
| |
| // tmp16_2 = (int16_t)((tmp16_1 * 3) >> 1); |
| tmp32x4 = vmull_s16(vget_high_s16(tmp16x8_0), Q3_16x4); |
| tmp16x4_0 = vshrn_n_s32(tmp32x4, 1); |
| |
| // inst->noiseEstLogQuantile[offset + i] - tmp16_2; |
| tmp16x8_0 = vcombine_s16(tmp16x4_1, tmp16x4_0); // keep |
| tmp16x8_0 = vsubq_s16(tmp16x8_2, tmp16x8_0); |
| |
| // logval is the smallest fixed point representation we can have. Values |
| // below that will correspond to values in the interval [0, 1], which |
| // can't possibly occur. |
| tmp16x8_0 = vmaxq_s16(tmp16x8_0, logval_16x8); |
| |
| // Do the if-else branches: |
| tmp16x8_3 = vld1q_s16(&lmagn[i]); // keep for several lines |
| tmp16x8_4 = vcgtq_s16(tmp16x8_3, tmp16x8_2); |
| tmp16x8_2 = vbslq_s16(tmp16x8_4, tmp16x8_1, tmp16x8_0); |
| vst1q_s16(&inst->noiseEstLogQuantile[offset + i], tmp16x8_2); |
| |
| // Update density estimate |
| // tmp16_1 + tmp16_2 |
| tmp16x8_1 = vld1q_s16(&inst->noiseEstDensity[offset + i]); |
| tmp16x8_0 = vqrdmulhq_s16(tmp16x8_1, countProd_16x8); |
| tmp16x8_0 = vaddq_s16(tmp16x8_0, prod16x8); |
| |
| // lmagn[i] - inst->noiseEstLogQuantile[offset + i] |
| tmp16x8_3 = vsubq_s16(tmp16x8_3, tmp16x8_2); |
| tmp16x8_3 = vabsq_s16(tmp16x8_3); |
| tmp16x8_4 = vcgtq_s16(WIDTHQ8_16x8, tmp16x8_3); |
| tmp16x8_1 = vbslq_s16(tmp16x8_4, tmp16x8_0, tmp16x8_1); |
| vst1q_s16(&inst->noiseEstDensity[offset + i], tmp16x8_1); |
| } // End loop over magnitude spectrum |
| |
| // Last iteration over magnitude spectrum: |
| // compute delta |
| if (inst->noiseEstDensity[offset + i] > 512) { |
| // Get values for deltaBuff by shifting intead of dividing. |
| int factor = WebRtcSpl_NormW16(inst->noiseEstDensity[offset + i]); |
| delta = (int16_t)(FACTOR_Q16 >> (14 - factor)); |
| } else { |
| delta = FACTOR_Q7; |
| if (inst->blockIndex < END_STARTUP_LONG) { |
| // Smaller step size during startup. This prevents from using |
| // unrealistic values causing overflow. |
| delta = FACTOR_Q7_STARTUP; |
| } |
| } |
| // update log quantile estimate |
| tmp16 = (int16_t)((delta * countDiv) >> 14); |
| if (lmagn[i] > inst->noiseEstLogQuantile[offset + i]) { |
| // +=QUANTILE*delta/(inst->counter[s]+1) QUANTILE=0.25, =1 in Q2 |
| // CounterDiv=1/(inst->counter[s]+1) in Q15 |
| tmp16 += 2; |
| inst->noiseEstLogQuantile[offset + i] += tmp16 / 4; |
| } else { |
| tmp16 += 1; |
| // *(1-QUANTILE), in Q2 QUANTILE=0.25, 1-0.25=0.75=3 in Q2 |
| // TODO(bjornv): investigate why we need to truncate twice. |
| tmp16no2 = (int16_t)((tmp16 / 2) * 3 / 2); |
| inst->noiseEstLogQuantile[offset + i] -= tmp16no2; |
| if (inst->noiseEstLogQuantile[offset + i] < logval) { |
| // logval is the smallest fixed point representation we can have. |
| // Values below that will correspond to values in the interval |
| // [0, 1], which can't possibly occur. |
| inst->noiseEstLogQuantile[offset + i] = logval; |
| } |
| } |
| |
| // update density estimate |
| if (WEBRTC_SPL_ABS_W16(lmagn[i] - inst->noiseEstLogQuantile[offset + i]) |
| < WIDTH_Q8) { |
| tmp16no1 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( |
| inst->noiseEstDensity[offset + i], countProd, 15); |
| tmp16no2 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND( |
| width_factor, countDiv, 15); |
| inst->noiseEstDensity[offset + i] = tmp16no1 + tmp16no2; |
| } |
| |
| |
