| /* |
| * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/fullband_erle_estimator.h" |
| |
| #include <algorithm> |
| #include <memory> |
| #include <numeric> |
| |
| #include "absl/types/optional.h" |
| #include "api/array_view.h" |
| #include "modules/audio_processing/aec3/aec3_common.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "rtc_base/numerics/safe_minmax.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| constexpr float kEpsilon = 1e-3f; |
| constexpr float kX2BandEnergyThreshold = 44015068.0f; |
| constexpr int kErleHold = 100; |
| constexpr int kPointsToAccumulate = 6; |
| } // namespace |
| |
| FullBandErleEstimator::FullBandErleEstimator(float min_erle, float max_erle_lf) |
| : min_erle_log2_(FastApproxLog2f(min_erle + kEpsilon)), |
| max_erle_lf_log2(FastApproxLog2f(max_erle_lf + kEpsilon)) { |
| Reset(); |
| } |
| |
| FullBandErleEstimator::~FullBandErleEstimator() = default; |
| |
| void FullBandErleEstimator::Reset() { |
| instantaneous_erle_.Reset(); |
| erle_time_domain_log2_ = min_erle_log2_; |
| hold_counter_time_domain_ = 0; |
| } |
| |
| void FullBandErleEstimator::Update(rtc::ArrayView<const float> X2, |
| rtc::ArrayView<const float> Y2, |
| rtc::ArrayView<const float> E2, |
| bool converged_filter) { |
| if (converged_filter) { |
| // Computes the fullband ERLE. |
| const float X2_sum = std::accumulate(X2.begin(), X2.end(), 0.0f); |
| if (X2_sum > kX2BandEnergyThreshold * X2.size()) { |
| const float Y2_sum = std::accumulate(Y2.begin(), Y2.end(), 0.0f); |
| const float E2_sum = std::accumulate(E2.begin(), E2.end(), 0.0f); |
| if (instantaneous_erle_.Update(Y2_sum, E2_sum)) { |
| hold_counter_time_domain_ = kErleHold; |
| erle_time_domain_log2_ += |
| 0.1f * ((instantaneous_erle_.GetInstErleLog2().value()) - |
| erle_time_domain_log2_); |
| erle_time_domain_log2_ = rtc::SafeClamp( |
| erle_time_domain_log2_, min_erle_log2_, max_erle_lf_log2); |
| } |
| } |
| } |
| --hold_counter_time_domain_; |
| if (hold_counter_time_domain_ <= 0) { |
| erle_time_domain_log2_ = |
| std::max(min_erle_log2_, erle_time_domain_log2_ - 0.044f); |
| } |
| if (hold_counter_time_domain_ == 0) { |
| instantaneous_erle_.ResetAccumulators(); |
| } |
| } |
| |
| void FullBandErleEstimator::Dump( |
| const std::unique_ptr<ApmDataDumper>& data_dumper) const { |
| data_dumper->DumpRaw("aec3_fullband_erle_log2", FullbandErleLog2()); |
| instantaneous_erle_.Dump(data_dumper); |
| } |
| |
| FullBandErleEstimator::ErleInstantaneous::ErleInstantaneous() { |
| Reset(); |
| } |
| |
| FullBandErleEstimator::ErleInstantaneous::~ErleInstantaneous() = default; |
| |
| bool FullBandErleEstimator::ErleInstantaneous::Update(const float Y2_sum, |
| const float E2_sum) { |
| bool update_estimates = false; |
| E2_acum_ += E2_sum; |
| Y2_acum_ += Y2_sum; |
| num_points_++; |
| if (num_points_ == kPointsToAccumulate) { |
| if (E2_acum_ > 0.f) { |
| update_estimates = true; |
| erle_log2_ = FastApproxLog2f(Y2_acum_ / E2_acum_ + kEpsilon); |
| } |
| num_points_ = 0; |
| E2_acum_ = 0.f; |
| Y2_acum_ = 0.f; |
| } |
| |
| if (update_estimates) { |
| UpdateMaxMin(); |
| UpdateQualityEstimate(); |
| } |
| return update_estimates; |
| } |
| |
| void FullBandErleEstimator::ErleInstantaneous::Reset() { |
| ResetAccumulators(); |
| max_erle_log2_ = -10.f; // -30 dB. |
| min_erle_log2_ = 33.f; // 100 dB. |
| inst_quality_estimate_ = 0.f; |
| } |
| |
| void FullBandErleEstimator::ErleInstantaneous::ResetAccumulators() { |
| erle_log2_ = absl::nullopt; |
| inst_quality_estimate_ = 0.f; |
| num_points_ = 0; |
| E2_acum_ = 0.f; |
| Y2_acum_ = 0.f; |
| } |
| |
| void FullBandErleEstimator::ErleInstantaneous::Dump( |
| const std::unique_ptr<ApmDataDumper>& data_dumper) const { |
| data_dumper->DumpRaw("aec3_fullband_erle_inst_log2", |
| erle_log2_ ? *erle_log2_ : -10.f); |
| data_dumper->DumpRaw( |
| "aec3_erle_instantaneous_quality", |
| GetQualityEstimate() ? GetQualityEstimate().value() : 0.f); |
| data_dumper->DumpRaw("aec3_fullband_erle_max_log2", max_erle_log2_); |
| data_dumper->DumpRaw("aec3_fullband_erle_min_log2", min_erle_log2_); |
| } |
| |
| void FullBandErleEstimator::ErleInstantaneous::UpdateMaxMin() { |
| RTC_DCHECK(erle_log2_); |
| if (erle_log2_.value() > max_erle_log2_) { |
| max_erle_log2_ = erle_log2_.value(); |
| } else { |
| max_erle_log2_ -= 0.0004; // Forget factor, approx 1dB every 3 sec. |
| } |
| |
| if (erle_log2_.value() < min_erle_log2_) { |
| min_erle_log2_ = erle_log2_.value(); |
| } else { |
| min_erle_log2_ += 0.0004; // Forget factor, approx 1dB every 3 sec. |
| } |
| } |
| |
| void FullBandErleEstimator::ErleInstantaneous::UpdateQualityEstimate() { |
| const float alpha = 0.07f; |
| float quality_estimate = 0.f; |
| RTC_DCHECK(erle_log2_); |
| if (max_erle_log2_ > min_erle_log2_) { |
| quality_estimate = (erle_log2_.value() - min_erle_log2_) / |
| (max_erle_log2_ - min_erle_log2_); |
| } |
| if (quality_estimate > inst_quality_estimate_) { |
| inst_quality_estimate_ = quality_estimate; |
| } else { |
| inst_quality_estimate_ += |
| alpha * (quality_estimate - inst_quality_estimate_); |
| } |
| } |
| |
| } // namespace webrtc |