| if (counter >= END_STARTUP_LONG) { |
| inst->noiseEstCounter[s] = 0; |
| if (inst->blockIndex >= END_STARTUP_LONG) { |
| UpdateNoiseEstimateNeon(inst, offset); |
| } |
| } |
| inst->noiseEstCounter[s]++; |
| |
| } // end loop over simultaneous estimates |
| |
| // Sequentially update the noise during startup |
| if (inst->blockIndex < END_STARTUP_LONG) { |
| UpdateNoiseEstimateNeon(inst, offset); |
| } |
| |
| for (i = 0; i < inst->magnLen; i++) { |
| noise[i] = (uint32_t)(inst->noiseEstQuantile[i]); // Q(qNoise) |
| } |
| (*q_noise) = (int16_t)inst->qNoise; |
| } |
| |
| // Filter the data in the frequency domain, and create spectrum. |
| void WebRtcNsx_PrepareSpectrumNeon(NoiseSuppressionFixedC* inst, |
| int16_t* freq_buf) { |
| RTC_DCHECK_EQ(1, inst->magnLen % 8); |
| RTC_DCHECK_EQ(0, inst->anaLen2 % 16); |
| |
| // (1) Filtering. |
| |
| // Fixed point C code for the next block is as follows: |
| // for (i = 0; i < inst->magnLen; i++) { |
| // inst->real[i] = (int16_t)((inst->real[i] * |
| // (int16_t)(inst->noiseSupFilter[i])) >> 14); // Q(normData-stages) |
| // inst->imag[i] = (int16_t)((inst->imag[i] * |
| // (int16_t)(inst->noiseSupFilter[i])) >> 14); // Q(normData-stages) |
| // } |
| |
| int16_t* preal = &inst->real[0]; |
| int16_t* pimag = &inst->imag[0]; |
| int16_t* pns_filter = (int16_t*)&inst->noiseSupFilter[0]; |
| int16_t* pimag_end = pimag + inst->magnLen - 4; |
| |
| while (pimag < pimag_end) { |
| int16x8_t real = vld1q_s16(preal); |
| int16x8_t imag = vld1q_s16(pimag); |
| int16x8_t ns_filter = vld1q_s16(pns_filter); |
| |
| int32x4_t tmp_r_0 = vmull_s16(vget_low_s16(real), vget_low_s16(ns_filter)); |
| int32x4_t tmp_i_0 = vmull_s16(vget_low_s16(imag), vget_low_s16(ns_filter)); |
| int32x4_t tmp_r_1 = vmull_s16(vget_high_s16(real), |
| vget_high_s16(ns_filter)); |
| int32x4_t tmp_i_1 = vmull_s16(vget_high_s16(imag), |
| vget_high_s16(ns_filter)); |
| |
| int16x4_t result_r_0 = vshrn_n_s32(tmp_r_0, 14); |
| int16x4_t result_i_0 = vshrn_n_s32(tmp_i_0, 14); |
| int16x4_t result_r_1 = vshrn_n_s32(tmp_r_1, 14); |
| int16x4_t result_i_1 = vshrn_n_s32(tmp_i_1, 14); |
| |
| vst1q_s16(preal, vcombine_s16(result_r_0, result_r_1)); |
| vst1q_s16(pimag, vcombine_s16(result_i_0, result_i_1)); |
| preal += 8; |
| pimag += 8; |
| pns_filter += 8; |
| } |
| |
| // Filter the last element |
| *preal = (int16_t)((*preal * *pns_filter) >> 14); |
| *pimag = (int16_t)((*pimag * *pns_filter) >> 14); |
| |
| // (2) Create spectrum. |
| |
| // Fixed point C code for the rest of the function is as follows: |
| // freq_buf[0] = inst->real[0]; |
| // freq_buf[1] = -inst->imag[0]; |
| // for (i = 1, j = 2; i < inst->anaLen2; i += 1, j += 2) { |
| // freq_buf[j] = inst->real[i]; |
| // freq_buf[j + 1] = -inst->imag[i]; |
| // } |
| // freq_buf[inst->anaLen] = inst->real[inst->anaLen2]; |
| // freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2]; |
| |
| preal = &inst->real[0]; |
| pimag = &inst->imag[0]; |
| pimag_end = pimag + inst->anaLen2; |
| int16_t * freq_buf_start = freq_buf; |
| while (pimag < pimag_end) { |
| // loop unroll |
| int16x8x2_t real_imag_0; |
| int16x8x2_t real_imag_1; |
| real_imag_0.val[1] = vld1q_s16(pimag); |
| real_imag_0.val[0] = vld1q_s16(preal); |
| preal += 8; |
| pimag += 8; |
| real_imag_1.val[1] = vld1q_s16(pimag); |
| real_imag_1.val[0] = vld1q_s16(preal); |
| preal += 8; |
| pimag += 8; |
| |
| real_imag_0.val[1] = vnegq_s16(real_imag_0.val[1]); |
| real_imag_1.val[1] = vnegq_s16(real_imag_1.val[1]); |
| vst2q_s16(freq_buf_start, real_imag_0); |
| freq_buf_start += 16; |
| vst2q_s16(freq_buf_start, real_imag_1); |
| freq_buf_start += 16; |
| } |
| freq_buf[inst->anaLen] = inst->real[inst->anaLen2]; |
| freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2]; |
| } |
| |
| // For the noise supress process, synthesis, read out fully processed segment, |
| // and update synthesis buffer. |
| void WebRtcNsx_SynthesisUpdateNeon(NoiseSuppressionFixedC* inst, |
| int16_t* out_frame, |
| int16_t gain_factor) { |
| RTC_DCHECK_EQ(0, inst->anaLen % 16); |
| RTC_DCHECK_EQ(0, inst->blockLen10ms % 16); |
| |
| int16_t* preal_start = inst->real; |
| const int16_t* pwindow = inst->window; |
| int16_t* preal_end = preal_start + inst->anaLen; |
| int16_t* psynthesis_buffer = inst->synthesisBuffer; |
| |
| while (preal_start < preal_end) { |
| // Loop unroll. |
| int16x8_t window_0 = vld1q_s16(pwindow); |
| int16x8_t real_0 = vld1q_s16(preal_start); |
| int16x8_t synthesis_buffer_0 = vld1q_s16(psynthesis_buffer); |
| |
| int16x8_t window_1 = vld1q_s16(pwindow + 8); |
| int16x8_t real_1 = vld1q_s16(preal_start + 8); |
| int16x8_t synthesis_buffer_1 = vld1q_s16(psynthesis_buffer + 8); |
| |
| int32x4_t tmp32a_0_low = vmull_s16(vget_low_s16(real_0), |
| vget_low_s16(window_0)); |
| int32x4_t tmp32a_0_high = vmull_s16(vget_high_s16(real_0), |
| vget_high_s16(window_0)); |
| |
| int32x4_t tmp32a_1_low = vmull_s16(vget_low_s16(real_1), |
| vget_low_s16(window_1)); |
| int32x4_t tmp32a_1_high = vmull_s16(vget_high_s16(real_1), |
| vget_high_s16(window_1)); |
| |
| int16x4_t tmp16a_0_low = vqrshrn_n_s32(tmp32a_0_low, 14); |
| int16x4_t tmp16a_0_high = vqrshrn_n_s32(tmp32a_0_high, 14); |
| |
| int16x4_t tmp16a_1_low = vqrshrn_n_s32(tmp32a_1_low, 14); |
| int16x4_t tmp16a_1_high = vqrshrn_n_s32(tmp32a_1_high, 14); |
| |
| int32x4_t tmp32b_0_low = vmull_n_s16(tmp16a_0_low, gain_factor); |
| int32x4_t tmp32b_0_high = vmull_n_s16(tmp16a_0_high, gain_factor); |
| |
| int32x4_t tmp32b_1_low = vmull_n_s16(tmp16a_1_low, gain_factor); |
| int32x4_t tmp32b_1_high = vmull_n_s16(tmp16a_1_high, gain_factor); |
| |
| int16x4_t tmp16b_0_low = vqrshrn_n_s32(tmp32b_0_low, 13); |
| int16x4_t tmp16b_0_high = vqrshrn_n_s32(tmp32b_0_high, 13); |
| |
| int16x4_t tmp16b_1_low = vqrshrn_n_s32(tmp32b_1_low, 13); |
| int16x4_t tmp16b_1_high = vqrshrn_n_s32(tmp32b_1_high, 13); |
| |
| synthesis_buffer_0 = vqaddq_s16(vcombine_s16(tmp16b_0_low, tmp16b_0_high), |
| synthesis_buffer_0); |
| synthesis_buffer_1 = vqaddq_s16(vcombine_s16(tmp16b_1_low, tmp16b_1_high), |
| synthesis_buffer_1); |
| vst1q_s16(psynthesis_buffer, synthesis_buffer_0); |
| vst1q_s16(psynthesis_buffer + 8, synthesis_buffer_1); |
| |
| pwindow += 16; |
| preal_start += 16; |
| psynthesis_buffer += 16; |
| } |
| |
| // Read out fully processed segment. |
| int16_t * p_start = inst->synthesisBuffer; |
| int16_t * p_end = inst->synthesisBuffer + inst->blockLen10ms; |
| int16_t * p_frame = out_frame; |
| while (p_start < p_end) { |
| int16x8_t frame_0 = vld1q_s16(p_start); |
| vst1q_s16(p_frame, frame_0); |
| p_start += 8; |
| p_frame += 8; |
| } |
| |
| // Update synthesis buffer. |
| int16_t* p_start_src = inst->synthesisBuffer + inst->blockLen10ms; |
| int16_t* p_end_src = inst->synthesisBuffer + inst->anaLen; |
| int16_t* p_start_dst = inst->synthesisBuffer; |
| while (p_start_src < p_end_src) { |
| int16x8_t frame = vld1q_s16(p_start_src); |
| vst1q_s16(p_start_dst, frame); |
| p_start_src += 8; |
| p_start_dst += 8; |
| } |
| |
| p_start = inst->synthesisBuffer + inst->anaLen - inst->blockLen10ms; |
| p_end = p_start + inst->blockLen10ms; |
| int16x8_t zero = vdupq_n_s16(0); |
| for (;p_start < p_end; p_start += 8) { |
| vst1q_s16(p_start, zero); |
| } |
| } |
| |
| // Update analysis buffer for lower band, and window data before FFT. |
| void WebRtcNsx_AnalysisUpdateNeon(NoiseSuppressionFixedC* inst, |
| int16_t* out, |
| int16_t* new_speech) { |
| RTC_DCHECK_EQ(0, inst->blockLen10ms % 16); |
| RTC_DCHECK_EQ(0, inst->anaLen % 16); |
| |
| // For lower band update analysis buffer. |
| // memcpy(inst->analysisBuffer, inst->analysisBuffer + inst->blockLen10ms, |
| // (inst->anaLen - inst->blockLen10ms) * sizeof(*inst->analysisBuffer)); |
| int16_t* p_start_src = inst->analysisBuffer + inst->blockLen10ms; |
| int16_t* p_end_src = inst->analysisBuffer + inst->anaLen; |
| int16_t* p_start_dst = inst->analysisBuffer; |
| while (p_start_src < p_end_src) { |
| int16x8_t frame = vld1q_s16(p_start_src); |
| vst1q_s16(p_start_dst, frame); |
| |
| p_start_src += 8; |
| p_start_dst += 8; |
| } |
| |
| // memcpy(inst->analysisBuffer + inst->anaLen - inst->blockLen10ms, |
| // new_speech, inst->blockLen10ms * sizeof(*inst->analysisBuffer)); |
| p_start_src = new_speech; |
| p_end_src = new_speech + inst->blockLen10ms; |
| p_start_dst = inst->analysisBuffer + inst->anaLen - inst->blockLen10ms; |
| while (p_start_src < p_end_src) { |
| int16x8_t frame = vld1q_s16(p_start_src); |
| vst1q_s16(p_start_dst, frame); |
| |
| p_start_src += 8; |
| p_start_dst += 8; |
| } |
| |
| // Window data before FFT. |
| int16_t* p_start_window = (int16_t*) inst->window; |
| int16_t* p_start_buffer = inst->analysisBuffer; |
| int16_t* p_end_buffer = inst->analysisBuffer + inst->anaLen; |
| int16_t* p_start_out = out; |
| |
| // Load the first element to reduce pipeline bubble. |
| int16x8_t window = vld1q_s16(p_start_window); |
| int16x8_t buffer = vld1q_s16(p_start_buffer); |
| p_start_window += 8; |
| p_start_buffer += 8; |
| |
| while (p_start_buffer < p_end_buffer) { |
| // Unroll loop. |
| int32x4_t tmp32_low = vmull_s16(vget_low_s16(window), vget_low_s16(buffer)); |
| int32x4_t tmp32_high = vmull_s16(vget_high_s16(window), |
| vget_high_s16(buffer)); |
| window = vld1q_s16(p_start_window); |
| buffer = vld1q_s16(p_start_buffer); |
| |
| int16x4_t result_low = vrshrn_n_s32(tmp32_low, 14); |
| int16x4_t result_high = vrshrn_n_s32(tmp32_high, 14); |
| vst1q_s16(p_start_out, vcombine_s16(result_low, result_high)); |
| |
| p_start_buffer += 8; |
| p_start_window += 8; |
| p_start_out += 8; |
| } |
| int32x4_t tmp32_low = vmull_s16(vget_low_s16(window), vget_low_s16(buffer)); |
| int32x4_t tmp32_high = vmull_s16(vget_high_s16(window), |
| vget_high_s16(buffer)); |
| |
| int16x4_t result_low = vrshrn_n_s32(tmp32_low, 14); |
| int16x4_t result_high = vrshrn_n_s32(tmp32_high, 14); |
| vst1q_s16(p_start_out, vcombine_s16(result_low, result_high)); |
| } |